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Abstract: Similar to the study of Prandtl system, by the well-known Oleinik linear method, the paper gets
existence, uniqueness of the solution for the following initial boundary problem in D = {(t, x, y) | 0 < t <
T, 0 < x < X, 0 < y < ∞},





ut + uux + vuy = Ut + UUx + (ν(y)uy)y,

ux + vy = 0,
u(0, x, y) = u0(x, y), u(t, 0, y) = 0,
u(t, x, 0) = 0, v(t, x, 0) = v0(t, x), lim

y→∞u(t, x, y) = U(t, x),

where T is sufficient small and ν(y) is a bounded function.
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1 Introduction
As well known, Prandtl proposed the conception of
the boundary layer in 1904[1]. From then on, the inter-
est for the theory of boundary layer has been steadily
growing, due to the mathematical questions it pose,
and its important practical applications. According
to Prandtl boundary layer theory, the flow about a
solid body can be divided into two regions: a very thin
layer in the neighborhood of the body (the boundary
layer) where viscous friction plays an essential part,
and the remaining region outside this layer where fric-
tion may be neglected (the outer flow). Thus, for flu-
ids whose viscosity is small, its influence is percep-
tible only in a very thin region adjacent to the walls
of a body in the flow; the said region, according to
Prandtl, is called the boundary layer. This phe-
nomenon is explained by the fact that the fluid sticks
to the surface of a solid body and, this adhesion in-
hibits the motion of a thin layer of fluid adjacent to
the surface. In this thin region the velocity of the
flow past a body at rest undergoes a sharp increase:
from zero at the surface to the values of the velocity
in the outer flow, where the fluid may be regarded as
frictionless. Prandtl derived the system of equations
for the first approximation of the flow velocity in the
boundary layer. This system served as a basis for the
development of the boundary layer theory, which has
now become one of the fundamental parts of fluid dy-

namics. Assume that the motion of a fluid occupying a
two-dimensional region is characterized by the veloc-
ity vector V = (u, v), where u, v are the projections
of V onto the coordinate axes x, y, respectively, the
Prandtl system for a non-stationary boundary layer
arising in an axially symmetric incompressible flow
past a solid body has the form





ut + uux + vuy = Ut + UUx + νuyy,
(ru)x + (rv)y = 0,
u(0, x, y) = u0(x, y), u(t, 0, y) = 0,
u(t, x, 0) = 0, v(t, x, 0) = v0(t, x),
lim

y→∞u(t, x, y) = U(t, x),

(1)

in a domain D = {(t, x, y) | 0 < t < T, 0 < x <
X, 0 < y < ∞}, where ν=const> 0 is the coefficient
of kinematic viscosity; U(t, x) is called the velocity
at the outer edge of the boundary layer, U(t, 0) = 0,
U(t, x) > 0 for x > 0; r(x) is the distance from
that point to the axis of a rotating body, r(0) = 0,
r(x) > 0 for x > 0.

In recent decades, many scholars have been carry-
ing out research in this field, achievements are abun-
dant in literature on theoretical, numerical experimen-
tal aspects of the theory[2, 3]. However, some discrep-
ancies were founded between theoretical and exper-
imental results for several important practical prob-
lems. Prandtl boundary theory does not consider
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both the influence of wall’s properties on the charac-
teristic of the boundary layer and the interaction of
the actual solid wall with the flow of water. In the ab-
sence of chemical reactions and chemical absorption,
the polar interaction plays the most important role.
Under different kinds of solid surface, the absorption
of water molecule’s behavior are different from one
to another. This fact also makes that the correspond-
ing boundary layer’s characteristics are different from
one to another. When the interfacial adsorption is rel-
atively stronger, at this time, experiments show that:
the boundary layer system embodies the micro-fluid
characteristic. To be specific, we should modify the
Prandtl system as[4]





ut + uux + vuy = Ut + UUx + (ν(y)uy)y,

ux + vy = 0,
u(0, x, y) = u0(x, y), u(t, 0, y) = 0,
u(t, x, 0) = 0, v(t, x, 0) = v0(t, x),
lim

y→∞u(t, x, y) = U(t, x),

(2)
where (t, x, y) ∈ D, and ν(y) > 0. In this paper, we
get the following result.

Theorem 1 Assume that Ux, Ut/U , U , v0 are
bounded functions having bounded derivatives with
respect to t, x in D = {(t, x, y) | 0 < t < T, 0 <
x < X, 0 < y < ∞}, where T is sufficient small;
ν(y) > 0 is a bounded function of which the first, the
second and the third order derivatives are bounded in
D; lim

y→∞u0(x, y) = U(0, x), u0(x, 0) = 0; u0/U ,

u0y/U are continuous in D; u0y > 0 for y ≥ 0, x >
0,

K1(U(0, x)− u0(x, y))

≤ u0y(x, y) ≤ K2(U(0, x)− u0(x, y)),

with positive constants K1 and K2. Assume also that
there exist bounded derivatives u0y, u0yy, u0yyy, u0x,
u0xy, and the ratios

u0yy

u0y
,
u0yyyu0y − u2

0yy

u2
0y

are bounded on the rectangle {0 ≤ x ≤ X, 0 ≤ y <
∞}. Moreover, u0, v0 satisfy the following compati-
bility condition

v0(0, x)u0y(x, 0)
= Ut(0, x) + U(0, x)Ux(0, x) + (ν(0)u0y)y(x, 0),

(3)
and let

∣∣∣u0yx − u0xu0yy

u0y
+ Ux

u0u0yy − u2
0y

Uu0y

∣∣∣

≤ K5(U − u0(x, y)).

Then, problem (2) in D has a unique solution (u, v)
with the following properties: u/U , uy/U are con-
tinuous and bounded in D; uy/U > 0 for y ≥ 0;
lim

y→∞uy/U = 0, u(t, x, 0) = 0; v is continuous in y

and bounded for bounded y; the weak derivatives ut,
ux, vy, uyt, uyx, uyy, uyyy are bounded measurable
functions in D; the first equation in (2) hold almost
everywhere in D; the functions ut, ux, vy, uyy are
continuous with respect to y; moreover

uyy

uy
,
uyyyuy − u2

yy

u2
y

, (4)

are bounded and the following inequality hold:

C1(U(t, x)− u(t, x, y)) ≤ uy(t, x, y)

≤ C2(U(t, x)− u(t, x, y)), (5)

exp(−C2y) ≤ 1− u(t, x, y)
U(t, x) ≤ exp(−C1y),∣∣∣uyxuy−uxuyy

uy
+ Ux

uuyy−u2
y

Uuy

∣∣∣ ≤ C3(U − u),∣∣∣uytuy−utuyy

uy
+ Ut

uuyy−u2
y

Uuy

∣∣∣ ≤ C4(U − u).

(6)

Although our method is similar to Oleinik’s[5],
however, ν is related to y, which makes the cor-
responding transform and the calculation become
more complicated. Moreover, if we permit ν(y) or
its derivatives to be a unbounded functions, then,
Oleinik’s linear method will be invalid, in these cir-
cumstances, to get the same results seem very diffi-
cult. By the way, there are some important progresses
to the existence of the global solutions of (1) in recent
recent years, one can refer to [7-9] et.al.

