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Abstract: - This paper presents an improved type of data schism and interpolation called Alnuaimy-Mahamod 
Interpolation based on the mean and variance to calculate the entire point between two known points. A new 
mathematical method is developed for interpolation from a given set of data points in a plane and for fitting a 
smooth curve to the points. This method is devised in such a way that the resultant curve will pass through the 
given points and will appear smooth and natural. Data schism and interpolation describes the behaviors of the 
calculated points which behave as bacteria reproduction. This type of interpolation based on calculation of the 
mean and the variance of two adjacent points and modify of these calculate values by named factors to be used 
to calculate the entire points. Our type of interpolation can be working as linear midpoint interpolation, linear 
interpolation and smooth curve fitting.    
 
Key-Words: - Interpolation, midpoint interpolation, linear interpolation and smooth curve fitting. 
 

1 Introduction 
Computation and measurement can be performed to 
determine a relation between two variables. The 
result is given as a set of discrete data points in a 
plane. Knowing that the relation can be represented 
by a smooth curve, then a curve fitting used to set of 
data points so that it will pass through all the points. 
Manual drawing is the most primitive method for 
this purpose and results in a reasonable curve if it is 
done by a well-trained scientist or engineer. But, 
since it is very tedious and time consuming a 
computer is used to draw the curve. The computer 
must then be provided with necessary instructions 
for mathematically interpolating additional points 
between the given data points. 

There are several mathematical methods of 
interpolating a single-valued function from a given 
set of values [1], but their application to curve 
fitting sometimes results in a curve that is very 
different from one drawn manually. The common 
difficulty is that the resultant curve sometimes 
shows unnatural wiggles. This seems inevitable if 
we make any assumption concerning the functional 
form for the whole set of given data points other 
than the continuity and the smoothness of the curve. 

The problem of constructing a continuously 
defined function from given discrete data is 
unavoidable whenever one wishes to manipulate the 
data in a way that requires information not included 
explicitly in the data. In this age of ever-increasing 

digitization in the storage, processing, analysis, and 
communication of information, it is not difficult to 
find examples of applications where this problem 
occurs. The relatively easiest and in many 
applications often most desired approach to solve 
the problem is interpolation, where an 
approximating function is constructed in such a way 
as to agree perfectly with the usually unknown 
original function at the given measurement points. 
In view of its increasing relevance, it is only natural 
that the subject of interpolation is receiving more 
and more attention these days. However, in times 
where all efforts are directed toward the future, the 
past may easily be forgotten. It is no sinecure, 
scanning the literature, to get a clear picture of the 
development of the subject through the ages. This is 
quite unfortunate, since it implies a risk of 
researchers going over grounds covered earlier by 
others. History has shown many examples of this 
and several new examples will be revealed here. In 
this paper we will present a systematic overview of 
the developments in interpolation theory, from the 
earliest times to the present date and to put the most 
well-known techniques currently used in signal and 
image processing applications into historical 
perspective and give a precise description for 
Alnuaimy-Mahamod Interpolation.  
2 Interpolation Overview 
The word “interpolation” originates from the Latin 
verb interpolare, a contraction of “inter,” meaning 
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“between,” and “polare,” meaning “to polish.” That 
is to say, to smooth in between given pieces of 
information. It seems that the word was introduced 
in the English literature for the first time around 
1612 and was then used in the sense of “to alter or 
enlarge [texts] by insertion of new matter” [2]. The 
original Latin word appears [3] to have been used 
first in a mathematical sense by Wallis in his 1655 
book on infinitesimal arithmetic [4]. 

In antiquity, astronomy was all about time 
keeping and making predictions concerning 
astronomical events. This served important practical 
needs: farmers, e.g., would base their planting 
strategies on these predictions. To this end, it was of 
great importance to keep up lists—so-called 
ephemerides—of the positions of the sun, moon, 
and the known planets for regular time intervals. 
Obviously, these lists would contain gaps, due to 
either atmospherical conditions hampering 
observation or the fact that celestial bodies may not 
be visible during certain periods. From his study of 
ephemerides found on ancient astronomical 
cuneiform tablets originating from Uruk and 
Babylon in the Seleucid period (the last three 
centuries BC), the historian-mathematician 
Neugebauer [5, 6] concluded that interpolation was 
used in order to fill these gaps. Apart from linear 
interpolation, the tablets also revealed the use of 
more complex interpolation methods. Precise 
formulations of the latter methods have not 
survived, however. 

