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Abstract: Similar to the study of Prandtl system, by the well-known Oleinik linear method, the paper gets
existence, uniqueness of the solution for the following initial boundary problem in D = {(t, z,y) | 0 < t <

T,0<x<X,0<y< oo},

up + uug + vuy = Uy + UU, + (v(y)uy)

Uy + vy = 0,

y?

u(0, z, y) = uo(z, y), u(t, 0, y) =0,
u(t, z, 0) =0, v(t, z, 0) = vo(t, x), ylLrglo u(t, z, y) = U(t, x),

where T is sufficient small and v(y) is a bounded function.
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1 Introduction

As well known, Prandtl proposed the conception of
the boundary layer in 1904'). From then on, the inter-
est for the theory of boundary layer has been steadily
growing, due to the mathematical questions it pose,
and its important practical applications. According
to Prandtl boundary layer theory, the flow about a
solid body can be divided into two regions: a very thin
layer in the neighborhood of the body (the boundary
layer) where viscous friction plays an essential part,
and the remaining region outside this layer where fric-
tion may be neglected (the outer flow). Thus, for flu-
ids whose viscosity is small, its influence is percep-
tible only in a very thin region adjacent to the walls
of a body in the flow; the said region, according to
Prandtl, is called the boundary layer. This phe-
nomenon is explained by the fact that the fluid sticks
to the surface of a solid body and, this adhesion in-
hibits the motion of a thin layer of fluid adjacent to
the surface. In this thin region the velocity of the
flow past a body at rest undergoes a sharp increase:
from zero at the surface to the values of the velocity
in the outer flow, where the fluid may be regarded as
frictionless. Prandtl derived the system of equations
for the first approximation of the flow velocity in the
boundary layer. This system served as a basis for the
development of the boundary layer theory, which has
now become one of the fundamental parts of fluid dy-
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namics. Assume that the motion of a fluid occupying a
two-dimensional region is characterized by the veloc-
ity vector V' = (u, v), where u, v are the projections
of V' onto the coordinate axes x, y, respectively, the
Prandtl system for a non-stationary boundary layer
arising in an axially symmetric incompressible flow
past a solid body has the form

up + uty +vuy = Uy + UUg + vuy,,
(ru)s + (rv), =0,

U(O, €T, y) - UO(xa y)7 U(t, 0, y) =0,
u(t, z, 0) =0, v(t, z, 0) = vo(t, x),
Jim u(t, v, y) = Ult, o),

1

inadomainD = {(t,z,y) |0<t<T,0< <
X, 0 < y < 0o}, where v=const> 0 is the coefficient
of kinematic viscosity; U (¢, =) is called the velocity
at the outer edge of the boundary layer, U (¢, 0) = 0,
U(t, z) > 0 for x > 0; r(x) is the distance from
that point to the axis of a rotating body, r(0) = 0,
r(z) > 0 forxz > 0.

In recent decades, many scholars have been carry-
ing out research in this field, achievements are abun-
dant in literature on theoretical, numerical experimen-
tal aspects of the theory[27 31, However, some discrep-
ancies were founded between theoretical and exper-
imental results for several important practical prob-
lems. Prandtl boundary theory does not consider
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both the influence of wall’s properties on the charac-
teristic of the boundary layer and the interaction of
the actual solid wall with the flow of water. In the ab-
sence of chemical reactions and chemical absorption,
the polar interaction plays the most important role.
Under different kinds of solid surface, the absorption
of water molecule’s behavior are different from one
to another. This fact also makes that the correspond-
ing boundary layer’s characteristics are different from
one to another. When the interfacial adsorption is rel-
atively stronger, at this time, experiments show that:
the boundary layer system embodies the micro-fluid
characteristic. To be specific, we should modify the
Prandtl system as!?

up + uty +vuy = U + UUL + (v(y)uy)
Uy + vy = 0,

u(0, z, y) = up(x, y), u(t, 0, y) =0,
U(t, z, 0) =0, U(ta z, 0) = UO(t7 .7)),
yli_)ngo u(t, z, y) =U(t, x),

y?

2
where (t, z, y) € D, and v(y) > 0. In this paper, we
get the following result.

Theorem 1 Assume that U,, U,/U, U, vy are
bounded functions having bounded derivatives with
respecttot, xinD = {(t,z,y) |0 <t <T,0<
x < X,0 <y < oo}, where T is sufficient small;
v(y) > 0 is a bounded function of which the first, the
second and the third order derivatives are bounded in

D; yILIgOUO(‘T’y) = U(va)’ Uo(l’,O) =0 UU/Uy

uoy /U are continuous in D; ugy > 0 fory > 0,2 >
0)
Kl(U(Oa 33‘) - UO(:I"7 y))

< UOy(l‘a y) < KQ(U(O"T) - uo(x,y)),

with positive constants K1 and Ko. Assume also that
there exist bounded derivatives gy, Uoyy, Uoyyy, U0z
Ugzy, and the ratios

2
Uoyy UoyyyUoy — Upyy

; 2
Uoy Uiy

are bounded on the rectangle {0 < x < X, 0 <y <
o0}, Moreover, ug, vy satisfy the following compati-
bility condition

v0(0, z)ugy(z, 0)
=U(0, ) + U(0, z)Uy(0, ) + (v(0)uoy)y(x, %)),

and let

’uOym — UpzUOyy LU
x

2
uOUny — on ‘
Uoy U Uoy
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< K5(U - UO(xv y))

Then, problem (2) in D has a unique solution (u, v)
with the following properties: u/U, u,/U are con-
tinuous and bounded in D; u,/U > 0 fory > 0;
yli_)ngo uy /U =0, u(t, z, 0) = 0; v is continuous in y

and bounded for bounded vy; the weak derivatives uy,
Ug, Vy, Uyt, Uyz, Uyy, Uyyy are bounded measurable
functions in D; the first equation in (2) hold almost
everywhere in D; the functions i, Uz, vy, Uy, are
continuous with respect to vy, moreover

2
Uyyyly — U

Uyy vy
L 4)

Uy uy
are bounded and the following inequality hold:

Cl(U(t7 :U) - u(t) €, y)) < uy(t7 z, y)

< CQ(U(ta .’L‘) - u(t7 x, y))a &)
exp(—Chy) < 1 - 428 < exp(—Cuy),
2
e+ Uy | S G(U — ), (©)

2
Ulyy —Uy,

Uyt Uy —UtUyy
Uy + Ui Uuy

§ C4(U — u)

Although our method is similar to Oleinik’sl),
however, v is related to y, which makes the cor-
responding transform and the calculation become
more complicated. Moreover, if we permit v(y) or
its derivatives to be a unbounded functions, then,
Oleinik’s linear method will be invalid, in these cir-
cumstances, to get the same results seem very diffi-
cult. By the way, there are some important progresses
to the existence of the global solutions of (1) in recent
recent years, one can refer to [7-9] et.al.