2 Some Important Lemmas
Consider the following initial boundary problem

ut + uux + vuy = Ut + UUx + (ν(y)uy)y

ux + vy = 0,
(7)

where
(t, x, y) ∈ D = {(t, x, y) |:

0 < t < T, 0 < x < X, 0 < y < ∞},
and with the following initial boundary conditions





u(0, x, y) = u0(x, y), u(t, 0, y) = 0,
u(t, x, 0) = 0, v(t, x, 0) = v0(t, x),
lim

y→∞u(t, x, y) = U(t, x),
(8)
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Definition 2 A solution of problem (7)-(8) is a pair
of functions u(t, x, y), v(t, x, y) with the following
properties: u(t, x, y) is continuous and bounded in
D; v(t, x, y) is continuous with respect to y in D and
bounded for bounded y; the weak derivatives ut, ux,
uy, uyy, vy are bounded measurable functions; equa-
tion (7) holds for u, v in D, and conditions of (8) are
satisfied.

If we introduce the Crocco transformation

τ = t, ξ = x, η =
u(t, x, y)
U(t, x)

,

we obtain the following equation for w(τ, ξ, η) =
uy(t, x, y)/U(t, x):

νw2wηη − wτ − ηUwξ + Awη + Bw
+2νηw

2wη + νηηw
3 = 0, (τ, ξ, η) ∈ Ω,

(9)

{
w|τ=0 = u0y

U = w0(ξ, η), w|η=1 = 0,
(νwwη + νηw

2 − v0w + C)|η=0 = 0,
(10)

in the domain Ω = {(τ, ξ, η) | 0 < τ < T, 0 < ξ <
X, 0 < η < 1}, where

A = (η2 − 1)Uξ + (η − 1)Uτ/U,

B = −ηUξ − Uτ/U,

C = Uξ + Uτ/U.

Solutions of problem (9)-(10) are understood in the
weak sense.

Definition 3 A solution of problem (9) is a function
w(τ, ξ, η) with the following properties: w(τ, ξ, η)
is continuous in Ω; the weak derivatives wτ , wξ, wη

are bounded functions in Ω, wη is continuous with re-
spect to η at η = 0 and its weak derivative wηη is
such that wwηη is bounded in Ω; equation (9) hold
almost everywhere in Ω for w, and conditions of (10)
are satisfied.

For any function f(τ, ξ, η), we use the following
notation:

fm,k(η) = f(η, mh, kh), h = const > 0.

Instead of equation (9), let us consider the following
system of ordinary differential equations:

ν(wm−1,k + h)2wm,k
ηη − wm,k−wm−1,k

h

−ηUm,k wm,k−wm,k−1

h + Am,kwm,k
η

+Bm,kwm,k + 2νη(wm−1,k)2wm,k
η

+νηη(wm−1,k)2wm,k = 0,

(11)

w0,k = wh
0 (kh, η), w(1)m,k = 0, (12)

[νwm−1,kwm,k
η + νη(wm−1,k)2

−vm,k
0 wm−1,k + Cm,k]|η=0 = 0,

(13)

where m = 1, 2, · · · , [T/h]; k =
0, 1, 2, · · · , [X/h].

We take wh
0 ≡ w0(ξ, η) if w0 has bounded

derivatives w0ξ, w0η and w0ηη. If w0(ξ, η) is not so
smooth, we take for wh

0 a certain smooth function (to
be constructed below) which uniformly converges to
w0 in the domain {0 < ξ < X, 0 < η < 1} as h → 0.

In what follows Ki,Mi, Ci stand for positive con-
stants independent of h.

Lemma 4 Assume that A,B, C, v0 are bounded func-
tions in Ω. Let wh

0 be continuous in η ∈ [0, 1] and
such that K1(1 − η) ≤ wh

0 ≤ K2(1 − η), ν(y) is
bounded function having bounded first and second or-
der derivatives in Ω. Then problem (12)-(13) for or-
dinary differential equations admits a unique solution
for mh ≤ T0 and small enough h, where T0 > 0 is
a constant which depends on the data of problem (7).
The solution wm,k of problem (12)-(13) satisfies the
following estimate:

V (mh, η) ≤ wm,k(η) ≤ V1(mh, η), (14)

where V and V1 are continuous functions in Ω, pos-
itive for η < 1 and such that V ≡ K3(1 − η) and
V1 ≡ K4(1− η) in a neighborhood of η = 1.

Proof: The existence of this solution follows
from its uniqueness which, in its turn, can be estab-
lished on the basis of the maximum principle and the
fact that this problem can be reduced, with the help of
the Green function, to a Fredholm integral equation
of the second kind.

Indeed, let Qm,k be the difference of two solu-
tions wm,k of problem (12)-(13). Then Qm,k can at-
tain neither a positive maximum nor a negative mini-
mum at η = 0, since otherwise Qm,k

η (0) 6= 0 (see [6]),
whereas the boundary condition
[
νwm−1,kwm,k

η +νη(wm−1,k)2−vm,k
0 wm−1,k+Cm,k

]

∣∣∣
η=0

= 0,

implies that Qm,k
η (0) = 0. We also have Qm,k(1) =

0, and at the interior points of [0, 1], Qm,k can nei-
ther attain a positive maximum nor a negative mini-
mum. Consequently, under our assumptions, problem
(12)-(13) can not have more than one solution. There-
fore, we shall have a fortiori establish the solvability
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of problem (12)-(13) for m and k such that the solu-
tions wm−1,k of problem (12)-(13) admit the follow-
ing a priori estimate:

wm−1,k(η) ≥ V ((m− 1)h, η) (15)

In order to prove the priori estimate (14) for τ =
mh, it suffices to show that there exist functions V
and V1 with the properties in Lemma 4 and such that
ordinary differential equations:

Lm(V ) ≡ ν(wm−1,k + h)2V m,k
ηη

−V m,k−V m−1,k

h − ηUm,k V m,k−V m,k−1

h
+Am,kV m,k

η + Bm,kV m,k + 2νη(wm−1,k)2V m,k
η

+νηη(wm−1,k)2V m,k ≥ 0,
(16)

λm(V ) = ν(0)wm−1,k(0)V m,k
η (0)

+ν(0)η(wm−1,k(0))2 − vm,k
0 wm−1,k(0) + Cm,k

> 0,
(17)

Lm(V1) ≤ 0, λm(V1) < 0,
k = 0, 1, 2, · · · , [X/h],

(18)

under the assumption that

V ((m− 1)h, η) ≤ wm−1,k(η) ≤ V1((m− 1)h, η).
(19)

Then the inequalities (14) can be proved by induction
with respect to m.

Indeed, consider the function qm,k =
V (mh, η) − wm,k, where wm,k is the solution
of problem (12)-(13). We have

Lm(q) ≥ 0, (20)

λm(V )− λm(w) = ν(0)wm−1,k(0)qm,k
η (0) > 0.

