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Abstract: - In this paper, a double-population thermal lattice Boltzmann was applied to solve three dimensional, 
incompressible, thermal fluid flow problem. The simplest lattice BGK D3Q6 model was proposed to determine 
the temperature field while D3Q15 or D3Q19 for the density and velocity fields. The simulation of natural 
convection in a cubic cavity with Prandtl number 0.71 and Rayleigh number ranging from 103 to 105 were 
carried out and compared with the published results in literature. It was observed that the combination of D3Q6 
and D3Q19 produces better numerical stability and accuracy compared to D3Q6 with D3Q15 for the simulation 
at high Rayleigh numbers. 
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1 Introduction 
For more than a decade, lattice Boltzmann method 
(LBM) has been demonstrated to be a very effective 
numerical tool for a broad variety of complex fluid 
flow phenomena that are problematic for 
conventional methods [1]. Although as a new comer 
in numerical scheme, the LBM has found recent 
successes in the host of fluid dynamical problems 
including flow in porous media [2], 
magnetohydrodynamics [3], acoustic [4], turbulence 
[5], and many others [6][7][8]. Compared with 
traditional computational fluid dynamics, LBM 
algorithms are much easier to be implemented 
especially in complex geometries [9] and 
multicomponent flows [10].   

Historically, LBM was derived from lattice gas 
automata (LGA) [11]. Consequently, LBM inherits 
some features from it precursor, the LGA method. 
The first LBM model was a floating-point version of 
its LGA counterpart. Each particle in LGA model 
(represented by single bit Boolean integer) was 
replaced by a single particle distribution function 
represented by a floating-point number. The lattice 
structure and the evolution rule remain the same. 
One important improvement to enhance the 
computational efficiency has been made for the 
LBM was that the linearization of collision operator. 
The uniform lattice structure was remaining 
unchanged.  

The starting point in the lattice Boltzmann 
scheme is by tracking the evolution of the single-

particle distribution function. The concept of 
particle distribution has already well developed in 
the field of statistical mechanics while discussing 
the kinetic theory of gases and liquids. The 
definition implies the probable number of molecules 
in a certain volume at a certain time made from a 
huge number of particles in a system that travel 
freely, without collision, for distance (mean free 
path) long compared to their sizes. Once the 
distribution functions are obtained, the 
hydrodynamics equations can be derived. 

Although LBM approach treats gases and liquids 
as systems consisting of individual particles, the 
primary goal of this approach is to build a bridge 
between the microscopic and macroscopic 
dynamics, rather than to deal with macroscopic 
dynamics directly. In other words, the goal is to 
derive macroscopic equations from microscopic 
dynamics by means of statistic, rather than to solve 
macroscopic equations. 

The LBM has a number of advantages over other 
conventional computational fluid dynamics 
approaches. The algorithm is simple and can be 
implemented with a kernel of just a few hundred 
lines. The algorithm can also be easily modified to 
allow for the application of other, more complex 
simulation components. For example, the LBM can 
be extended to describe the evolution of binary 
mixtures, or extended to allow for more complex 
boundary conditions. Thus the LBM is an ideal tool 
in fluid simulation. 
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Although promising, the current LBM still have 
few shortcomings that limit its general application 
as a practical computational fluid dynamics tool. 
One of these shortcomings, which is specifically 
addressed in this paper, is lack of reliable thermal 
lattice Boltzmann model, especially for three-
dimensional (3D) system, with low computational 
cost. 

Generally, there are three types of thermal lattice 
Boltzmann models have been proposed; multi-speed 
model [12], passive scalar model [13] and double 
distribution function (DDF) model [14]. The 
multispeed approach uses the same distribution in 
defining the macroscopic velocity, pressure and 
temperature. In addition to mass and momentum, in 
order to preserve the kinetic energy in the collision 
on each lattice point, this model requires more 
variations of speed than those of the isothermal 
model and equilibrium distribution function usually 
include higher order velocity terms. However, this 
model is reported to suffer severe numerical 
instability, and is not computationally efficient [15]. 

In the passive scalar model, the flow fields 
(velocity and density) and the temperature are 
represented by two different distribution functions. 
The macroscopic temperature is assumed to satisfy 
the same evolution equation as a passive scale, 
which is advected by the flow velocity, but does not 
affect the flow field. It has been shown that the 
passive scalar model has better numerical stability 
than the multi-speed approach [16]. 