2 Some Important Lemmas
Consider the following initial boundary problem

g + uuy + vuy = Uy + UU, + (v(y)uy)

Y 7
Uz + vy =0, 7

where
(t,z,y) €D={(t, z, y) |

0<t<T,0<z<X,0<y<oo},
and with the following initial boundary conditions
U(O, xz, y) = ’LLO(.%', y)7 U(t, 07 y) = 07

u(t, z, 0) = 0, v(t, =, 0) = vo(t, =), (8)
yllrgo u(t, z, y) =U(t, x),
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Definition 2 A solution of problem (7)-(8) is a pair
of functions u(t, x, y), v(t, x, y) with the following
properties: u(t, x, y) is continuous and bounded in
D; v(t, x, y) is continuous with respect to yy in D and
bounded for bounded vy, the weak derivatives uy, Uy,
Uy, Uyy, Vy are bounded measurable functions, equa-
tion (7) holds for u, v in D, and conditions of (8) are
satisfied.

If we introduce the Crocco transformation

_ U(t, z, y)

=t ==

we obtain the following equation for w(r, &, ) =
uy(tv €z, y)/U(tv .T):

VWA wy, — Wy — nUwe + Aw,, + Bw

+2Vnw2wn + Vnnw3 =0, (1, & n) €9, ©)

(10)

w|7‘=0 = U% = wO(fa 77)7 w|77=1 = 07
(vwwy, + vyw? — vow + C)y=o = 0,

in the domain Q = {(7, &, n) |0 <7< T,0< <
X, 0 <n <1}, where

A= = )Ue+ (n—1)U-/U,

B = —nU;: — U, /U,
C = U§+UT/U.

Solutions of problem (9)-(10) are understood in the
weak sense.

Definition 3 A solution of problem (9) is a function
w(T, &, n) with the following properties: w(t, £, 1)
is continuous in Q); the weak derivatives w,, We, Wy
are bounded functions in (), wy s continuous with re-
spect to n at 1 = 0 and its weak derivative wy, is
such that wwy, is bounded in Q; equation (9) hold
almost everywhere in ) for w, and conditions of (10)
are satisfied.

For any function f(7, £, 1), we use the following
notation:

fm’k(n) = f(n, mh, kh), h = const > 0.

Instead of equation (9), let us consider the following
system of ordinary differential equations:

V(,wmfl,k 4 h)me,k _ w™k _yym—1k
m

h
k-1
_nUchw m + Am7kwm,kz
+Bm,kwm,k 4 2Vn(wm71,k)2w:;n,k
+Vnn(wm—1,k)2wm,k — O,

m,k_,w

1D
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W = wh(kh, n), w(1)™k =0, (12)
m—1,k,,,m,k m—1,k\2
) ) + )
e i) (13)
—vg WL O™ g =0,
where m = 1, 2, ---, [T/h]; k =
07 ]-a 27 ) [X/h]
We take wl = wo(&, n) if wo has bounded

derivatives wog, wo, and woy,. If wo(€, n) is not so
smooth, we take for w{! a certain smooth function (to
be constructed below) which uniformly converges to
wp in the domain {0 < { < X, 0 <np < 1}ash — 0.

In what follows K;, M;, C; stand for positive con-
stants independent of h.

Lemma 4 Assume that A, B, C, vg are bounded func-
tions in ). Let wl be continuous inn € [0, 1] and
such that K1(1 — 1) < wh < Ko(l1 —n), v(y) is
bounded function having bounded first and second or-
der derivatives in ). Then problem (12)-(13) for or-
dinary differential equations admits a unique solution
for mh < Ty and small enough h, where Ty > 0 is
a constant which depends on the data of problem (7).
The solution w™F of problem (12)-(13) satisfies the
following estimate:

V(mh, n) <w™ () < Vi(mh, ), (14)
where V and Vi are continuous functions in Q, pos-
itive for n < 1 and such that V.= Ks3(1 — n) and
Vi = K4(1 — ) in a neighborhood of n = 1.

Proof: The existence of this solution follows
from its uniqueness which, in its turn, can be estab-
lished on the basis of the maximum principle and the
fact that this problem can be reduced, with the help of
the Green function, to a F'redholm integral equation
of the second kind.

Indeed, let Q™" be the difference of two solu-
tions w™* of problem (12)-(13). Then Qm’k can at-
tain neither a positive maximum nor a negative mini-
mum at 1 = 0, since otherwise Qnm’k (0) # 0 (see [6]),
whereas the boundary condition

[Vwm—l,kw:]n,k+yn (wm—l,k)Q7U(T)n7kwm—1,k+cm,k:|

implies that QZ“’“(O) = 0. We also have Q™*(1) =
0, and at the interior points of [0, 1], Q™" can nei-
ther attain a positive maximum nor a negative mini-
mum. Consequently, under our assumptions, problem
(12)-(13) can not have more than one solution. There-
fore, we shall have a fortiori establish the solvability
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of problem (12)-(13) for m and & such that the solu-
tions w™ L of problem (12)-(13) admit the follow-
ing a priori estimate:

w™ M (n) = V((m —1)h,n) (15)

In order to prove the priori estimate (14) for 7 =
mh, it suffices to show that there exist functions V'
and V7 with the properties in Lemma 4 and such that
ordinary differential equations:

vy X Umkw
LA™ kvmk+Bm kvmk+2y( m— l,k)QVWm,k
+V7777( m 1k’)2vmk >0

A (V) = v(0)w™ H5(0)V,m*(0)
+V(0)77( 1k(0)) Uz)nk m— 1k’(0)+0m7k
> 0,

(16)

(17)
Lin(V1) <0, A (V1) <0 (18)

k=0,1,2 -, [X/h],

under the assumption that

V((m =1k, n) <w™ ¥ (n) <Vi((m - 1)h, n).
(19)
Then the inequalities (14) can be proved by induction
with respect to m.
Indeed, consider the function ¢™F =
V(mh,n) — w™F, where w™* is the solution
of problem (12)-(13). We have

L.,(q) >0, (20)

A (V) = A (w) = V(O)wm_Lk(O)qm

k
n(0) > 0.

