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Abstract: In this paper we analyze an economical growth model with taxes and exponential utility in continuous
and infinite time. This economical growth model leads to an optimal control problem. The necessary and sufficient
conditions for optimality are given. Using the optimality conditions we prove the existence, uniqueness and stabil-
ity of the study state for a differential equations system. Also we have investigated the dependence of the steady
state(k∗, c∗) on the growth rate of the labor forcen and the effects of fiscal policy changes on welfare.
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1 Introduction

In this paper, we consider a version of the Ramsey
growth model with taxes in infinite and continuous
time. This economy consists of a firm, a household
and a government. The firm produces goods using two
factors of production, capital and labor, it rents capital
at the rate of interestr and it hires labor at the wage
ratew. Also, the firm seeks to maximize the present
value of its profits. The government imposes taxes on
capital and labor income, and it provides lump sum
transfer and public-consumption expenditures. In this
economy, the consumer chooses at any moment in
time the level of consumption so as to maximize the
global utility on the infinite time taking into account
the budget constraint for household and the govern-
ment. The utility function is given by an exponential
function. This economical growth model leads to an
optimal control problem. We prove that a necessary
condition for the control function to solve our optimal
control problem is that it is a solution of Euler equa-
tion. Also, we give the sufficient conditions for the
optimal solution of the optimal control problem. An
analogous result was formulated by Ş.Cruceanu and
C. Vârsan [5]. Finally we investigate the effects of
the fiscal policy changes on the steady-state values of
capital and consumption and on welfare.

The outline of this paper is as follows. In Sec-
tion 2, we present the model which we use in this arti-
cle. In Section 3, we give the necessary and sufficient
conditions for the optimal solution of the economical
growth problem with public intervention. In Section
4, we determine the steady state of the optimal control

problem and we show that it is a saddle point. Also,
we examine the qualitative dynamic behavior of the
optimal solution. In Section 5,we analyze the depen-
dence of the steady state(k∗, c∗) on the growth rate
of the labor forcen. In Section 6, we investigate the
effects of the fiscal policy changes on welfare. Some
conclusions are given in section 7.

2 The economical growth model
In this paper, based on [1], [3], [2] and [8], we con-
sider an economical growth model with public in-
tervention. The economy consists of a household,
a firm and a government. The competitive equilib-
rium achieved in a decentralized manner through per-
fect competition between the firm and the household.
Also, we assume the economy closed (i.e. all of the
stock capital must be owned by someone in economy
and the net foreign debt is zero.)

The firm produces goods, pays wages for labor,
and makes rental payments for capital on the com-
petitive market at equilibrium prices given by the net
marginal products of labor and capital.

Output is determined according to a constant re-
turns to scale technology using the following produc-
tion function

Y = F (K,L) (1)

whereK is the capital,L is the labor force,F :
IR+ × IR+ → IR+ is a function of classC2 having
the following properties

∂F (K,L)

∂K
> 0,

∂F (K,L)

∂L
> 0,∀K > 0, L > 0;

WSEAS TRANSACTIONS on MATHEMATICS Olivia Bundau

ISSN: 1109-2769 689 Issue 12, Volume 8, December 2009



∂2F (K,L)

∂K2
< 0,

∂2F (K,L)

∂L2
< 0,∀K > 0, L > 0;

F (λK,λL) = λF (K,L) = λY,∀λ > 0;

lim
K→0

∂F (K,L)

∂K
= lim

L→0

∂F (K,L)

∂L
= ∞,

lim
K→∞

∂F (K,L)

∂K
= lim

L→∞

∂F (K,L)
∂L

= 0

F (K, 0) = F (0, L) = 0

The firm seeks to maximize the present value of prof-
its, given by

Profit=F (K(t), L(t))− (r(t) + δ)K(t)− w(t)L(t),
(2)

taking r(t) andw(t) as given,r is the rental rate of
capital,w is wage per worker, andδ is depreciation of
capital.
We define

k(t) =
K(t)

L(t)
− the capital per worker;

y(t) =
Y (t)

L(t)
− the output per worker.

Using the homogeneity condition we have

Y = F (K,L) = L · F (
K

L
, 1) = L · f(k),

where
f(k) = F (k, 1).

Then, the output per worker is

y = f(k)

Using the properties of functionF we obtain the prop-
erties of function of classC2, f :
f(0) = 0; f ′(k) > 0, f ′′(k) < 0,∀k > 0;
lim
k→0

f ′(k) = ∞; lim
k→∞

f ′(k) = 0.

Profit for this firm can be written as

Profit = L(t)(f(k(t))−(r(t)+δ)k(t)−w(t)) (3)

The economical condition is that on a competitive
market the maximum profit obtained by the firm is
zero, and is given by

f ′(k) = r + δ

f(k) − kf ′(k) = w. (4)

We assume that the government taxes labor and net
capital incomes at proportional ratesτw andτ r. We
also assume that the tax revenue is allocated between
lump-sum transferS and public consumption goods

X. Assuming that the government must run a bal-
anced budget at each moment in time and that tax
rates, transfers, and public-consumption expenditures
per unit of labor (x = X

L
, s = S

L
) are constant over

time, then we have the government budget constraint
written in terms per capita

τ r(f
′(k) − δ)k + τw(f(k) − kf ′(k)) = x+ s (5)

where the left-hand side is the total tax revenue per
unit of labor, and the right-hand side gives total ex-
penditure. Given constant values ofx + s and τ r,
equation can be solved for the value ofτw that will
preserve budget balance for each value ofk.