(21)
Moreover, by assumption we have qm′,k ≤ 0 for m′ ≤
m − 1, and qm,k(1) = 0. Let us show that qm,k ≤ 0.
To this end , we introduce new functions by qm,k =
eαmhSm,k, α = const. > 0, Then

Lm(q) ≡ eαmh
[
ν(wm−1,k + h)2Sm,k

ηη

−ηUm,k Sm,k−Sm,k−1

h + Am,kSm,k
η

+2νη(wm−1,k)2Sm,k
η

+νηη(wm−1,k)2Sm,k + Bm,kSm,k

− 1
h(1− e−αh)Sm,k − e−αh Sm,k−Sm−1,k

h

]

≥ 0,

(22)

λm(q) = eαmhν(0)wm−1,k(0)Sm,k
η (0) > 0. (23)

It follows that Sm,k
η (0) > 0, then Sm,k cannot take

its maximum positive value at η = 0, moreover,
Sm,k(1) = 0. If Sm,k attains the maximum positive

value at an interior point of the interval 0 ≤ η ≤ 1,
then at this point we must have

Sm,k
ηη ≤ 0, (24)

Sm,k − Sm−1,k

h
≥ 0, (25)

ηUm,k Sm,k − Sm,k−1

h
≥ 0, (26)

Sm,k
η = 0, (27)

[
Bm,k + νηη(wm−1,k)2

− 1
h(1− e−αh)

]
Sm,k < 0,

(28)

provided that the constant α is large enough and h
is sufficiently small, such that 1 − e−αh > 1/2.
However, these relations are incompatible with (22).
Therefore,

qm,k = eαmhSm,k ≤ 0, (29)

That is to say,

V (mh, η) ≤ wm,k. (30)

In a similar way we can show that (18) and (19) imply
the inequality wm,k ≤ V1(mh, η).

Now let us show that there is a positive T0 such
that for mh ≤ T0 there exist functions V and V1 sat-
isfying the inequalities (16), (17) and (18), under the
condition (19).

Set

V = µκ(α1η)κ1(η)e−α2τ

where κ is a smooth function such that

κ(s) =





es, for 0 ≤ s ≤ 1;
1 ≤ κ ≤ 3, for 1 ≤ s ≤ 3/2;
1, for s ≥ 3/2.

κ1 is a smooth function too, such that

κ1(s) =





1, for s ≤ 1/4;
1/2 ≤ κ1 ≤ 1, for 1/4 < s < 1/2;
1− s, for s ≥ 1/2.

The constant µ > 0 is chosen such that V (0, ξ, η) ≤
wh

0 (ξ, η); the positive α1, α2 will be specified later.
Let us verify the inequalities (16) and (17) for V ,

assuming that (19) holds. Provided that α1 > 0 is
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large enough and mh is such that e−α2mh > 1/2, We
have

λm(V ) = ν(0)wm−1,k(0)µα1e
−α2mh

+νη(0)(wm−1,k(0))2 − vm,k
0 wm−1,k(0) + Cm,k

≥ µe−α2(m−1)h
[
µ(ν(0)α1e

−α2mh

+νη(0)e−α2(m−1)h)− vm,k
0

]
+ Cm,k > 0,

(31)
Lm(V ) ≡ µe−α2mh

[
ν(wm−1,k + h)2(κκ1)ηη

+Am,k(κκ1)η + Bm,kκκ1 + 2νη(wm−1,k)2(κκ1)η

+νηη(wm−1,k)2κκ1 + κκ1α2e
α2h̃

]
,

(32)
where 0 < h̃ < h.

It may be assumed that κκ1 = 1−η for 1−η < σ,
and small enough σ > 0. For such η, we have
Lm(V ) ≥ 0 if α2 is sufficiently large. For η <
1 − σ, we have V > ρ = const. > 0, and there-
fore, Lm(V ) > 0 for large enough α2, provided that
e−α2mh > 1/2.

Set

V1 = Mκ1(η)κ2(β1η)eβ2mh

κ2 is a smooth function such that

κ2(s) =





4− es, for 0 ≤ s ≤ 1;
1 ≤ κ2 ≤ 3, for 1 ≤ s ≤ 2;
1, for s ≥ 2.

The constant M > 0 is chosen such that
V1(0, ξ, η) ≥ wh

0 (ξ, η); the positive β1, β2 will be
specified shortly. In a similar way we can prove that
Lm(V1) ≤ 0, λm(V1) < 0, provided that β1 > 0 is
large enough and mh is such that e−β2mh > 1/2.

Thus, if mh ≤ T0 and T0 is such that eβ2T0 ≤ 2
and e−α2T0 ≥ 1/2, then problem (12)-(13) with small
enough h admits a unique solution which satisfies the
inequality (14).

In what follows, we takes as wh
0 (ξ, η) the func-

tion w0(ξ, η) if w0ηη is bounded in Ω; otherwise we
let wh

0 (ξ, η) be a function coinciding with w0 for
η ≤ 1/2, equal to w0(ξ, η − h) − w0(ξ, 1 − h)
for 1/2 + h ≤ h < 1, and defined on the inter-
val 1/2 ≤ η ≤ 1/2 + h in such a way that for
1/4 ≤ η ≤ 3/4 it has uniformly (in h) bounded
derivatives which are known to be bounded for w0.

Lemma 5 Assume that the conditions of Lemma 4 are
fulfilled and functions A,B, C, v0, w0 have bounded
first order derivatives, |w0ξ| ≤ K5(1−η), w0(ξ, 1) =
0, w0w0ηη is bounded in Ω, ν(y) has bounded third
order derivative, and the following compatibility con-
dition is satisfied:

ν(0)w0w0η + ν(0)ηw
2
0 − v0w0 + C = 0, (33)

Then

wm,k
η ,

wm,k − wm,k−1

h
,
wm,k − wm−1,k

h
,

and
(1− η + h)wm,k

ηη ,

are bounded in Ω for mh ≤ T1 ≤ T0 and h ≤ h0,
uniformly with respect to h. The positive constants T1

and h0 are determined by the data of problem (7)-(8).

Proof: Let us introduce a new unknown function
Wm,k = wm,keαη in problem (12)-(13), where α is a
positive constant which does not depend on h and will
be chosen later. We have

ν(wm−1,k + h)2Wm,k
ηη − W m,k−W m−1,k

h

−ηUm,k W m,k−W m,k−1

h + Ãm,kWm,k
η

+B̃m,kWm,k + 2νη(wm−1,k)2Wm,k
η

+νηη(wm−1,k)2Wm,k = 0,

(34)

and

ν(0)Wm−1,k(0)Wm,k
η (0)− αν(0)Wm−1,k(0)Wm,k(0)

+νη(0)(Wm−1,k(0))2−
−vm,k

0 Wm−1,k(0) + Cm,k = 0,
(35)

where

Ãm,k = Am,k − 2αν(wm−1,k + h)2,

B̃m,k = Bm,k + α2ν(wm−1,k + h)2

−αAm,k − 2ανη(wm−1,k)2.

We introduce the functions

ρm,k =
Wm,k −Wm−1,k

h
, γm,k =

Wm,k −Wm,k−1

h
.

The function Φm,k(η) defined by

Φm,k(η) = (Wm,k
η )2 + (ρm,k)2

+(γm,k)2 + K6η + 1,
(36)

for k ≥ 1, m ≥ 1;

Φm,k(η) = (Wm,k
η )2 + (ρm,k)2 + K6η + 1, (37)

for k = 0, m ≥ 1. The constant K6 > 0 will be
chosen below.