(21)
Moreover, by assumption we have g™k < 0form’ <
m — 1, and ¢™*(1) = 0. Let us show that ¢™* < 0.
To this end , we introduce new functions by qmvk =
e@mhgmk o — const. > 0, Then

Lm(Q) = eocmh [V(wm—l,k + h)QS%’k
77U'm!c.S'"“”’kflfm’k_l +Am,ksm,k
+2y( m— 1k) Smkz

"’Vrm( m— 1k)2smk 4+ B™ ksmk (22)
7%(1 _ e—ah)STn,k _ e—ahS™E }fm—lv’f}

>0,

Am(q) = @™ (0)w™ MR (0)STF(0) > 0. (23)

It follows that S;”’k(O) > 0, then S™F cannot take
its maximum positive value at = 0, moreover,
Smk(1) = 0. If S™* attains the maximum positive
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value at an interior point of the interval 0 < n < 1,
then at this point we must have

m,k
Sk <0, (24)
Sm,k _ Smfl,k
- >0 25
N > 0, (25)
Sm,k _ Sm,k—l
Ut ————— >0, (26)
h
m,k __
Syt =0, @7
[Bmk 4 Vi wm™ 1,k)2
(28)

%(1 —e @ )}Smk <0,

provided that the constant « is large enough and h
is sufficiently small, such that 1 — e=®* > 1/2.
However, these relations are incompatible with (22).
Therefore,

quc _ eathm,k < 07 (29)
That is to say,
V(mh,n) < w™k. (30)

In a similar way we can show that (18) and (19) imply
the inequality w™F < V4 (mh, 7).

Now let us show that there is a positive T such
that for mh < T there exist functions V' and V7 sat-
isfying the inequalities (16), (17) and (18), under the
condition (19).

Set

—Q2T

V = ur(aan)ki(n)e

where & 1s a smooth function such that

e’, for0 <s <1;
k(s)=4¢ 1<Kk<3, forl <s<3/2;
1, for s > 3/2.

k1 1s a smooth function too, such that

1, for s < 1/4;
ki(s) =< 1/2<kr; <1, forl/d<s<1/2;
1—s, fors > 1/2.

The constant 1 > 0 is chosen such that V(0, £, n) <

wf (€, m); the positive a1, az will be specified later.
Let us verify the inequalities (16) and (17) for V,

assuming that (19) holds. Provided that oy > 0 is
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large enough and mh is such that e=*2™" > 1/2, We
have

A (V) = v(0)w™ LE(0) par e~ 2P
+y(0) (W™ HK(0))? = vg R (0) 4 CF
> Me—ag(m—l)h [M(V(O)ale—agmh

+V77(0)6_a2(m_1)h) _ U(T)n’k} +omk s,
D
Lin(V) = et [y (w1 4 h)? (k1)
+A™F (kk1)y + B™F Rk + 20 (0™ )2 (k)
+V,7,7(wm_17k)2/<;f11 + mﬁage‘”h},
) (32)
where 0 < h < h.

It may be assumed that kk; = 1—nfor1—n < o,
and small enough 0 > 0. For such 7, we have
L, (V) > 0if ay is sufficiently large. For n <
1 — o0, wehave V > p = const. > 0, and there-
fore, L,,,(V') > 0 for large enough «v, provided that
e~ozmh > 1/2,

Set

Vi = Mk (n)ko(Bim)e”>™"

K9 1s a smooth function such that

4 — e, for0 < s <1;
Ko(s) = 1< kg <3, forl<s<2;
1, for s > 2.

The constant M > 0 is chosen such that
Vi(0, &, 1) > wh(€, n); the positive 31, B2 will be
specified shortly. In a similar way we can prove that
L, (V1) <0, A\ (V1) < 0, provided that 51 > 0 is
large enough and mh is such that e=%™" > 1/2,

Thus, if mh < Tp and Ty is such that e#270 < 2
and e~270 > 1/2, then problem (12)-(13) with small
enough h admits a unique solution which satisfies the
inequality (14).

In what follows, we takes as w{ (£, 1) the func-
tion wo (&, 1) if woyy, is bounded in €2; otherwise we
let wh (€, n) be a function coinciding with wq for
n < 1/2, equal to wo(&, n — h) — woe(§, 1 — h)
for 1/2 + h < h < 1, and defined on the inter-
val 1/2 < n < 1/2 + h in such a way that for
1/4 < n < 3/4 it has uniformly (in h) bounded
derivatives which are known to be bounded for wy.

Lemma 5 Assume that the conditions of Lemma 4 are
fulfilled and functions A, B, C, vy, wy have bounded
first order derivatives, [wog| < Ks5(1—n), wo(§, 1) =
0, woWony is bounded in Q, v(y) has bounded third
order derivative, and the following compatibility con-
dition is satisfied:

v(0)wowo, + v(0),wi — vowo +C =0,  (33)
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Then
ok wm,k _ wm,kfl wm,k _ wmfl,k
w’r]7 ) h ) h )
and
m,k
(1 -1 + h)wnn )

are bounded in Q) for mh < 17 < Ty and h < hg,
uniformly with respect to h. The positive constants T
and hq are determined by the data of problem (7)-(8).