He et al. [14] in their model introduce the 
internal energy density distribution function, which 
can be derived from the Boltzmann equation. This 
model is shown to be a suitable model for 
simulating real thermal problems. However, the 
complicated gradient operator term appears in the 
evolution equation and thus the simplicity property 
of the lattice Boltzmann scheme has been lost 
[17][18][19]. 

Natural convection heat transfer in a square 
cavity has attracted much attention in recent years 
due to its wide applications such as cooling of 
radioactive waste containers, ventilation of rooms, 
solar energy collectors, crystal growth in liquids, 
etc. A comprehensive review was presented by 
Davis [20]. However, among the previous numerical 
studies pertinent to this problem, little works have 
been done using 3D simulation model. 

As far as authors’ knowledge, few attempt have 
been made to predict the phenomenon of natural 
convection in a cubic cavity using 3D thermal lattice 
Boltzmann models. Peng et al. [21] proposed and 
investigated the efficiency and stability of the DDF 
model using two different particle velocity models 

of D3Q15 [22] (three-dimension fifteen-particle 
velocity) and D3Q19. All macroscopic variables 
such as density, velocity and temperature fields 
were calculated using the same models wether 
D3Q15 or D3Q19. They showed that for the 
simulation at low Rayliegh number Ra =103

5

, the 
results obtained were almost the same for D3Q15 
and D3Q19 models. While for high Rayliegh 
number simulations  and 10 , D3Q19 
produced better results than D3Q15 when compared 
with Navier-Stokes solver. However, both of these 
models require high computational cost due to the 
application of high number of particle velocity for 
both density and temperature distribution functions.  

Ra =104

The recent work by Azwadi et al. [23] focused 
on the development of the lattice model for the 
calculation of temperature field. They found that an 
eight-particle velocity model, D3Q8 can be 
developed for the internal energy density 
distribution function if the viscous and compressive 
heating effect were neglected. Though Azwadi et 
al.’s model has been successfully simulated 3D 
natural convection problem to a certain degree with 
low computation cost, this model is limited for the 
simulation at low Rayleigh numbers. They reported 
that this was due to the limitation on the value of 
time relaxation for the internal energy density 
distribution function model where very close to its 
stability limit at high Rayleigh number simulation. 
However, for real thermal engineering applications, 
the value of Rayleigh numbers could achieve up 
to10 . Therefore, a 3D thermal model that is capable 
in simulating up to this value of Rayleigh number is 
still demanded. 

5

In this research, works have been done on the 
improvement of passive scalar model. In passive 
scalar approach, the distribution function for the 
temperature field is relatively independent of that 
for the velocity field, so the passive scalar model 
can use two independent lattices for two distribution 
functions respectively. Although Peng and Azwadi 
et al. have developed lattice models based on DDF 
approach, however, the final form of governing 
equations for density and internal energy density 
were exactly the same as in the passive scalar model 
if the viscous heat dissipation and the work done by 
pressure were neglected.  

The current investigation is differentiated from 
previous double-population studies by introducing 
the simplest passive scalar model of D3Q6 for the 
calculation of temperature field. The proposed 
model is then coupled with D3Q15 or D3Q19 for 
the calculation of density and velocity fields. 
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The rest of the paper is organized as follow. In 
the next section, the 3D double-population passive 
scalar model is constructed. In the sequence section, 
the proposed model is employed to simulate the 
natural convection flow in a cubic cavity with two 
sides walls maintained at different temperature. The 
final section concludes this study. 
 
 
2 Double-population Thermal Lattice 
Boltzmann Model 
In 3D lattice Boltzmann method, the physical space 
is divided into cubic lattices, and the evolution of 
particle population at each lattice site is computed 
by using particle distribution function. Following 
the passive scalar approach proposed by Shan [13] 
and Guo et al. [24], the evolution of particle 
distribution functions (discretised in velocity space) 
are computed by the following equations 
 
fi x + ciΔt, t + Δt( )− fi x, t( )= Ω f( )+ F                     (1) 

 
gi x + ciΔt, t + Δt( )− gi x, t( )= Ω g( )                          (2) 
 
where density distribution function f = f x, t( )

g x, t( )

 is 
used to calculate density and velocity field and 
temperature distribution function  is used 
to calculate the temperature field. Both Eqs. (1) and 
(2) consist of two parts; propagation (left hand side) 
which refers to the propagation of distribution 
function to the next node in the direction of its 
probable velocity, and collision  (right hand side) 
which represent the collision of the particle 
distribution functions. In lattice Boltzmann 
formulation, magnitude of  is set up so that in each 
time step 

g =

Ω

c
Δt , every distribution function propagates 

in a distance of lattice nodes spacing . This will 
ensure that distribution function arrives exactly at 
the lattice nodes after 

Δx

Δt  and collides 
simultaneously.  