Consider Φm,k
η (0) for k ≥ 1, m ≥ 1. We have

Φm,k
η (0) = 2Wm,k

η (0)Wm,k
ηη (0)

+2ρm,k(0)ρm,k
η (0) + 2γm,k(0)γm,k

η (0) + K6.
(38)
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From the boundary condition (36) and the estimates
(14), it follows that

∣∣∣Wm,k
η (0)

∣∣∣ ≤ K7, (39)

From (35) and the estimates for wm−1,k established in
Lemma 2.1, we find that

Wm,k
ηη (0) = Rm,k

1 ρm,k(0) + Rm,k
2 γm,k(0) + Rm,k

3 ,
(40)

for 0 ≤ mh ≤ T0, and

Rm,k
1 (0) =

1
ν(wm−1,k + h)2

,

Rm,k
2 (0) =

ηUm,k

ν(wm−1,k + h)2
≡ 0,

Rm,k
3 (0) =

−1
ν(wm−1,k + h)2

[
Ãm,kWm,k

η +B̃m,kWm,k

+2νη(wm−1,k)2Wm,k
η + νηη(wm−1,k)2Wm,k

]
,

where Rm,k
i are bounded uniformly in h.

Using the boundary condition (36), we find
ρm,k

η (0), γm,k
η (0) for m ≥ 1; in order to calculate

ρm,k
η (0) we have to utilize the compatibility condi-

tion (2.11) which holds for w0, and therefore, wh
0 =

W k
0 e−αη = w0,k for η = 0, since wh

0 ≡ w0 for
η ≤ 1/2 by construction. We have

ρm,k
η (0) = αρm,k(0) + vm,k

0 −vm−1,k
0

ν(0)h

+ Cm,kρm−1,k(0)
ν(0)W m−1,k(0)W m−2,k(0)

−ν(0)ηρm−1,k(0)
ν(0) − Cm,k−Cm−1,k

ν(0)hW m−2,k(0)
,

(41)

for m > 1, and

ρ1,k
η (0) = αρ1,k(0) +

v1,k
0 − v0,k

0

ν(0)h
− C1,k − C0,k

ν(0)hW 0,k(0)
,

Similarly, for k ≥ 1

γm,k
η (0) = αγm,k(0) + vm,k

0 −vm,k−1
0

ν(0)h

+ Cm,kγm−1,k(0)
ν(0)W m−1,k(0)W m−1,k−1(0)

−ν(0)ηγm−1,k(0)
ν(0) − Cm,k−Cm,k−1

ν(0)hW m−1,k−1(0)
,

(42)

Substituting the expressions found for wm,k
ηη (0),

ρm,k
η (0), γm,k

η (0) into the right-hand side of (39), we
obtain the following relation for k ≥ 1

Φm,k
η (0) = K6 + 2α[ρm,k(0)]2 + 2α[γm,k(0)]2

+Rm,k
4 ρm,k(0)ρm−1,k(0) + Rm,k

5 ρm,k(0)
+Rm,k

6 γm,k(0)γm−1,k(0) + Rm,k
7 γm,k(0) + Rm,k

8 ,
(43)

where

Rm,k
4 (0) = 2

Cm,k − νηW
m−1,kWm−2,k

νWm−1,kWm−2,k
,

Rm,k
5 (0) = 2

vm,k
0 − vm−1,k

0

νh

−2
Cm,k − Cm−1,k

νhWm−2,k
+ 2Wm,k

η Rm,k
1 ,

Rm,k
6 (0) = 2

Cm,k − νηW
m−1,kWm−1,k−1

νWm−1,kWm−1,k−1
,

Rm,k
7 (0) = 2

vm,k
0 − vm−1,k

0

νh
− 2

Cm,k − Cm−1,k

νhWm−1,k−1
,

Rm,k
8 (0) = 2Wm,k

η Rm,k
3 ,

Rm,k
i are bounded uniformly in h, while R1,k

4 = 0.
These relations imply that for m > 1, k ≥ 1, we have

Φm,k
η (0) ≥ K6 + αΦm,k(0)

−K8Φm,k(0)−K9Φm−1,k(0)−K10,
(44)

where the constant K10 = K10(α). Let us choose α
such that α/2 > K8, α/4 > K9, K6 > K10. Then

Φm,k
η (0) ≥ α

2
Φm,k(0)− α

4
Φm−1,k(0), (45)

for m = 2, 3, · · ·; k = 1, 2, · · · , [X/h], mh ≤ T0.
Note that γm−1,k(0), with m = 1, is uniformly
bounded in h, and since R1,k

4 = 0, it follows from
(44) that

Φ1,k
η (0) ≥ α

2
Φ1,k(0), (46)

if K6 is sufficiently large. Likewise, the inequalities
(45) and (46) can be proved for k = 0, m ≥ 1.

Let us define the functions Φ0,k. For this purpose,
we introduce the functions W−1,k by

W 0,k−W−1,k

h = ν(w0,k + h)2W 0,k
ηη

−ηU0,k W 0,k−W 0,k−1

h + Ã0,kW 0,k
η + B̃0,kW 0,k

+2νη(w0,k)2W 0,k
η + νηη(w0,k)2W 0,k,

(47)
where

Ã0,k = A0,k − 2αν(W 0,ke−αη + h)2,

B̃0,k = B0,k + α2ν(W 0,ke−αη + h)2

−αA0,k − 2ανη(W 0,ke−αη)2.

Then, we can define the function Φ0,k for k ≥ 1, and
k = 0, respectively, by (37) and (38). It is easy to
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see that Φ0,k is bounded uniformly in h. Indeed, the
functions

W 0,k
η = (w0,keαη)η = (wh

0 (kh, η)e−αη)η,

γ0,k = eαη w0,k−w0,k−1

h

= eαη wh
0 (kh, η)−wh

0 ((k−1)h, η)
h ,

are bounded uniformly in h, since the first deriva-
tives of wh

0 are uniformly bounded in h. The function
w0w0ηη is bounded in Ω and

K1(1− η) ≤ w0 ≤ K2(1− η),

Therefore, (1−η+h)wh
0ηη(ξ, η) which, for η > 1/2+

h, coincides with the function (1−η +h)w0ηη(ξ, η−
h) is also uniformly bounded in h. It follows that

|(w0,k + h)W 0,k
ηη | ≤ K11(1− η + h)|(w0,keαη)ηη|

≤ K12 + K13(1− η + h)|w0,k
0ηη|

= K12 + K13(1− η + h)|wh
0ηη|

≤ K14.

Consequently, the ratio (W 0,k−W−1,k)/h defined by
(48) is uniformly bounded in h, and

|Φ0,k| ≤ K15. (48)

Now, we will deduce the equation for Φm,k(η)
on the interval 0 ≤ η < 1. To this end, we dif-
ferentiate equation (35) in η and multiply the re-
sult by 2Wm,k

η ; then, we subtract from equation (35)
for Wm,k equation (35) for Wm−1,k and multiply
the result by 2ρm,k/h; from equation (35) for Wm,k

we subtract (35) for Wm,k−1 and multiply the re-
sult by 2rm,k/h. Taking the sum of the three equa-
tions just obtained we get the equation for Φm,k(η),
m = 1, 2, · · · , [T/h]; k = 0, 1, 2, · · · , [X/h].

We find the equations for Φm,k(η) with k =
0,m ≥ 1 by taking only the first and the second of
these equations. In order to derive the equation for
Φm,k(η) with m = 1, we utilize the relation (48)
which determines the values of W−1,k.