Proof: Let us introduce a new unknown function
Wk — qmkeon jn problem (12)-(13), where « is a
positive constant which does not depend on A and will
be chosen later. We have

m—1,k 21 rmk . Wek_jym-1.k
v(w +£L)WWUI? -
= mRT m, m,

i + A™EWy
+Bm,kwm,k 4 2Vn(wm71,k:)2wgn,k
+Vnn(wm—1,k)2wm,k — 0’

mok W™
—nv (34)

and

v(O) W™ LR )Wk (0) — ar (0)W™=1F(0)W™-+(0)
+uy (0) (WM =1k (0))—
—ygRm=Lk(0) oMk =,
(35)
where

Avm,k — Am,k - 2au(wm—l,k + h)2,
Em,k — Bm,k: +a2y(wm—1,k + h)2
—A™F — 2au, (w™ )2,
‘We introduce the functions

Wm,k _ Wmfl,k ok Wm,k _ Wm,kfl

m,k

P h » Y h

The function ®™* (1) defined by

m,k — m,k\2 m,k\2
() = (W) (i
+r ) + K677 + 17
fork>1,m>1;
O™ () = (W )2 + (p™F)? + Ken +1, (37)

for k = 0, m > 1. The constant Kg > 0 will be
chosen below.
Consider @nm’k(()) for k > 1, m > 1. We have

m,k _ m,k m,k
Bk (0) = W (0) W (0)

+2p™8(0) i (0) + 298 (0)7*(0) + K.
(38)
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From the boundary condition (36) and the estimates
(14), it follows that

Wk (0)] < K, (39)

From (35) and the estimates for w™1¥ established in
Lemma 2.1, we find that

m,k m,k mk m,k mk m,k
Wnn () R (O)+R ()+R3 )
(40)

for 0 < mh < Tp, and

1

m,k o
Ry (0) = v(wm=LE 4 h)2’

T}Um’k
v(wm—Lk 4 p)2
-1
l/(’LUm_l’k +h)2

+2Vn(wmfl,k)2wgn,k + Vm?(wmfl,k:)QWm,kL

Ry (0) =

0,

Ry 0) = [Amkyy ok gk

where R;n’k are bounded uniformly in h.
Using the boundary condition (36), we find
pnm’k(O), 'y;”’k(O) for m > 1; in order to calculate

pg%k(()) we have to utilize the compatibility condi-
tion (2.11) which holds for wg, and therefore, fwg =

Wke=on = w% for n = 0, since wl = wy for
1 < 1/2 by construction. We have
m,k _ m,k US"’k—US" b
Py’ (0) = ap™"(0) + v(0)h
Cm,kpmfl,k(o)
R () e N () TG (1) (41)
_v(0)ppm R 0)  gmk_gm-Lk
(0) V(0 AW ™ —ZE(0) *
form > 1, and
1,k 0,k
pl’k(o) _ O[pl’k(o) + UO — UO _ Clyk — Coyk
N v(0)h v(0)hWOE(0)’
Similarly, for & > 1
m,k _ m,k ”(T)n’k*”{)n’kil
T (0) = ay™H(0) + 22—
Cm’k7m71’k(0)
+V(o)wmfl,k(o)wm—l,kfl(o) (42)
_I/(O)n’ymflvk(o) cm.k_comk—1

v(0) ~ v(0)hWm-LE=1(0)’

Substituting the expressions found for w;’;;k(O),
pnm”l‘C (0), v,gn’k(O) into the right-hand side of (39), we

obtain the following relation for k£ > 1
R (0) = K + 2a[p™*(0)]” + 2a[y™*(0)]”
+Rmkmk®mm**<%+Rmkmkw>

+ RGOy 0) + REE(0) + Y
43)
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where
ok _ Cm,k _ Vnwm—l,kwm—Q,k
R4 (0) =2 pWm—LEpym—2k ’
) Um,k . Um—l,k
R5™"(0) = 22 0
7 0) .
Cm,k - Om—l,k . &
_2—thm—2vk +2W R,
RmJﬁ B 2C«m,k o I/nWm_l’ka_l’k_l
6 (0) - yWm=LEkpym—1k—1 ?
mJg m k vg@ 1,k Ccmk _ om—1k
R? ( ) - 2 vh -2 vhWwm—1k=1 "

RE(0) = 2wk RYP,

R™* are bounded uniformly in h, while Rj* = 0.
These relations imply that for m > 1, k > 1, we have

O7F(0) > Ke 4 a®™%(0)

—Kg(I)m k(O) — Kgq)m_l’k(()) — Ko, “@4)

where the constant K19 = Kjo(«). Let us choose «
such that 04/2 > Kg, a/4 > Ko, Kg > Kjig. Then

g@mfl,k(o)’

(6%
> —o™F(0) —
0) =73

;4 (0) > 5

(45)

form=2,3,--3k=12 -,

Note that y™~1Lk(0), with m =

bounded in A, and since R}l ok

(44) that

[X/h], mh < Ty.
1, is uniformly
= 0, it follows from

e
> —ab*(0
> Sl (0),
if K¢ is sufficiently large. Likewise, the inequalities
(45) and (46) can be proved for kK = 0, m > 1.

Let us define the functions ®%*. For this purpose,
we introduce the functions W1 by

@,%(0) (46)

Wo*k—hW*l”“ = (WO + h) WOk
Uowvf”c W0.k—1 AO kW0k+§o,kW0,k
n
+2V77( Ok)2W7?k+Vnn(w0’k)2W0’k,
47)
where

A0k — A0k _ 2au(W0’kefo”7 + h)?,

éO,k — BO,k _’_QQV(WO,kefom + h)2
—a A% — 201, (WOke=am)?2,

Then, we can define the function ®%* for k¥ > 1, and
k = 0, respectively, by (37) and (38). It is easy to
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see that ®*F is bounded uniformly in k. Indeed, the
functions

Wik = (wen), = (uf(kh, m)e7),,
,}/O,k’ — 01 w9k g0k
_ eom wl (kh,n)—wl ((k=1)h,n)

h I

are bounded uniformly in h, since the first deriva-
tives of w{! are uniformly bounded in &. The function
WoWoyy, is bounded in €2 and

Ki(1—n) <wy < Ka(1—1n),

Therefore, (1—77+h)w8m(§, n) which, forn > 1/2+
h, coincides with the function (1 — 74 h)woy, (&, 1
h) is also uniformly bounded in h. It follows that

(W + RYWF| < K1 (1 — 7 + h)|(w*Fem),,|
< Ko+ K13(1 —n+ h)|w0m7|

=Ko+ Ki3(1—n+ h)|w0m]|

< K.