By the beginning of the 20th century, the 
problem of interpolation by finite or divided 
differences had been studied by astronomers, 
mathematicians, statisticians, and actuaries,21 and 
most of the now well-known variants of Newton’s 
original formulae had been worked out. This is not 
to say, however, that there are no more advanced 
developments to report on. Quite to the contrary, 
already in 1821, Cauchy [6] studied interpolation by 
means of a ratio of two polynomials and showed 
that the solution to this problem is unique, the 
Waring–Lagrange formula being the special case for 
the second polynomial equal to one.22 
Generalizations for solving the problem of 
multivariate interpolation in the case of fairly 
arbitrary point configurations began to appear in the 
second half of the 19th century, in the works of 
Borchardt and Kronecker [8]. 

A generalization of a different nature was 
published in 1878 by Hermite [9], who studied and 
solved the problem of finding a polynomial of 
which also the first few derivatives assume 
prespecified values at given points, where the order 
of the highest derivative may differ from point to 

point. In a paper [10] published in 1906, Birkhoff 
studied the even more general problem: given any 
set of points, find a polynomial function that 
satisfies prespecified criteria concerning its value 
and/or the value of any of its derivatives for each 
individual point.23 Hermite and Birkhoff type of 
interpolation problems—and their multivariate 
versions, not necessarily on Cartesian grids—have 
received much attention in the past decades. A more 
detailed treatment is outside the scope of this paper, 
however, and the reader is referred to relevant books 
and reviews [8]. 

Another important development from the late 
1800s is the rise of approximation theory. For a long 
time, one of the main reasons for the use of 
polynomials had been the fact that they are simply 
easy to manipulate, e.g., to differentiate or integrate. 
In 1885, Weierstrass [11] also justified their use for 
approximation by establishing the so-called 
approximation theorem, which states that every 
continuous function on a closed interval can be 
approximated uniformly to any prescribed accuracy 
by a polynomial.24 The theorem does not provide 
any means of obtaining such a polynomial, 
however, and it soon became clear that it does not 
necessarily apply if the polynomial is forced to 
agree with the function at given points within the 
interval, i.e., in the case of an interpolating 
polynomial. 

Examples of meromorphic functions for which 
the Waring–Lagrange interpolator does not 
converge uniformly were given by Méray [12], [13] 
and later Runge [14]—especially the latter has 
become well known and can be found in most 
modern books on the topic. A more general result is 
due to Faber [15], who, in 1914, showed that for any 
prescribed triangular system of interpolation points 
there exists a continuous function for which the 
corresponding Waring–Lagrange interpolation 
process carried out on these points does not 
converge uniformly to this function. Although it has 
later been proven possible to construct interpolating 
polynomials that do converge properly for all 
continuous functions, e.g., by using the Hermite 
type of interpolation scheme proposed by Fejér [16] 
in 1916, these findings clearly revealed the 
“inflexibility” of algebraic polynomials and their 
limited applicability to interpolation. 

The early 1970s was the time when digital image 
processing really started to develop. One of the first 
applications reported in the literature was the 
geometrical rectification of digital images obtained 
from the first Earth Resources Technology Satellite 
launched by the United States National Aeronautics 
and Space Administration in 1972. The need for 
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more accurate interpolations than obtained by 
standard linear interpolation in this application led 
to the development of a still very popular technique 
known as cubic Interpolation. Meanwhile, research 
on cubic convolution interpolation continued. In 
1981, Keys [17] published an important study that 
provided new approximation-theoretic insights into 
this technique. 
The use of splines interpolation for digital-image 
interpolation was investigated by an important paper 
providing a detailed analysis was published in 1978 
by Hou and Andrews [18]. 
 
 

3 Alnuaimy-Mahamod Interpolation 
Our method is based on the mean and the variance 
of two known values to calculate the entire values. 
The mean and the variance functions will be 
considered as functions for the unknown values. The 
calculated values of the mean and variance should 
be modified by β and ξ factors respectively. Using 
of these new values to calculate the entire samples. 
These two factors will be described precisely later.  
 