Any solution of Eqs. (1) and (2) requires an 
expression for the collision operator Ω. If the 
collision is to conserve mass, momentum and 
energy, it is required that 
 

1
c
c

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
Ωdc∫ = 0                                                           (3) 

 
However, the expression for Ω is too complex to be 
solved [25]. Any replacement of collision must 
satisfy the conservation law as expressed in Eq. (3). 

The idea behind this replacement is that large 
amount of detail of two-body interaction is not 
likely to influence significantly the values of many 
experimental measured quantities [26].  

There are a few version of collision operator 
published in the literature. However, the most well 
accepted version due to its simplicity and efficiency 
is the Bhatnagar Gross Crook collision model [27] 
with a single relaxation time. The equation that 
represents this model is given by 
 

Ω f( )= −
fi x,ci , t( )− fi

eq x,c i , t( )
τ f

                            (4) 

 
where  is the equilibrium distribution function 
and 

fi
eq

τ f  is the time to reach equilibrium condition 
during collision process and is often called the 
relaxation time. However, the relaxation time of 
energy carried by the particles to its equilibrium is 
different to that of momentum. Therefore we need 
to use a different two relaxation times to 
characterize the momentum and energy 
 

Ω g( )= −
gi x,ci , t( )− gi

eq x,c i , t( )
τ g

                            (5) 

 
Substituting Eqs. (4) and (5) into Eqs. (1) and (2) 
gives 
 
fi x + ciΔt, t + Δt( )− fi x, t( )=

−
fi x,c i , t( )− fi

eq x,c i , t( )
τ f

+ F
                                 (6) 

 
gi x + ciΔt, t + Δt( )− gi x, t( )=

−
gi x,c i , t( )− gi

eq x,c i , t( )
τ g

                                  (7) 

 
The macroscopic variables such as density ρ , 

velocity , and temperature can be evaluated as the 
moment to the distribution function 

u

 
ρ = fdc∫ , ρu = cfdc∫ , and ρT = gdc∫                (8) 
 
Suffix  in each distribution function indicates the 
number of microscopic velocity applied to density 
and temperature distribution function. In the present 
study, D3Q15 or D3Q19 are used for the density 
while D3Q6 for the temperature distribution 
function. The configurations of lattice velocities for 
density distribution functions are shown in Fig. 1. 

i
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                                          (a) 
 

 
                                          (b) 
Fig. 1 Lattice structure for (a) D3Q15 and (b) 
D3Q19 models. 

 
The discretised equilibrium distribution function 

for both D3Q15 and D3Q19 is given as 
 

fi
eq = ρωi 1+ 3ci ⋅ u +

9
2

ci ⋅ u( )2 −
3
2

u2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥                     (9) 

 
where ω0 = 2 9, ω1−6 = 1 9 and ω7−14 = 1 72  for 
D3Q15 and  ω0 = 1 3, ω1−6 = 1 18 and ω7−18 = 1 36 
for D3Q19. The time relaxation in both models is 
related to the fluid viscosity through the same 
equation as 
 

υ =
2τ f −1

6
                                                           (10) 

 
We next demonstrate the procedure to non-

dimensionalize the lattice Boltzmann equations 
(Eqs. (6) and (7)). To do this, we define the 
reference parameters as follow 
 
Characteristic length scale, L
Reference speed, U
Reference density, nr

Time between particle collision, tc                     

(11) 

 

The dimensionless lattice Boltzmann equation 
can be written as 
 

ˆ f i ˆ x + ˆ c iΔˆ t , ˆ t + Δˆ t ( )− ˆ f i ˆ x , ˆ t ( )= −
ˆ f i ˆ x , ˆ t ( )− ˆ f i

eq ˆ x , ˆ t ( )
ˆ τ fε

(12) 

 
where ˆ c = c U , ˆ x = x L , ˆ t = tU L , ˆ f = f nr , 
Δˆ t = ΔtU L  and ˆ τ = τ tc . The parameter ε = tcU L  
can be interpreted as either the ratio of collision 
time to flow time or as the ratio of mean free path to 
the characteristic length. The same procedure can be 
applied to obtain the dimensionless form of 
temperature distribution function. For 
simplification, all carets will be dropped and any 
terms referred to later are understood in 
dimensionless form.  