Consequently, the ratio (W% — W ~1*) /h defined by
(48) is uniformly bounded in A, and

|0%F| < Kis. (48)

Now, we will deduce the equation for ®™*(n)
on the interval 0 < 7 < 1. To this end, we dif-
ferentiate equation (35) in n and multiply the re-
sult by 2W,§”*k ; then, we subtract from equation (35)
for W™* equation (35) for W™ L% and multiply
the result by 2™ /h; from equation (35) for W™k
we subtract (35) for W™k=1 and multiply the re-
sult by 2r™* /b, Taking the sum of the three equa-
tions just obtained we get the equation for ®"F(n),
m=1,2,--, [T/h]ek:()a L2, [X/h]

We find the equations for ®"*(n) with k =
0,m > 1 by taking only the first and the second of
these equations. In order to derive the equation for
®™*(n) with m = 1, we utilize the relation (48)
which determines the values of W ~1F,

For m > 1, k > 1, the equation for @m’k(n) has
the form

p(wm— bk 4 h)Q(I)mk <1>m=’v—g>m*1vk

Umkq)mk <I>mk & Amkq)mk

_’_2Bmkq)mk:l_21/ ( m— 1k)2(1)mk

20 (W™ k)2<1>mk + N NgR =,

(49)
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k :
where N3™" is a sum of non-negative terms:

N2m7k — 2™ 1, k(Wm k) _|_ 2wam— 1, k(pnm,k>2

— U
+2vam bR (k)2 g o (%7 ")2
+L(pmk — k)2 g U ik

b
=2 R () R (o
=) IR gk — 12,
(30
and N;" * is a linear function whose coefficients are
uniformly bounded in h and can be expressed in terms
of the following quantities:

m 1ka kak

mlk m,kyyrm,k
W, W, s

Una m o

m,k_ m,k m—1,k mk m—1k m,k—1_m,k_m—1k
| e T Ly e T L

W:]n,k—l,ym,k’ W:]n,kW;z—l,k’
Wm,k’ (Wm,k)QW;nfl,k’ V[/'mfl,kpm,k7 (W7;n,k)2,

m,k, m—1k
Pn Y

1
h

,ymk,ymk 1

m,k

P

m,k m,k

k& m—1k
, PR,

» Y

Vnwénfl,kpm,k[(wmfl,k)Q . (wmf2,k:)2]’

. am—l,k—l)
)

%Wm,k—l,ym,k(am—l,k

m—1,k, m—1 kyyrm,kyr m.k
VW) w W W,] ,
1

Eynwgz,kflvm,k[(wmfl,k)Z mfl,k71)2]

— (w

Y

mkmlk

1
7Wm71,kpm,k(amfl,k y y

h
(w2 (WP,
1 _ _
EVWﬂWm 1,kpm,k[(wm 1,k:)2

1
El/rm

. am72,k)

mfl,kwmfl,k(W%n,k)Q’

l/nwn

- (w2,

Wm,k—l,ym,k[(wm—l,k>2 _ m—17k—1>2]

(w

)

Vi (wm— 1,k)2 Wm,k Wgn,k:’

where a™* = (w™" + h)2. Using the inequality

b?
2ab§ﬁa2+ﬁ,(ﬁ>0), (51)
to estimate the terms that make up N;" * we obtain

from (50)

v(w™™ 1k+h) (bmk @m’kfgm—lvk
Umki’ ok @m’“ 1 Amk@mk+23mk¢)mk+

—|—2V( m— 1k)2¢mk+2ynn( m lk)Q(I)mk
Cm k(pmk > 0
(52)
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where C™F depend on

—1,k —1,k —1,k K—1
W ol, p ol A Ay

(wm—l,k _|_wm—2,k + Qh)W,,%_l’k,

(,wmfl,k _i_wmfl,kfl + 2h)W7;)71),k717

m—l,k)2 m—l,kwm—l,k

V7777(w n ’
v Wm,k—l(wm—l,k +wm—1,k—1)
nttn ’
me(wmfl,k)2Wm,k7 W;n,,k:flj
Y Wm,k—l(wm—l,k+wm—1,k—1)
nm )
VWW;n—l,k(wm—l,k _‘_wm—Q,k)’

VnnWmfl,k(wmfl,k + wm72,k),

, Vpw

mfl,kwmfl,kwm,k

VnnWy)

It is easy to see that for k& = 1 the coefficient Ccmik
does not depend on y™*~1 since U9 = 0. The in-
equality (53) for "0 is obtained in exactly the same
manner as for £ > 1. Obviously, in this case the coef-
ficient C"™* depends only on

—1,k ~1,k —1,k k-1
WPt om, pl ot ARy

)
(wm—l,k+wm—2,k+2h)W7%—1,k’
(wm—l,k +wm—1,k—1 +2h)W$’k_l, Vm?(wm—l,k)Q,
Vnwglfl,kwmfl,k’Vnnn(wmfl,k)2Wm,k7 Wén,k:flj
I/nW;n_l’k(wm_l’k _‘_wm—Q,k)’

VnnWmfl,k(wmfl,k + wm72,k),

Zlfl,kwmfl,kwm,k

Now, consider the functions

Upnw

Y™ () = (p™F)? + (Y™ + fF(n),  (53)
when k > 1, m > 0,
Y™ () = (p™)2 + f(n), (54)

when k = 0, m > 0. Where f(n) = &(8n)x3(n),
and the functions k, x1 are those constructed in the
proof of Lemma 4; (3 is a positive constant. Just as we
have proved inequalities (45) and (46), we find that

YR(0) > SY™E0) — SY™TR0),  (55)
N 2 4
form>1,k>1,
m a m
Y,H(0) = S Y™ 0), (56)
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form = 1, k > 1, provided that «, § are sufficiently
large. We clearly have Y"*(1) = 0. Consider the
functions Y% Obviously,