 
3.1 Formulation 
The calculation method can be explained as follows: 
 

1) Calculating of the mean and the variance of the 
two known values which have been used to 
calculate the entire values in between: 
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where Np is the number of values used in the 
equation. 

 
2) Multiplying the mean and the variance by 

factors β and ξ respectively. 
 
3) Calculating the values of the two entire values 

between the two known values using the 
following equation: 
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where xe is the interpolated values while c1 and 
c2 are: 
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4) Using the new values to calculate others in 

between following the same method in order to 
get required number of the interpolated values. 

 

 

3.2 β and ξ factors 
β and ξ factors are the modification factors for the 
mean and variance respectively. These factors ca be 
considered as control factors; as these factors 
control the calculated values to be closer or further 
from the known values. 
 
 
3.2.1 β factor 

β factor controls the calculated values of the 
interpolation as those can be upper, lower or on the 
line (in between) of the used values.  When β equal 
to 1 the calculated values will be on the line of the 
used values for interpolation. As β increased the 
interpolated values gets higher to the used sample 
while as it is decreased the interpolated values gets 
down to the used values as shown in Fig.1.  

β factor may cause error in the interpolated 
values specially when the original used values are 
real values so it can cause generation of an complex 
values. Therefore, the default value for β factor is 1. 
But in some cases we can change this value if we 
need it. 

 
2.2.2 ξ factor 
ξ factor controls the calculated values of the 
interpolation as it can be closer to used known 
values or further but in between (on the line of the 
known values). When ξ equal to 0.5 the calculated 
samples will be just only a mid point between to the 
used values (close to each other). As ξ increase the 
interpolated values getting closer to the used values, 
but when ξ equal to 1 the value will be much closer  
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or equal to the used values as β equals to 1 (i.e. 
equals to the used value) as shown in Fig.2. 

The default used value for ξ factor is 0.556 
which can give good accurate interpolated values. 
 

 
β = 1, ξ = 0.556 
  
 
 

(a) 
 
 
 
β = 1  , ξ = 0.556 
 
 
 

(b) 
 
β = 1   , ξ = 0.556 
 
 
 
 
 
 

(c) 
 

 Original sample   Interpolated sample    Variant Interpolated sample 
 

Fig.1    β factor over default ξ value                                                                   
 
 
β = 1, ξ = 0.5 
 
 
 

(a) 
 
β = 1, ξ = 0.5    1 
 
 
 

(b) 
 
β = 1, ξ = 1 
 
 

 
(c) 

 

 Original sample   Interpolated sample    Variant Interpolated sample 
 

Fig.2    ξ factor over default β value 
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3.3 Samples Interpolation  
The subdivision of the symbols should be submitted 
to some role, where the interpolation should be 
made between two adjacent samples as two another 
samples will be created which lay in between the 
original used samples. The calculated samples will 
be used to calculate another points lay in between.   

Preliminary the possible number of the 
calculated point can be calculated according to the 
following equation: 

)1(2 −×+= pp NNN                                   (6) 

 
where N is the total number of the point after 
calculation and  Np is the number of known points.  
Np will be updated to be equal to N each time we 
repeat the interpolation until we get the required 
number of the interpolated samples, as shown in 
Fig. 3.     

 
 
 
 
 
 
 
 
 
 
 
Step 1: Calculating of two samples lay between the original ones. 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Using the created samples with the original ones to calculate another samples between each two 
adjacent samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: Repeat of the Step 2 each time we need to create another samples. 
 

 
Fig.3 Interpolation subdivision 
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In order to get other numbers of the interpolated 
samples there should be other subdivisions for the 
entire interpolated samples as shown in Fig. 4(a-d) 
and 5(a-c). 

These distributions should be controlled by ξ 
factor, where ξ factor can control the interpolated 
samples values to be close to each other or close to 
the original samples. 