Through a multiscaling, the mass and momentum 
equations can be derived from the evolution 
equation of Eq. (1). To see this, we first apply the 
Taylor series expansion of Eq. (1) and retaining 
terms up to second order gives 
 

∂t +∇ ⋅ ci( )fi + 1
2

∂t
2 +2∂t∇ ⋅ ci +∇∇ : cici( )fi        (13) 

 
In order to relate lattice Boltzmann equation with a 
macroscopic equation, it is necessary to separate 
different time scale. This is to indicate different 
scale of physical phenomena and contribute 
separately in the final macroscopic equation. To do 
this, space and time derivation are expanded in 
terms of Knudsen number ε  as follow [28] 
 
∂t = ε∂t1 +ε 2∂t 2 + O ε 3( )                                         (
 

14) 

∇ = ε∇ + O ε 2( )                                                     (15) 

 
istribution function  is expanded about D fi fi

eq  
gives 
 
fi = fi

eq +εfi
1 +ε 2 fi

2 + O ε 3( )                                 (16) 

 
here  w

 
fi

n

i
∑ = c i fi

n

i
∑ = 0 for                               (17) 

 
q. (17) implies that the non-equilibrium 

 a

n ≥1

E
distribution function fi

n  does not contribute to the 
local values of density nd momentum. 

WSEAS TRANSACTIONS on MATHEMATICS C. S. Nor Azwadi, S. Syahrullail

ISSN: 1109-2769 564 Issue 9, Volume 8, September 2009



Substituting Eq. (14), (15) and (16) into (13) 
and regroup the equation to the first order of ε  gives 
 

∂t1 + c i ⋅∇( )fi
eq = − 1

τ f

fi
1                                      (18) 

 
The equation to order ε 2 is simplified by using Eq. 
(18) gives 
 

∂t 2 fi
eq + ∂t1 + c i ⋅∇( ) 1− 1

2τ f

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ fi

1 = − 1
τ f

fi
2           (19) 

 
A summation of Eq. (18) with respect to i is taken to 
give the first order of continuity equation 
  
∂t1ρ + ∇ ρu( )= 0                                                    (19) 
 
Next, multiplying Eq. (18) by  and taking the 
summation as above leads to 

c i

 
∂t1 ρu( )+ ∇ ⋅∏eq = 0                                             (20) 
 
where 
 
∏ eq = c ici( )fi

i
∑                                                   (21) 

 
is the momentum flux tensor. After some simple 
mathematics manipulation to satisfy Galilean 
invariance and isotropic of tensor, the final 
expression for ∏  is eq

 
∏ eq = cs

2ρδαβ + ρuαuβ                                          (22) 
 
Substituting Eq. (22) into Eq. (20) results in 
 
∂t1 ρu( )+ ∇ ⋅ ρuu( )= −∇ cs

2ρ( )                               (23) 

 
Eqs. (19) and (23) are known as Euler equation and 
the pressure is given by  
 
p = cs

2ρ                                                                 (24) 
 

Similarly, the equation for ρ  and  can be 
obtained from equation of 

u
ε 2. Taking summation 

with respect to i  of Eq. (19) gives 
  

∂t 2ρ = 0                                                                (25) 
 

Multiplying Eq. (19) by  and taking the 
summation as above gives 

c i

 

∂t 2 ρu( )+ ∇ ⋅ 1− 1
2τ f

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ∏

1 = 0                                (26) 

 
where 

 

∏1 = −τ f
1
3

− cs
2⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ ∂α ρuα( )δβγ + 1

3
∂β ρuγ( )

⎧ 
⎨ 
⎩ 

+ 1
3

∂γ ρuβ( )− uβ∂γ cs
2ρ( )− uγ∂β cs

2ρ( )
−∂χ ρuβ uγ uχ( )}

          (27) 

 
Combining equations of O ε( ) and O ε 2( ) gives the 

correct form of the continuity equation 
 

∇ ⋅ u = 0                                                                (28) 
 
and the momentum equation for an incompressible 
fluid 

 

∂t ρuα( )+∂γ ρuαuβ( )= −∂α cs
2ρ( )+∂β 2ρ

2τ f −1
6

Sαβ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

                                                                             (29) 
 

where Sαβ = 1
2

∂αuβ +∂β uα( ), p = cs
2ρ  and the sound 

speed is given by 
 

cs
2 = 1

3
                                                                  (30) 

 
From above derivations, we can see that the 

evolution equation of distribution function can lead 
to the incompressible Navier-Stokes equation 
through Chapman-Enskog expansion. 