‘Wo,k _ WO,k—l

. ‘SK16(1—77+h)7

since |woe| < K5(1—mn) by the assumption of Lemma
4, and the functions W% = w{ (kh, n)e®", w(, are
uniformly bounded in h. It follows from (48) that

’ WO,k _ W—l,k

- | < Kir(1=n+h),

since by virtue of (14) and the properties of wg =
w9 = WOke=am we have

V(@ + hPWEE )| < Kis(L = n+h), (57)

(AW ()| < Kig(1—n+h),  (58)

B WOk ()| < Kag(1—n+0),  (59)

va (@R PWIE )| < Kar(1=n+h),  (60)

[V (R PWOR ()| < Kon(1 =+ 0),  (61)
Consequently,

YOm)| < Kas(L—n+0)°  (62)

Let us write out the equation for Y"*. For m >

1, k£ > 1, this equation has the form
—1,k 2 k_ Yymk_ym-1k

V(wmm k YT_”‘_’lji)l/”}:?g]i1 Am.k hm k

_nq ) f + A i Yn )

+2Bm,kym,k 4 zyn(wm—l,k)2ynm,k

_|_2~Vnn(wm—1,li)2ym,k _ V(wm—l,k + h)2f7777

7Am7kf77 . QBm’kf o 2Vz(wm—1,/;)211077

0y (WL f 4 N N = 0,

(63)

where N, * is a sum of non-negative terms, namely

Ni’%k _ QI/amil’k(W?%’k) + %(pnm,k
_ Um,k
o2 1 (o
_fygnfl,k)2 4 2Vam71, (,.ﬂ]n,kk)Q
_ Umok _
3 (ot — pp AT o I (o — R )2,

(64)

and Ngn ** is a linear functions whose coefficients are

uniformly bounded in h and can be expressed in terms

m,k
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of the following quantities:

pmk,ym 1,k Wm 1kpmkpm 1k

mkW'm lk(l 7,,) pmk m— lk

,Ymk,ym lkW’mk pmkpm lk

77 b
Eyﬂ7 [(wm 1,k— 1) _ (wm_17k_1)2]W7;n’k_1,
%meym’ [(wmfl kfl) (wmfl,kfl)Q]vvm,lcfl7
m,km—1k m,km,k—1 m,k m—lk

7Y » Y » P
pm,kpm 1k( m— 1k+wm 2k_|_2h)Wm 1k
%Vnpm,k[( wm llklz (wm 2;2 ]Wm—qlkk
I () R (T R A
,Ymk,.ym 1k( m1k+wm 1,k— 1+2h)ka1
m kwm k— 1(1 _ )
(65)
Using (52) to estimate the terms that make up N3" k.
we obtain the following inequality

Ym,k:_ymfl,k'

I/(’Ujm 1,k _|_h)2ymk

h
Uka ok Z"ﬂ“ 1 Amkymk
+2Bm kymk+2Vn( m— 1k)2Y17mk

2y (L)Y QYT 4 QI 4
>0,
(66)

where QT’k > 0, and depends on

Wm—lk (wm—1k+wm—2k+2h)wf§n—1 k’7
v (wm 1k_|_wm Zk)Wm 1,k ka 1
(nm 1k+wm 1,k— 1+gh)ka 1
Vﬁﬁ(wm 1k+wm Qk)Wm IZ

Vn(,wm 1,k— 1+wm 1,k— 1)W777nk 1,
Vnn(wmfl,kfl _i_wmfl,kfl)Wm,kfl’

(67)
and an’k is a linear combination of the following
functions:

(,.Ym—l,k)Z (,ym,k—l)2 (pm—l,k)Z (wm—l,k)2

(w™ k=12 (W= bk (1 — )P,
Wkt (1 — )2
(63)
We also have

Q3 = Kou(1 —n+h)?
+2Vn(wm—l,k)2fn + 2Vnn(wm—1,k)2f’.

> Jow e 2

(69)

It is easy to see that for £ = 1 the function Q;”’k

does not depend on (p™~1*)2, For k = 0, an inequal-

ity of the form (67) holds for Y*  but in this case,
QT”“ depends only on Wg”fl’k,

(wmfl,k _'_wmfZ,k + Zh)WT%fl,k,
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vp(w™ b TR L,

Vm](wm—l,k +wm—2,k)Wm—1,k
, and an’k is a21inear combination of (p™~1*)2,
(W=t = )], (w12,
Let us show by induction that

O™ < My, Y™ < My(1—n+h),  (70)

for mh < 17 and some 17 < Ty, the constants 77, M;
being independent of h. To show this, assume that for
m < m’ and m = m/, k < k' the inequalities (71)
hold with constants M, My specified below. Let us
show that if mh < T1, the same inequalities are valid
for m = m’, k = k’. Note that under the induction
assumptions we can claim that for m < m/ or m =
m’, k < k' the following inequalities hold:

’(wm—l,k _|_,wm—2,k + Qh)W%_l’k’
< Kos(1—n+ h)|Wn—1|
< Kgﬁl/(wmiz’k + h)‘W%il’k’
— KZG'pm—l,k + ﬁUm_l’k’)/m_l’k (71)
_gm—l,kwm—l,k - ém—l,kwm—l,k_
Y
_2yn<wm72,k)2W7;nfl,k
_Vnn(wm—Z,k)QW’m—l,k‘(wm—Q,k + h)—l
< Ko7
In exactly the same manner, we get that

‘(wm—l,k+wm—1,k—1_‘_2h)w7%,k—l‘ < Kog

where the constants Kog, Ko7 depend on M7 and Mo.
Therefore, if the inequalities (71) hold for m < m/
and m = m’/, k£ < k', then it can be seen that in (53)
and (67) we have

| . (Mla MQ)a
|Q§n’k| < Ks3o(My, Ma), (72)
Q5" < K31(1—n+ h)?.