For m ≥ 1, k ≥ 1, the equation for Φm,k(η) has
the form

ν(wm−1,k + h)2Φm,k
ηη − Φm,k−Φm−1,k

h

−ηUm,k Φm,k−Φm,k−1

h + Ãm,kΦm,k
η

+2B̃m,kΦm,k + 2νη(wm−1,k)2Φm,k
η

+2νηη(wm−1,k)2Φm,k + Nm,k
1 −Nm,k

2 = 0,
(49)

where Nm,k
2 is a sum of non-negative terms:

Nm,k
2 = 2νam−1,k(Wm,k

ηη ) + 2νam−1,k(ρm,k
η )2

+2νam−1,k(γm,k
η )2 + ηUm,k

h (γm,k
η )2

+ 1
h(ρm,k

η − ρm−1,k
η )2 + ηUm,k

h (γm,k
η

−γm−1,k
η )2 + 1

h(ρm,k
η )2 + 1

h(ρm,k
η

−ρm,k−1
η )2 + ηUm,k

h (γm,k
η − γm,k−1

η )2,
(50)

and Nm,k
1 is a linear function whose coefficients are

uniformly bounded in h and can be expressed in terms
of the following quantities:

νηa
m−1,kWm,k

η Wm,k
ηη , νam−1,k

η Wm,k
η Wm,k

ηη ,

Wm,k
η γm,k, Wm−1,k

η ρm,kρm−1,k,Wm,k−1
η γm,kγm−1,k,

Wm,k−1
η γm,k, Wm,k

η Wm−1,k
η ,

Wm,k
η , (Wm,k

η )2Wm−1,k
η ,Wm−1,k

η ρm,k, (Wm,k
η )2,

ρm,k
η γm−1,k, ρm,kρm−1,k, γm,kγm,k−1, γm,k, ρm,k,

1
h

νηW
m−1,k
η ρm,k[(wm−1,k)2 − (wm−2,k)2],

1
h

Wm,k−1
ηη γm,k(am−1,k − am−1,k−1),

νηηw
m−1,k
η wm−1,kWm,kWm,k

η ,

1
h

νηW
m,k−1
η γm,k[(wm−1,k)2 − (wm−1,k−1)2],

1
h

Wm−1,k
ηη ρm,k(am−1,k − am−2,k), γm,kγm−1,k,

νηη(wm−1,k)2(Wm,k
η )2, νηw

m−1,k
η wm−1,k(Wm,k

η )2,

1
h

νηηW
m−1,kρm,k[(wm−1,k)2 − (wm−2,k)2],

1
h

νηηW
m,k−1γm,k[(wm−1,k)2 − (wm−1,k−1)2],

νηηη(wm−1,k)2Wm,kWm,k
η ,

where am,k = (wm,k + h)2. Using the inequality

2ab ≤ βa2 +
b2

β
, (β > 0), (51)

to estimate the terms that make up Nm,k
1 , we obtain

from (50)

ν(wm−1,k + h)2Φm,k
ηη − Φm,k−Φm−1,k

h

−ηUm,k Φm,k−Φm,k−1

h + Ãm,kΦm,k
η + 2B̃m,kΦm,k+

+2νη(wm−1,k)2Φm,k
η + 2νηη(wm−1,k)2Φm,k

+C̃m,kΦm,k ≥ 0,
(52)
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where C̃m,k depend on

Wm−1,k
η , ρm−1,k, γm−1,k, γm,k−1,

(wm−1,k + wm−2,k + 2h)Wm−1,k
ηη ,

(wm−1,k + wm−1,k−1 + 2h)Wm,k−1
ηη ,

νηη(wm−1,k)2, νηw
m−1,k
η wm−1,k,

νηW
m,k−1
η (wm−1,k + wm−1,k−1),

νηηη(wm−1,k)2Wm,k, Wm,k−1
η ,

νηηW
m,k−1(wm−1,k + wm−1,k−1),

νηW
m−1,k
η (wm−1,k + wm−2,k),

νηηW
m−1,k(wm−1,k + wm−2,k),

νηηw
m−1,k
η wm−1,kWm,k

It is easy to see that for k = 1 the coefficient C̃m,k

does not depend on γm,k−1, since Um,0 = 0. The in-
equality (53) for Φm,0 is obtained in exactly the same
manner as for k ≥ 1. Obviously, in this case the coef-
ficient C̃m,k depends only on

Wm−1,k
η , ρm−1,k, γm−1,k, γm,k−1,

(wm−1,k + wm−2,k + 2h)Wm−1,k
ηη ,

(wm−1,k +wm−1,k−1 +2h)Wm,k−1
ηη , νηη(wm−1,k)2,

νηw
m−1,k
η wm−1,k, νηηη(wm−1,k)2Wm,k, Wm,k−1

η ,

νηW
m−1,k
η (wm−1,k + wm−2,k),

νηηW
m−1,k(wm−1,k + wm−2,k),

νηηw
m−1,k
η wm−1,kWm,k

Now, consider the functions

Y m,k(η) = (ρm,k)2 + (γm,k)2 + f(η), (53)

when k ≥ 1, m > 0,

Y m,k(η) = (ρm,k)2 + f(η), (54)

when k = 0, m > 0. Where f(η) = κ(βη)κ2
1(η),

and the functions κ, κ1 are those constructed in the
proof of Lemma 4; β is a positive constant. Just as we
have proved inequalities (45) and (46), we find that

Y m,k
η (0) ≥ α

2
Y m,k(0)− α

4
Y m−1,k(0), (55)

for m > 1, k ≥ 1,

Y m,k
η (0) ≥ α

2
Y m,k(0), (56)

for m = 1, k ≥ 1, provided that α, β are sufficiently
large. We clearly have Y m,k(1) = 0. Consider the
functions Y 0,k. Obviously,

∣∣∣W
0,k −W 0,k−1

h

∣∣∣ ≤ K16(1− η + h),

since |w0ξ| ≤ K5(1−η) by the assumption of Lemma
4, and the functions W 0,k = wh

0 (kh, η)eαη, wh
0ξ are

uniformly bounded in h. It follows from (48) that

∣∣∣W
0,k −W−1,k

h

∣∣∣ ≤ K17(1− η + h),

since by virtue of (14) and the properties of wh
0 =

w0,k = W 0,ke−αη we have
∣∣∣ν(w0,k + h)2W 0,k

ηη (η)
∣∣∣ ≤ K18(1− η + h), (57)

∣∣∣Ã0,kW 0,k
η (η)

∣∣∣ ≤ K19(1− η + h), (58)

∣∣∣B̃0,kW 0,k(η)
∣∣∣ ≤ K20(1− η + h), (59)

∣∣∣νη(w0,k)2W 0,k
η (η)

∣∣∣ ≤ K21(1− η + h), (60)

∣∣∣νηη(w0,k)2W 0,k(η)
∣∣∣ ≤ K22(1− η + h), (61)

Consequently,
∣∣∣Y 0,k(η)

∣∣∣ ≤ K23(1− η + h)2. (62)

Let us write out the equation for Y m,k. For m ≥
1, k ≥ 1, this equation has the form