 
 

 
 

(a) 3 Steps – Single subdivision 
 
 

 
 

(b) 7 Steps – 2 subdivisions 
 

 

 
 

(c) 9 Steps – 3 subdivisions 
 
 

 
 

(d) 15 Steps – 2 subdivision – 4 subdivision 
 
 
 

Fig. 4 Interpolation Subdivisions 
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(a) 17 Steps – 3 subdivision – 5 subdivision 
 
 

 
 

(b) 19 Steps – 2 subdivision – 6 subdivision 
 
 

 
 

(c) 21 Steps – 3 subdivision – 7 subdivision 
 
 

 
Fig. 5 Other Interpolation Subdivisions 
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Fig. 6 Interpolation distribution based on variant values of ξ factors 
 

 
Also we can get other distributions for the 

interpolated samples which are not uniformly 
distributed as they are controlled by variant values 
of ξ factors as can be seen above in Fig. 6. 

 
3.4 Example 
Let us suppose that we have a number of points on a 
line of a sinc function’s curve which we want to 
interpolate other points between those to give more 
reality to the curve. Fig. 7 shows number of points 
on the curve in the x-y coordinates. 

 

 
 

Fig. 7 points of a sinc curve 
 

 
Now we will test of the work of Alnuaimy-

Mahamod interpolation using of the default values 
of β and ξ factors (1 and 0.556 respectively). First 
we will choose 3rd and 4th point to be x1 and x2 for 
Alnuaimy-Mahamod interpolation, as their 
amplitudes are -0.1393 and 0.04289 respectively, 
and then apply the steps in section 3.1 to calculate 
xe1 and xe2 as following: 
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Now we will put these two points on the x-y 
coordinate between the used points as we divided 
the x-axis distance between the used points into 
three parts as shown in Fig. 8.  
 

 
 

Fig. 8 Interpolation between 3rd and 4th point of the 
sinc curve 

 
By continuing the interpolation for the rest 

points, we can get more points for the curve as 
shown in Fig. 9. 

 

 
 

Fig. 9 Interpolation between all points of the sinc 
curve 

 
Also we can continue to find other points using 

the original and the interpolated points over 
Alnuaimy-Mahamod interpolation to give more 
accuracy for the curve. 
 

4 Result and Discussion 
In this section a computer result for different 
parameters (β and ξ factors) of Alnuaimy-Mahamod 
interpolation over a number of samples of sinc 
function curve will be given. 

Table 1 gives the accuracy of Alnuaimy-
Mahamod interpolation as it measure the Root Mean 
Square Error (RMSE) for interpolated curve and the 
original one for different values of β and ξ factors. 

Fig. 10 shows the performance of Alnuaimy-
Mahamod interpolation for the default values of β 
and ξ factors (1 and 0.556 respectively). It is 
obvious that the interpolation work as linear 
interpolation. 

Using default value of β factor and different 
values of ξ factor for interpolation to test the 
controlling of ξ factor on the interpolation as shown 
in Fig. 11. It can be seen that when ξ factor increase 
the curve become smoother but the accuracy of the 
curve reduce.  

In Fig. 12 the effect of β factor variation over 
default value of ξ factor can be seen. It is obvious 
that increasing and decreasing the value of β factor 
will increase the concavity and the convexity of the 
curve. 

 
Table 1: RMSE for different values of Alnuaimy-

Mahamod interpolation’s Parameters 
β factor ξ factor RMSE 

1 0.556 1.940e-02 
1 0.6 2.210e-02 
1 0.65 2.843e-02 
1 0.7 3.520e-02 

1.015 0.556 1.473e-02 
1.02 0.556 1.414e-02 
1.03 0.556 1.527e-02 

 
Fig. 10 Default value of β and ξ factors for 

Alnuaimy-Mahamod Interpolation 
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(a) β=1 and ξ=0.6 

 
(b) β=1 and ξ=0.65 

 
(c) β=1 and ξ=0.7 

Fig. 11 Fixed value of β and different values of ξ for 
Alnuaimy-Mahamod Interpolation 

 
(a) β=1.015 and ξ=0.556 

 
(b) β=1.02 and ξ=0.556 

 
(c) β=1.03 and ξ=0.556 

Fig. 12 Different values of β and fixed value of ξ for 
Alnuaimy-Mahamod Interpolation 
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5 Conclusion 
Alnuaimy-Mahamod interpolation can give more 
accuracy and reality for the interpolated curve. It 
can also work similar to other types of interpolation 
like linear interpolation, mid point interpolation and 
another type of interpolation. However, the 
interpolation is distinguishable from others since it 
can be controlled by two factors which are β and ξ. 
Hence, the interpolation becomes more flexible to 
the curvature of the line. 
 