Let us pass to new functions in (2.25) and (2.32)
by

(I)m,k _ (AISm,ke'ymh’ (73)

Ym,k — ?m,k‘eymh7 (74)
The constant (M7, M) will be chosen later. For
1 <m < m/and m = m/, we have

Um7k gm,k_gm,kfl

I/( m—lk_i_h)Z(T)mk’_n 3

e ,thpmk qym lk
+Amkq)mk+2y( m— 1k)2(1)mk
+[2V7)T]( m— lk) +2Bmk+cmk ,ye—’yh}(’f)m,k:
>0,
(75)
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for 0 < i < h, and also

V( m— 1k+h)2ymk
Umkymk })L/mk 1

o h Yk g/m Lk A~m,k}7ﬁm,k

+2Vn(wm’1’k)2l~/nm’k + {21/77,7(111”1’1’]“)2

+2B™k 4 @Tlnk - ’76_771} ymok 4

+Kso(My, Ma)(1 —n+ h)?

> 0.

(76)

Let us choose (M, Ms) such that for small enough
h the following inequalities are valid:

2V7777( wm™ 1k)2+2§m,k

+Omk ve —h <0 D
21/7777(107”_1”“)2 +2Bmk 4 @T’k (78)
—ye M < —Ks3(My, Ms),
where
K33 = 2582 + K3y,
K34(1 —n 4+ h)? > [2v(w™ 1* 4 h)? (79)

—2A™Hk(1 — 4 h)|.

Consider the point at which ook (n), for0 <n <1,
m < m/,orm =m/, k <k, attains its largest value.
In view of (76) and (78), this point cannot belong to
tlle interval 0 < n < 1 for m > 1. Moreover, if
®™F (1) attains its maximum at n = 0, m > 1, we
should have E1377"”"’(?7) < 0, whereas relations (45) and
(46) imply that

0> @Mk (0)
> GO™H0) — e e (0) (80)
> O™F(0) — §O™1R(0),

and therefore,
~ 1~
(bm,k(o) < iq)m—l,k(o)’

which is impossible.
For n = 1, we have

(AISm,k _ (bm,kef’ymh _ ef'ymh {(Wén,k>2 + K6 + 1},
(81)

Estimates (14) for w™F imply that
Wk (1)] < Kss. (82)

Therefore, if ®™*(n) attains its maximum value at
n = 1, we have ®™*(n) < Kz for m < m' and
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m = m’, k < K/, where the constant K3 depends
neither on M nor on My. If ™ (n) attains its max-
imum value at m = 0, we have already shown that
@mk(n) < max %% < max ®O* < K5 It follows
that

O™k (1)) < max{Ki5, Kag} (83)
Choose M; > max{2K15, 2K36}. Then
~ M
o () < =1, (84)
M
k() < ZLermh, (85)
If
M <2, mh < T, (86)
then
O™k () < M. (87)
form < m/ and m = m’, k < k’, as required.
Now, consider the functions
~ M.
ka:Ym*—7;ﬂ—n+hV, (88)
it follows from (77) and (78) that
V( m—1,k 4 h)QXm k nUm,k Xm,k_}i(m,kfl
’Yth N i{m 1 Ic Avmka;]nvk )
+2V77( mfl,k>2Xm,k 4 [QVnn(wmfl,k>2 4 QBm,k:
+Q§n ok e VR} Xk
> —Ksp(My, Ma)(1 — 1+ h)?
e {QV(wm’l’k + h)2 = 2A™k(1 —n + h)]
(2 (w2 4 2Bk Gk
—e M) (1 =+ h)?]
> — K3 (My, My)(1—n+ h)?
—i= {K34 - K33} (1—n+h)?
>0
(89)

ifm < m'orm = m/,k < k. Let us show that
X™¥(n) < 0 for such m and k. If X™F(n) takes
positive values, then there is a point 1 at which, for
m < m' orm = m' k < k/, the function X™*(n)
attains its largest positive value. This point cannot be-
long to the interval 0 < i < 1 for m > 1 because of
(90). For m = 0, if My/2 > Kss, taking into account
of the estimate (90) for Y%, we find that

X™k) < {K23 - MT}(l —n+h)*<

Since Y"*(1) = 0, we have X" ¥(1) < 0. For ) =
0, m > 1, the function X™* cannot attain its largest
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positive value, since inequalities (56) and (57) show
that

ok (0) = Y,k (0) + Ma(1 + h)
Y™R(0) — Y™ LR(0) + Mo(1+ h)
Xm,k(o) o %Xm—l,k(o)

SMo(1+ h)? + Ma(1+h)

Xm,k(o) o %Xm—l,k(o)'

VvV + IV IV
M\QM\QJ

|

So, X™:* < () and

~ 1
ymk < 5z\42(1 —n+h)?, (90)
whenm < m/ andm =m/, k < k'.

Therefore, if My/2 > Koz, ¥t < 2, mh < T7,
we have

Y™E(p) = YR < My(1 —n+R)2. (91)

It follows from (71), (74), (75) and (35) that (1 — n +
h) |W,;’%k\ are uniformly bounded in h.

Lemma 6 Under the assumptions of Lemmas 4 and
5, problem (9) in Q, with T = T}, admits a unique
solution w with the following properties: w is contin-
uous in §);

Ci(1—n) <w < Cy(1—n), (92)
w has bounded weak derivatives wy, we, Wy,
lwe] < C3(1 =), |w-| <Co(L—n),  (93)

the derivative wy, is continuous in n < 1; conditions
0f (8) hold for w; the weak derivative w,,, exists and
WWyy,, is bounded in ); equation (9) holds almost ev-
erywhere in the same domain.