ν(wm−1,k + h)2Y m,k
ηη − Y m,k−Y m−1,k

h

−ηUm,k Y m,k−Y m,k−1

h + Ãm,kY m,k
η

+2B̃m,kY m,k + 2νη(wm−1,k)2Y m,k
η

+2νηη(wm−1,k)2Y m,k − ν(wm−1,k + h)2fηη

−Ãm,kfη − 2B̃m,kf − 2νη(wm−1,k)2fη

−2νηη(wm−1,k)2f + Nm,k
3 −Nm,k

4 = 0,
(63)

where Nm,k
4 is a sum of non-negative terms, namely

Nm,k
4 = 2νam−1,k(Wm,k

ηη ) + 1
h(ρm,k

η

−ρm−1,k
η )2 + ηUm,k

h (γm,k
η

−γm−1,k
η )2 + 2νam−1,k(γm,k

η )2

+ 1
h(ρm,k

η − ρm,k−1
η )2 + ηUm,k

h (γm,k
η − γm,k−1

η )2,
(64)

and Nm,k
3 is a linear functions whose coefficients are

uniformly bounded in h and can be expressed in terms
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of the following quantities:

ρm,kγm−1,k, Wm−1,k
η ρm,kρm−1,k,

ρm,kWm−1,k
η (1− η), ρm,kwm−1,k,

γm,kγm−1,kWm,k−1
η , ρm,kρm−1,k,

1
hνηγ

m,k[(wm−1,k−1)2 − (wm−1,k−1)2]Wm,k−1
η ,

1
hνηηγ

m,k[(wm−1,k−1)2 − (wm−1,k−1)2]Wm,k−1,
γm,kγm−1,k, γm,kγm,k−1, ρm,kwm−1,k,
ρm,kρm−1,k(wm−1,k + wm−2,k + 2h)Wm−1,k

ηη ,
1
hνηρ

m,k[(wm−1,k)2 − (wm−2,k)2]Wm−1,k
η ,

1
hνηηρ

m,k[(wm−1,k)2 − (wm−2,k)2]Wm−1,k,
γm,kγm−1,k(wm−1,k + wm−1,k−1 + 2h)Wm,k−1

ηη ,

γm,kWm,k−1
η (1− η).

(65)
Using (52) to estimate the terms that make up Nm,k

3 ,
we obtain the following inequality

ν(wm−1,k + h)2Y m,k
ηη − Y m,k−Y m−1,k

h

−ηUm,k Y m,k−Y m,k−1

h + Ãm,kY m,k
η

+2B̃m,kY m,k + 2νη(wm−1,k)2Y m,k
η

+2νηη(wm−1,k)2Y m,k + Qm,k
1 Y m,k + Qm,k

2 + Q3

≥ 0,
(66)

where Qm,k
1 ≥ 0, and depends on

Wm−1,k
η , (wm−1,k + wm−2,k + 2h)Wm−1,k

ηη ,

νη(wm−1,k + wm−2,k)Wm−1,k
η ,Wm,k−1

η ,

(wm−1,k + wm−1,k−1 + 2h)Wm,k−1
ηη ,

νηη(wm−1,k + wm−2,k)Wm−1,k,
νη(wm−1,k−1 + wm−1,k−1)Wm,k−1

η ,

νηη(wm−1,k−1 + wm−1,k−1)Wm,k−1,
(67)

and Qm,k
2 is a linear combination of the following

functions:

(γm−1,k)2, (γm,k−1)2, (ρm−1,k)2, (wm−1,k)2,
(wm,k−1)2, [(Wm−1,k

η (1− η)]2,
[(Wm,k−1

η (1− η)]2.
(68)

We also have

Q3 ≡ K24(1− η + h)2 ≥
∣∣∣ν(wm−1,k + h)2fηη

+Ãm,kfη + 2B̃m,kf

+2νη(wm−1,k)2fη + 2νηη(wm−1,k)2f
∣∣∣.

(69)
It is easy to see that for k = 1 the function Qm,k

2

does not depend on (ρm−1,k)2. For k = 0, an inequal-
ity of the form (67) holds for Y m,k, but in this case,
Qm,k

1 depends only on Wm−1,k
η ,

(wm−1,k + wm−2,k + 2h)Wm−1,k
ηη ,

νη(wm−1,k + wm−2,k)Wm−1,k
η ,

νηη(wm−1,k + wm−2,k)Wm−1,k

, and Qm,k
2 is a linear combination of (ρm−1,k)2,

[Wm−1,k
η (1− η)]2, (wm,k−1)2.
Let us show by induction that

Φm,k ≤ M1, Y m,k ≤ M2(1− η + h), (70)

for mh ≤ T1 and some T1 ≤ T0, the constants T1, Mi

being independent of h. To show this, assume that for
m < m′ and m = m′, k < k′ the inequalities (71)
hold with constants M1, M2 specified below. Let us
show that if mh ≤ T1, the same inequalities are valid
for m = m′, k = k′. Note that under the induction
assumptions we can claim that for m < m′ or m =
m′, k < k′ the following inequalities hold:

∣∣∣(wm−1,k + wm−2,k + 2h)Wm−1,k
ηη

∣∣∣
≤ K25(1− η + h)

∣∣∣Wm−1,k
ηη

∣∣∣
≤ K26ν(wm−2,k + h)

∣∣∣Wm−1,k
ηη

∣∣∣
= K26

∣∣∣ρm−1,k + ηUm−1,kγm−1,k

−Ãm−1,kWm−1,k
η − B̃m−1,kWm−1,k−

−2νη(wm−2,k)2Wm−1,k
η

−νηη(wm−2,k)2Wm−1,k
∣∣∣(wm−2,k + h)−1

≤ K27

(71)

In exactly the same manner, we get that
∣∣∣(wm−1,k + wm−1,k−1 + 2h)Wm,k−1

ηη

∣∣∣ ≤ K28

where the constants K26, K27 depend on M1 and M2.
Therefore, if the inequalities (71) hold for m < m′
and m = m′, k < k′, then it can be seen that in (53)
and (67) we have

|Cm,k| ≤ K29(M1, M2),
|Qm,k

1 | ≤ K30(M1, M2),
|Qm,k

2 | ≤ K31(1− η + h)2.
(72)

Let us pass to new functions in (2.25) and (2.32)
by

Φm,k = Φ̃m,keγmh, (73)

Y m,k = Ỹ m,keγmh, (74)

The constant γ(M1, M2) will be chosen later. For
1 ≤ m ≤ m′ and m = m′, we have

ν(wm−1,k + h)2Φ̃m,k
ηη − ηUm,k Φ̃m,k−Φ̃m,k−1

h

−e−γh Φ̃m,k−Φ̃m−1,k

h

+Ãm,kΦ̃m,k
η + 2νη(wm−1,k)2Φ̃m,k

η

+
[
2νηη(wm−1,k)2 + 2B̃m,k + C̃m,k − γe−γh̄

]
Φ̃m,k

≥ 0,
(75)
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for 0 < h̄ < h, and also

ν(wm−1,k + h)2Ỹ m,k
ηη

−ηUm,k Ỹ m,k−Ỹ m,k−1

h

−e−γh Ỹ m,k−Ỹ m−1,k

h + Ãm,kỸ m,k
η

+2νη(wm−1,k)2Ỹ m,k
η +

[
2νηη(wm−1,k)2

+2B̃m,k + Q̃m,k
1 − γe−γh̄

]
Ỹ m,k+

+K32(M1, M2)(1− η + h)2

≥ 0.