References: 
[1] J. KARUP, On a new mechanical method of 
graduation In Transactions of the Second 
International Actuarial Congress. C. and E. Layton, 
London, 1899, pp. 78-109. 
[2] J. Simpson and E.Weiner, Eds., The Oxford 
English Dictionary, 2nd ed. Oxford, U.K.: Oxford 
Univ. Press, 1989. 
[3] J. Bauschinger, Interpolation, in Encyklopädie 
der Mathematischen Wissenschaften, W. F. Meyer, 
Ed. Leipzig, Germany: B. G.Teubner, 1900–1904, 
pp. 799–820. 
[4] J. Wallis, Arithmetica Infinitorum. Hildesheim, 
Germany: Olms Verlag, 1972. 
[5] O. Neugebauer, Astronomical Cuneiform Texts. 
Babylonian Ephemerides of the Seleucid Period for 
the Motion of the Sun, the Moon and the Planets, 
London, U.K.: Lund Humphries, 1955. 
[6] O. Neugebauer, A History of Ancient 
Mathematical Astronomy, Berlin, Germany: 
Springer-Verlag, 1975. 
[7] A.-L. Cauchy, Cours d’Analyze de l’École 
Royale Polytechnique:Part I: Analyze Algébrique, 
Paris, France: Imprimerie Royale, 1821, pt. I 
[8] M. Gasca and T. Sauer, On the history of 
multivariate polynomial interpolation, J. Comput. 
Appl. Math., vol. 122, no. 1–2, pp. 23–35, 2000. 
[9] C. Hermite, Sur la formule d’interpolation de 
Lagrange, Journal für die Reine und Angewandte 
Mathematik, vol. 84, no. 1, pp. 70–79, 1878. 
[10] G. D. Birkhoff, General mean value and 
remainder theorems with applications to 
mechanical differentiation and quadrature, Trans. 
Amer. Math. Soc., vol. 7, no. 1, pp. 107–136, 1906. 
[11] K. Weierstrass, Über die analytische 
Darstellbarkeit sogenannter willkürlicher 
Functionen reeller Argumente, in Sitzungsberichte 
der Königlich Preussischen Akademie der 
Wissenschaften zu Berlin, pp. 633/789–639/805. 
[12] Ch. Méray, Observations sur la légitimité de 
l’interpolation, Annales Scientifiques de l’École 
Normale Supérieure, ser. 3, vol. 1, pp. 165–176, 
1884. 

[13] Ch. Méray, Nouveaux exemples 
d’interpolations illusoires, Bulletin des Sciences 
Mathématiques., ser. 2, vol. 20, pp. 266–270, 1896. 
[14] C. Runge, Über emperische Functionen und die 
Interpolation zwischen äquidistanten Ordinaten, 
Zeitschrift für Mathematik und Physik, vol. 46, pp. 
224–243, 1901. 
[15] G. Faber, Über die interpolatorische 
Darstellung stetiger Functionen, Jahresbericht der 
Deutschen Mathematiker-Vereinigung, vol. 23, pp. 
192–210, 1914. 
[16] L. Fejér, Ueber interpolation, Nachrichten von 
der Gesellschaft der Wissenschaften zu Göttingen. 
Mathematisch-Physikalische Klasse, pp. 66–91, 
1916. 
[17] R. G. Keys, Cubic convolution interpolation for 
digital image processing, IEEE Trans. Acoust., 
Speech, Signal Processing, vol. ASSP-29, pp. 1153–
1160, Dec. 1981. 
[18] H. S. Hou and H. C. Andrews,  Cubic splines 
for image interpolation and digital filtering, IEEE 
Trans. Acoust., Speech, Signal Processing, vol. 
ASSP-26, pp. 508–517, Dec. 1978. 
 
 

WSEAS TRANSACTIONS on MATHEMATICS
Ahmed N. H. Alnuaimy, Mahamod Ismail, 
Mohd A. M. Ali, Kasmiran Jumari

ISSN: 1109-2769 722 Issue 12, Volume 8, December 2009


	29-836
	32-415
	32-650
	32-651