Proof: First, let us prove the uniqueness of the
solution. Assume the contrary, namely, that w; and
wy are two solutions of problem (9) with the proper-
ties specified in Lemma 6. Then, almost everywhere
in €, the function z = w; — ws satisfies the following
equation and the boundary conditions:

vwizy, — zr — Uz + (A + 2vywi) 2,

+[B + 3vppwiws + (vwayy + 2vpway,) (w1 + wa)]z
—i—ynnz?’ =0,

Z|7-:0 = 0, Z|77=1 = 0,

[vwi2y + vweyz + vy(wi + wa)z — voz]],_y = 0,
94
Set
z =T PNz,
where o, 3 = const. > 0. Then
vwizy, — 2. —nU% + Ez, + Fz
25 95)
+vpy (w1 — we)*Z = 0,
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Z‘7’20 = 07 2’7721 = 07 (96)

(Vw1 2 + vwayZ + vy (w1 4+ wa)Z ©7)
—Brwz — voé]]nzo =0,

where

E = A+ 2vw} — 28vw3,
F = B + 3vywiws + (Vway, + 2vyway) (wr + wa)
+vB2w? —a— AB — 2Vnﬂw%,

The constant (3 is chosen suitable large such that
[Brwy + vo — vway — vy(w1 +w2)]],—o > 1. (98)

Let us multiply equation (96) by Z and integrate the re-
sult over (). Integrating by parts in some of the terms,
we find that

Jo Ezpzdndédr + [, Fz2dndédr
+ [q 3nUez2dndédr + [ vy (w1 — wo)?22dndédr
—2 [o vwiwiyZpzdndédr — [ vywiz,zdndédr
— Jorwiz2dpdédr — & [ Z2dndé—
T

n
—1 [ qUZdndr — [ vwiz,zdédr =0,
=X n=0

99)
Using the boundary condition (98) at = 0, we can
write the last integral in (100) as

/ w22 {Bywl + v — vway — vy(wr + wg)]dde.
n=0
(100)
By our choice of 3, this integral is non-negative. Let
us estimate the integral over €) containing zz,. Taking
into account |E| < 1/h in €, we get

‘ Jo (B = 2vwiwyy — Vnw%)znzdndde‘
< fa Vw%égdndde
+Cs [ Z2dndédr,

(101)

where Cs = const. Therefore, it follows from (100)
that

Joy [F + $1U¢ + vy (wr — wo)?

102
+C5] 22dndedr > 0, (102)

Because
C1(1—n) <w; < Ca(1—n),

[wiwing| < Cs, |win] < Cr, (i=1,2)

and assumptions, we can choose «, (3 to sure the in-
equality

B+ 3V,7nw1w2 + (ng,m + 2Vnw2n)(’w1 + wg)
+82vwi + $nUg + (w1 — wa)?+
+C5 — a — AB — 2Bryw? < —1.

(103)
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Then, it follows from (103) that

- /Q Z2dndédr > 0, (104)
Therefore, z = 0 in 2 and w; = ws in €2, as required.
Now, we will prove the existence of the solution
of (9)-(10). The solutions w™* of problem (12)-(13)
should be linearly extended to the domain €.
First, when (k — 1)h < ¢ < kh, k =
1,2, .-+, k(h); k(h) = [X/h], let

wi' (& n) = wi' ((k = 1)hA + k(1 = A),

n) = (1= Nw™" (1) + Aw™ (),

Secondly, when (m — 1)h < 7 < mh, m =
1,2, ---, m(h); m(h) = [T/h], let

wi(7, §, n) = wn((m
1) = (1= o)wi(€, n) + owy = (& n),

According to Lemma 4, Lemma 5, the functions
wp (7, M, ) obtained in this manner form this family
satisfy the Lipschitz condition with respect to &, T,
and have uniformly (in h) bounded first derivative in
1 in . By the Arzela Theorem, there is a sequence
h; — 0 such that wy,, uniformly converge to some
w(n, &, 7). It follows from Lemma 4, Lemma 5 that
w(n, &, 7) has bounded weak derivatives wy,, wg, wr,
and its weak derivative wy,, is such that (1 — n)w,, is
bounded, since the weak limit of a bounded sequence
is bounded by the same constant. Consequently, w;,
is continuous in < 1. The sequence wy, may be
assumed such that the derivatives wy,, We, Wr, Wiy in
the domain 2 coincide with weak limits in L?(Q) of
the respective functions

— 1)ho + mh(l —0), &,

’LU(T+ hia 57 77) — ’U)(T, ga 77)
h; ’

’U)(T, £+ hl,n) B ’LU(T, ga 77)
h; ’

Whiny Whinn,
Denoting
w;Lnk - (Tv 57 77) = ’U)(mh, kh7 77)7
By the first term of (11)
m,k m—1,k
I/(w,T Lk —l—h)?whmns Yh "W T ;:)h

m,k: 7n k—

+Amk mk+Bmk m,k

(105)
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Now, suppose that (7, £, ) be a smooth func-
tion,which support set is compact in 2. Let

™" (n) = p(mh, kh, n),

Let us multiply with he™* at the two sides of (106),
integrating the resulting equation in 1 from 0 to 1, and
taking the sum over k, m from 1 to k(h), m(h) re-
spectively, we obtain

1 k -1,k k
Zkhfo o™ [V(whm + h)2w,7gm

m,k:_wmfl,k
h

Wy _nUmkw

k h 1kh m,k

+ ARy kR oy, (bR 2wt
+V7777( wm 1k)2 mkz}dnzo’

m,k m,k—1
—w
h

- (106)
Denote the function f(7, £, 1) on € as
f(r, & n) = f(mh, kh, n),
when (k — 1)h < £ < kh,(m —1)h < 7 < mh. and
denote
(Awh>m B w;n’k — w;ln_l’k
h /1 h ’
(Awh)k B wzl’k - w,T’k_l
h /1 h ’
Then we can rewrite (107) as
_m—1,k _ - Awp, \™ _
fQ { ( wy, + h)2wh1777§0 - (Th)l ®
k
—ﬁU( ;l”h) @+ Aw;m@ + Bwg
25 (0 R 2 4+ oy (P 7| dndedr
(107)
Because

|w —w| < |w—wp| + |wp, — w| < Mh+ |wy, —w|,

when A — 0, w uniformly convergent to w, i.e. W =
w. Just likely

¢ = ¢, Ap = Ay,
Bg = By, 1Up = U,
Dngﬁ = Unp,

UnmP == U, U(W), LR h)2 — vw?,

At the same time, on account of that
Awh m Awh k
( h )1 Wrs ( h )1 we
— Wy, in L2(Q).

Whapn
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So,

Jo(vw?wy, — w, — nUwe + Awy + Buw
+2upwwy, + vyyw?)pdndédr = 0.
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if let h — 01n (108), then

(108)

By the arbitrary of ¢, we get ours result.
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