(76)

Let us choose γ(M1, M2) such that for small enough
h the following inequalities are valid:

2νηη(wm−1,k)2 + 2B̃m,k

+C̃m,k − γe−γh̄ < 0,
(77)

2νηη(wm−1,k)2 + 2B̃m,k + Q̃m,k
1

−γe−γh̄ < −K33(M1, M2),
(78)

where

K33 = 2K32
M2

+ K34,

K34(1− η + h)2 ≥
∣∣∣2ν(wm−1,k + h)2

−2Ãm,k(1− η + h)
∣∣∣.

(79)

Consider the point at which Φ̃m,k(η), for 0 ≤ η ≤ 1,
m < m′, or m = m′, k ≤ k′, attains its largest value.
In view of (76) and (78), this point cannot belong to
the interval 0 < η < 1 for m ≥ 1. Moreover, if
Φ̃m,k(η) attains its maximum at η = 0, m ≥ 1, we
should have Φ̃m,k

η (η) ≤ 0, whereas relations (45) and
(46) imply that

0 ≥ Φ̃m,k
η (0)

≥ α
2 Φ̃m,k(0)− α

4 e−γhΦ̃m−1,k(0)
≥ α

2 Φ̃m,k(0)− α
4 Φ̃m−1,k(0),

(80)

and therefore,

Φ̃m,k(0) ≤ 1
2
Φ̃m−1,k(0),

which is impossible.
For η = 1, we have

Φ̃m,k = Φm,ke−γmh = e−γmh
[
(Wm,k

η )2 + K6 + 1
]
,

(81)
Estimates (14) for wm,k imply that

|Wm,k
η (1)| ≤ K35. (82)

Therefore, if Φ̃m,k(η) attains its maximum value at
η = 1, we have Φ̃m,k(η) ≤ K36 for m < m′ and

m = m′, k ≤ k′, where the constant K36 depends
neither on M1 nor on M2. If Φ̃m,k(η) attains its max-
imum value at m = 0, we have already shown that
Φ̃m,k(η) ≤ max Φ̃0,k ≤ maxΦ0,k ≤ K15. It follows
that

Φ̃m,k(η) ≤ max{K15, K36} (83)

Choose M1 > max{2K15, 2K36}. Then

Φ̃m,k(η) ≤ M1

2
, (84)

Φm,k(η) ≤ M1

2
eγmh, (85)

If
eγT1 ≤ 2, mh ≤ T1, (86)

then
Φm,k(η) ≤ M1. (87)

for m < m′ and m = m′, k ≤ k′, as required.
Now, consider the functions

Xm,k = Ỹ m,k − M2

2
(1− η + h)2, (88)

it follows from (77) and (78) that

ν(wm−1,k + h)2Xm,k
ηη − ηUm,k Xm,k−Xm,k−1

h

−e−γh Xm,k−Xm−1,k

h + Ãm,kXm,k
η

+2νη(wm−1,k)2Xm,k
η +

[
2νηη(wm−1,k)2 + 2B̃m,k

+Q̃m,k
1 − γe−γh̄

]
Xm,k

≥ −K32(M1, M2)(1− η + h)2

−M2
2

[
2ν(wm−1,k + h)2 − 2Ãm,k(1− η + h)]

+
(
2νηη(wm−1,k)2 + 2B̃m,k + Q̃m,k

1

−γe−γh̄
)
(1− η + h)2

]

≥ −K32(M1, M2)(1− η + h)2

−M2
2

[
K34 −K33

]
(1− η + h)2

≥ 0
(89)

if m < m′ or m = m′, k ≤ k′. Let us show that
Xm,k(η) ≤ 0 for such m and k. If Xm,k(η) takes
positive values, then there is a point η at which, for
m < m′ or m = m′, k ≤ k′, the function Xm,k(η)
attains its largest positive value. This point cannot be-
long to the interval 0 < η < 1 for m ≥ 1 because of
(90). For m = 0, if M2/2 > K23, taking into account
of the estimate (90) for Y 0,k, we find that

Xm,k(η) ≤
[
K23 − M2

2

]
(1− η + h)2 ≤ 0,

Since Ỹ m,k(1) = 0, we have Xm,k(1) ≤ 0. For η =
0, m ≥ 1, the function Xm,k cannot attain its largest
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positive value, since inequalities (56) and (57) show
that

Xm,k
η (0) = Ỹ m,k

η (0) + M2(1 + h)
≥ α

2 Ỹ m,k(0)− α
4 Ỹ m−1,k(0) + M2(1 + h)

≥ α
2 Xm,k(0)− α

4 Xm−1,k(0)
+α

8 M2(1 + h)2 + M2(1 + h)
≥ α

2 Xm,k(0)− α
4 Xm−1,k(0).

So, Xm,k ≤ 0 and

Ỹ m,k ≤ 1
2
M2(1− η + h)2, (90)

when m < m′ and m = m′, k ≤ k′.
Therefore, if M2/2 > K23, eγT1 < 2, mh ≤ T1,

we have

Y m,k(η) = Ỹ m,keγmh ≤ M2(1− η + h)2. (91)

It follows from (71), (74), (75) and (35) that (1− η +
h)|Wm,k

ηη | are uniformly bounded in h.

Lemma 6 Under the assumptions of Lemmas 4 and
5, problem (9) in Ω, with T = T1, admits a unique
solution w with the following properties: w is contin-
uous in Ω;

C1(1− η) ≤ w ≤ C2(1− η), (92)

w has bounded weak derivatives wη, wξ,wτ ;

|wξ| ≤ C3(1− η), |wτ | ≤ C4(1− η), (93)

the derivative wη is continuous in η < 1; conditions
0f (8) hold for w; the weak derivative wηη exists and
wwηη is bounded in Ω; equation (9) holds almost ev-
erywhere in the same domain.

Proof: First, let us prove the uniqueness of the
solution. Assume the contrary, namely, that w1 and
w2 are two solutions of problem (9) with the proper-
ties specified in Lemma 6. Then, almost everywhere
in Ω, the function z = w1−w2 satisfies the following
equation and the boundary conditions:




νw2
1zηη − zτ − ηUzξ + (A + 2νηw

2
1)zη

+[B + 3νηηw1w2 + (νw2ηη + 2νηw2η)(w1 + w2)]z
+νηηz

3 = 0,
z|τ=0 = 0, z|η=1 = 0,
[νw1zη + νw2ηz + νη(w1 + w2)z − v0z]|η=0 = 0,

(94)
Set

z = eατ−βη z̄,

where α, β = const. > 0. Then

νw2
1 z̄ηη − z̄τ − ηUz̄ξ + Ez̄η + F z̄

+νηη(w1 − w2)2z̄ = 0,
(95)

z̄|τ=0 = 0, z̄|η=1 = 0, (96)

[νw1z̄η + νw2η z̄ + νη(w1 + w2)z̄
−βνw1z̄ − v0z̄]|η=0 = 0,

(97)

where

E = A + 2νηw
2
1 − 2βνw2

1,
F = B + 3νηηw1w2 + (νw2ηη + 2νηw2η)(w1 + w2)
+νβ2w2

1 − α−Aβ − 2νηβw2
1,

The constant β is chosen suitable large such that

[βνw1 + v0 − νw2η − νη(w1 + w2)]|η=0 > 1. (98)

Let us multiply equation (96) by z̄ and integrate the re-
sult over Ω. Integrating by parts in some of the terms,
we find that
∫
Ω Ez̄η z̄dηdξdτ +

∫
Ω F z̄2dηdξdτ

+
∫
Ω

1
2ηUξ z̄

2dηdξdτ +
∫
Ω νηη(w1 − w2)2z̄2dηdξdτ

−2
∫
Ω νw1w1η z̄η z̄dηdξdτ − ∫

Ω νηw
2
1 z̄η z̄dηdξdτ

− ∫
Ω νw2

1 z̄
2
ηdηdξdτ − 1

2

∫
τ=T

z̄2dηdξ−
−1

2

∫
ξ=X

ηUz̄2dηdτ − ∫
η=0

νw2
1 z̄η z̄dξdτ = 0,

(99)
Using the boundary condition (98) at η = 0, we can
write the last integral in (100) as
∫

η=0

w1z̄
2
[
βνw1 + v0 − νw2η − νη(w1 + w2)

]
dξdτ.