It has been proved [29][30] that the effects of 
heat viscous dissipation and work done by the 
pressure can be neglected for incompressible flow. 
Under these assumption, the temperature field is 
passively advected by the fluid flows and obeys the 
so-called passive-scalar equation as 
 
∂T
∂t

+ ∇ ⋅ uT( )= χ∇2T                                             (31) 

 
Here, the thermal diffusivity χ  can be related to the 
time relaxation carried by the energy by 
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χ =
2τ g −1

6
                                                            (32) 

 
In current research, the simplest lattice structure 

of D3Q6 for temperature distribution function is 
proposed. The configuration of lattice structure is 
shown in Fig. 2. 
 

 
Fig. 2 Lattice structure for D3Q6 model 

 
The corresponding discretised equilibrium 

distribution function for this lattice model can be 
written as 
  
gi

eq =
1
6

ρT 1+ 3c i ⋅ u[ ]                                            (33) 

 
Eq. (33) is obtained by assuming that at low Mach 
number flow, the higher order of  and viscous 
heat dissipation can be neglected [6]. It also has 
been proved [23] that the above simplification does 
not alter the corresponding macroscopic equation of 
energy. The only change is the value of the constant 
parameter in the thermal conductivity, which can be 
absorbed by manipulating the parameter 

u2

τ g .  
  
 
3 Natural Convection in a Cubic 
Cavity  
Numerical simulation for the natural convection in a 
cubic cavity was carried out to test the validity of 
the combination of D3Q15 or D3Q19 with D3Q6 
thermal lattice Boltzmann model. Fig. 3 shows a 
schematic diagram of the setup in the simulation. 

No-slip boundary condition [11] is imposed on 
all faces of the cubes. The thermal conditions 
applied on the left and right walls are 

 and T xT x = 0, y,z( )= TH = 1, y,z( )= TC . The other 
faces being adiabatic, ∂T ∂n = 0  where ∂T ∂n  is the 
appropriate normal derivative. The temperature 
difference between the left and right walls 
introduces a temperature gradient in a fluid, and the 
consequent density difference induces a fluid 
motion, that is, convection [31]. 

 

 
Fig. 3 Schematic geometry for natural convection in 
a cubic cavity 
 

In the simulation, the Boussinesq approximation 
is applied to the buoyancy force term. 
 
ρG = ρβg0 T −Tm( )j                                               (34) 
 
where β  is the thermal expansion coefficient,  is 
the acceleration due to gravity, T  is the average 
temperature, and 

g0

m

j is the vertical direction opposite 
to that of gravity. Therefore the external force F  in 
Eq. (1) can be written as 
 
F = 3G c − u( ) f eq                                                    (35) 
 

The dynamical similarity depends on two 
dimensionless parameters; the Prandtl number Pr 
and the Rayleigh number Ra, 
 
Pr =

υ
χ

Ra =
g0 βΔTL3

υχ

                                                      (36) 

 
Nusselt number Nu, is one of the most important 

dimensionless numbers in describing the convective 
transport. Nusselt number at the mid-plane is 
defined by 
 

Nump =
∂T y, z( )

∂x
∂z

0

1∫                                             (37) 

 
In all the simulation, Pr is set to be 0.71 and due 

to the limitation of computer capability, the grid 
sizes of 101 ×  101 is used for the simulation at all 
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Rayleigh numbers. The convergence criterion for all 
the tested cases is  
 

max u2( )n +1⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
2 − u2( )n⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
2 ≤ 10−7

maxT n +1 −T n ≤ 10−7

                           (38) 

 
where n is the time step and the calculation is 
carried out over the entire system. 
 
 
4 Numerical Results 
The comparison among D3Q15, D3Q19 and Navier-
Stokes solver [32] are held for Rayleigh numbers 

 till 10 . Among the characteristic numerical 
values of the flow, the comparisons concern the 
mean Nusselt number at the mid-plane , the 
maximum value for horizontal and vertical velocity 
components 

103 5

Nump

umax  and  with the positions where 
they occur . The comparison is shown in Table 
1. 

vmax

x, y( )

 
Table 1. Comparison among D3Q15, D3Q19 and 
Navier-Stokes solvers 
 Solver Ra = 103  Ra = 104  Ra = 105