(100)
By our choice of β, this integral is non-negative. Let
us estimate the integral over Ω containing z̄z̄η. Taking
into account |E| < 1/h in Ω, we get

∣∣∣
∫
Ω (E − 2νw1w1η − νηw

2
1)z̄η z̄dηdξdτ

∣∣∣
≤ ∫

Ω νw2
1 z̄

2
ηdηdξdτ

+C5
∫
Ω z̄2dηdξdτ,

(101)

where C5 = const. Therefore, it follows from (100)
that

∫
Ω

[
F + 1

2ηUξ + νηη(w1 − w2)2

+C5

]
z̄2dηdξdτ ≥ 0,

(102)

Because

C1(1− η) ≤ wi ≤ C2(1− η),

|wiwiηη| ≤ C6, |wiη| ≤ C7, (i = 1, 2)

and assumptions, we can choose α, β to sure the in-
equality

B + 3νηηw1w2 + (νw2ηη + 2νηw2η)(w1 + w2)
+β2νw2

1 + 1
2ηUξ + (w1 − w2)2+

+C5 − α−Aβ − 2βνηw
2
1 ≤ −1.

(103)
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Then, it follows from (103) that

−
∫

Ω
z̄2dηdξdτ ≥ 0, (104)

Therefore, z ≡ 0 in Ω and w1 = w2 in Ω, as required.
Now, we will prove the existence of the solution

of (9)-(10). The solutions wm,k of problem (12)-(13)
should be linearly extended to the domain Ω.

First, when (k − 1)h < ξ ≤ kh, k =
1, 2, · · · , k(h); k(h) = [X/h], let

wm
h (ξ, η) = wm

h ((k − 1)hλ + kh(1− λ),

η) = (1− λ)wm,k(η) + λwm,k−1(η),

Secondly, when (m − 1)h < τ < mh, m =
1, 2, · · · , m(h); m(h) = [T/h], let

wh(τ, ξ, η) = wh((m− 1)hσ + mh(1− σ), ξ,

η) = (1− σ)wm
k (ξ, η) + σwm−1

k (ξ, η),

According to Lemma 4, Lemma 5, the functions
wh(τ, η, ξ) obtained in this manner form this family
satisfy the Lipschitz condition with respect to ξ, τ ,
and have uniformly (in h) bounded first derivative in
η in Ω. By the Arzelà Theorem, there is a sequence
hi → 0 such that whi

uniformly converge to some
w(η, ξ, τ). It follows from Lemma 4, Lemma 5 that
w(η, ξ, τ) has bounded weak derivatives wη, wξ, wτ ,
and its weak derivative wηη is such that (1− η)wηη is
bounded, since the weak limit of a bounded sequence
is bounded by the same constant. Consequently, wη

is continuous in η < 1. The sequence whi
may be

assumed such that the derivatives wη, wξ, wτ , wηη in
the domain Ω coincide with weak limits in L2(Ω) of
the respective functions

w(τ + hi, ξ, η)− w(τ, ξ, η)
hi

,

w(τ, ξ + hi, η)− w(τ, ξ, η)
hi

,

whiη, whiηη,

Denoting

wm,k
h = wh(τ, ξ, η) = w(mh, kh, η),

By the first term of (11)

ν(wm−1,k
h + h)2wm,k

hηη −
wm,k

h
−wm−1,k

h
h

−ηUm,k wm,k
h

−wm,k−1
h

h + Am,kwm,k
hη + Bm,kwm,k

h

+2νη(w
m−1,k
h )2wm,k

hη

+νηη(w
m−1,k
h )2wm,k

h = 0,
(105)

Now, suppose that ϕ(τ, ξ, η) be a smooth func-
tion,which support set is compact in Ω. Let

ϕm,k(η) = ϕ(mh, kh, η),

Let us multiply with hϕm,k at the two sides of (106),
integrating the resulting equation in η from 0 to 1, and
taking the sum over k, m from 1 to k(h), m(h) re-
spectively, we obtain

∑
m,k

h
∫ 1
0 ϕm,k

[
ν(wm−1,k

h + h)2wm,k
hηη

−wm,k
h

−wm−1,k
h

h − ηUm,k wm,k
h

−wm,k−1
h

h

+Am,kwm,k
hη + Bm,kwm,k

h + 2νη(w
m−1,k
h )2wm,k

hη

+νηη(wm−1,k)2wm,k
]
dη = 0,

(106)
Denote the function f̄(τ, ξ, η) on Ω as

f̄(τ, ξ, η) = f(mh, kh, η),

when (k − 1)h < ξ ≤ kh, (m− 1)h < τ < mh. and
denote

(4wh

h

)m

1
=

wm,k
h − wm−1,k

h

h
,

(4wh

h

)k

1
=

wm,k
h − wm,k−1

h

h
,

Then we can rewrite (107) as

∫
Ω

[
ν̄(w̄m−1,k

h + h)2w̄hηηϕ̄−
(4wh

h

)m

1
ϕ̄

−η̄Ū
(4wh

h

)k

1
ϕ̄ + Āw̄hηϕ̄ + B̄w̄ϕ̄

+2ν̄η(w̄
m−1,k
h )2w̄hηϕ̄ + ν̄ηη(w̄m−1,k)2w̄m,kϕ̄

]
dηdξdτ

= 0,
(107)

Because

|w̄ − w| ≤ |w̄ − wh|+ |wh − w| ≤ Mh + |wh − w|,
when h → 0, w̄ uniformly convergent to w, i.e. w̄ =⇒
w. Just likely

ϕ̄ =⇒ ϕ, Āϕ̄ =⇒ Aϕ,

B̄ϕ̄ =⇒ Bϕ, η̄Ū ϕ̄ =⇒ ηUϕ,

ν̄ηϕ̄ =⇒ νηϕ,

ν̄ηηϕ̄ =⇒ νηηϕ, ν̄(w̄m−1,k
h + h)2 =⇒ νw2,

At the same time, on account of that

(4wh

h

)m

1
⇀ wτ ,

(4wh

h

)k

1
⇀ wξ,

w̄hηη ⇀ wηη, in L2(Ω).
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So, if let h → 0 in (108), then
∫
Ω(νw2wηη − wτ − ηUwξ + Awη + Bw

+2νηw
2wη + νηηw

3)ϕdηdξdτ = 0.
(108)

By the arbitrary of ϕ, we get ours result.
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