D3Q15 0.132 0.199 0.166 
D3Q19 0.132 0.200 0.151 umax  
N-S solver 0.131 0.201 0.147 
D3Q15 0.520 0.529 0.490 
D3Q19 0.480 0.510 0.500 X 
N-S solver 0.480 0.500 0.500 
D3Q15 0.186 0.176 0.138 
D3Q19 0.186 0.182 0.142 Y 
N-S solver 0.200 0.183 0.145 
D3Q15 0.132 0.224 0.253 
D3Q19 0.132 0.224 0.248 vmax  
N-S solver 0.132 0.225 0.247 
D3Q15 0.817 0.882 0.892 
D3Q19 0.814 0.883 0.930 X 
N-S solver 0.883 0.883 0.935 
D3Q15 0.500 0.529 0.510 
D3Q19 0.500 0.500 0.500 Y 
N-S solver 0.500 0.500 0.500 
D3Q15 1.097 2.301 4.975 
D3Q19 1.096 2.301 4.670 Nump  
N-S solver 1.105 2.301 4.646 

 
As can be seen from the table, for the simulation 

at low Rayleigh number Ra =103( ), the results 

obtained were almost the same for D3Q15 and 

D3Q19 models. However, at high Rayleigh number 
simulations Ra =105( ), the results show that the 

D3Q15 cannot give a satisfactory result when 
compared with the Navier-Stokes solver for this 
problem. Furthermore, the D3Q15 is already 
reported to exhibit the velocity oscillation and low 
computational mobility [33]. Therefore, the results 
which will be presented below were obtained from 
D3Q19 model. 

Streamlines and isotherms predicted at mid-plane 
of the cavity for flows at different Rayleigh numbers 
are shown in Fig. 4 and Fig. 5.  
 

    
 (a)  

     
   (b) Ra =104  

 

 
(c) Ra =105 

Fig. 4 Streamline plots for various Rayleigh 
numbers 
 
At Ra =103, streamlines are those of a single 
vortex, with its center in the center of the system. As 
the Rayliegh number increases Ra =104( ), the 
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central streamlines are distorted into an elliptic 
shape and the effect of convection can be seen in the 
isotherms. At , the central streamline is 
elongated and two secondary vortices appear inside 
it. 

At Ra =103, the isotherms are almost vertically 
parallel to the wall indicating that conduction is the 
dominant heat transfer mechanism. As the Rayleigh 
number is increased to Ra =104 , isotherms start to 
be horizontally parallel to the wall at the cavity 
center. This indicates that the heat transfer 
mechanisms are mixed conduction and convection. 

 For the simulation at Ra =105, the isotherms 
become horizontal at the center of the cavity and 
vertical only in the thin boundary layer near the cold 
and hot walls indicating that the dominant of heat 
transfer mechanism is by convection. 
 

 
(a)  

 
(b) Ra =104  

 
(c) Ra =105 

Fig. 5 Isotherm plots for various Rayleigh numbers 
 

 
(a)  

 
 (b) Ra =104       

 
(c) Ra =105 

Fig. 6 Horizontal velocity component for various 
Rayleigh numbers 
 

The plots of horizontal and vertical components 
are shown in Figs. 6 and 7. It can be seen from these 
figures that as the Rayleigh number is increased, the 
location for maximum velocity moves closer to the 
wall and their amplitude is also increases. This 
phenomenon indicates that the fluid motion mainly 
takes place near the differentially heated walls and 
the flow in the core cavity becomes quasi-
motionless. All of these observations are in good 
agreement with the results reported in the previous 
studies [21][23][32][34]. 
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(a)  

 
(b)  

 
(c) Ra =105 

Fig. 7 Vertical velocity component for various 
Rayleigh numbers 
 
 
5 Conclusion 
In this paper, two types of combinations of three-
dimensional thermal lattice Boltzmann formulation 
were applied and tested on the prediction of natural 
convection in a cubic cavity. We found that the 
combination of D3Q15 with D3Q6 exhibit some 
discrepancies when compared with the Navier-
Stokes solution at high Rayleigh numbers 
simulation for the case investigated and is prone to 
computational instability.  

The results obtained from the combination of 
D3Q19 and D3Q6 for the same problem correctly 
predicted the flow features for different Rayliegh 
numbers and gives excellent agreement with the 
results of previous studies. These demonstrate the 
proposed combination in the passive-scalar thermal 
lattice Boltzmann model is a very efficient 

numerical method to study flow and heat transfer in 
a differentially heated cubic enclosure. 
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