In this economy the consumer chooses at any mo-
ment in time the level of consumptionc(t) so that to
maximize the global utility, given by

U = −1

θ

∞
∫

0

e−(ρ−n)t(1 − e−θc(t))dt, (6)

and subject to the budget constraint for the household,
given by

·

K(t)=(1−τ r)r(t)K(t)+(1−τw)w(t)L(t)+S−C(t).

Wherec is the consumption,ρ > 0 is the discount rate
andθ > 0.

The size of the household grows at raten.
The budget constraint for the household can be

rewritten in per capita terms as

·

k(t)= (1−τ r)r(t)k(t)+(1−τw)w(t)+s−c(t)−nk(t).

wherec(t) = C(t)
L(t) is the consumption per capita.

The initial stock of capital for the household is
K0. Thus, the initial stock of capital per capita isk0.

In the conditions of a competitive equilibrium and
taking into account the government budget constraint ,
the budget constraint for household in per capita terms
can be rewritten as:

·

k(t) = f(k(t)) − (n+ δ)k(t) − x− c(t). (7)

3 Determination of optimality condi-
tions

The economical problem is to choose in every mo-
ment t, the size of consumption so as to maximize the
global utility taking into account the government bud-
get constraint and the budget constraint for household
and the initial stock of capitalk0, in the conditions
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of competitive equilibrium, leads us to the following
mathematical optimization problem(P ) :

The problem P. To determine(k∗, c∗) which
maximizes the following functional

−1

θ

∞
∫

0

e−(ρ−n)t(1 − e−θc(t))dt (8)

in the class of functionsk ∈ AC([0,∞), IR+), and
c ∈ X, where
X = {c : [0,∞) → [0, A] , c−measurable,A < ∞}
which verifies:

·

k(t) = f(k(t)) − (n+ δ)k(t) − x− c(t) (9)

k(0) = k0 (10)

In our problem P, k is the state variable andc is
the control variable.

Definition 1 A trajectory(k(t), c(t)) is called an ad-
missible trajectory, with initial capitalk0, for the
problem(P ) if it verifies the relation (9)-(10).

Definition 2 An admissible trajectory,(k∗(t), c∗(t)) ,
is called optimal trajectory if:

−1

θ

∞
∫

0

e−(ρ−n)t(1 − e−θc(t))dt ≤

≤ −1

θ

∞
∫

0

e−(ρ−n)t(1 − e−θc∗(t))dt.

for every admissible trajectory(k(t), c(t)) of the
problem(P ).

In the following theorem we prove that a solution
of our optimal control problem must satisfy a certain
differential equation called the Euler equation.
We denote:

φ(k(t)) = f(k(t)) − (n+ δ)k(t) − x. (11)

U(c(t)) = −1

θ
(1 − e−θc(t)) (12)

Theorem 1 If (c(t), k(t)) is an optimal trajectory of
the problem(P ), then it verifies the Euler-Lagrange
equation:

− d

dt
(e−θc(t)−(ρ−n)t) = e−θc(t)−(ρ−n)tφ′(k(t)).

(13)

Proof: Let (c(t), k(t)) by an optimal trajectory of
the problem(P ).

From (9) and (11), we havec(t) = φ(k(t)) −
·

k(t).
Choose [T, T ′] such thatφ′(k(t)) is continuous on
[T, T ′] . Let h by anyC2−function on[T, T ′] which
satisfiesh(T ) = h(T ′) = 0.
For each real numberα ∈ IR, we define a new func-
tion k1(t) by k1(t) = k(t) + αh(t), as in fig. 1

Fig.1

Note that ifα is small, the functionk1(t) is ”near” the
functionk(t).
We define

Jh(α)=

T ′

∫

T

U(φ(k(t)+αh(t))−(
·

k(t)+α
·

h(t)))e−(ρ−n)tdt.

(14)
Becausek(t) is an optimal trajectory, we have

T ′

∫

T

U(φ(k(t)) −
·

k(t))e−(ρ−n)tdt

≥
T ′

∫

T

U(φ(k(t) + αh(t)) − (
·

k(t) + α
·

h(t)))e−(ρ−n)tdt

for all α ∈ IR.
Thus, Jh(α) ≤ Jh(0) for all α ∈ IR. Hence the
functionJh(α) has a maximum atα = 0, so that

J ′

h(0) = 0. (15)

Now, looking at (14), we see that to calculate
J ′

h(0) we must differentiate the integral with respect
to a parameter appearing in the integrand.

Conversely, (15) implies

T ′

∫

T

U ′(φ(k(t))−
·

k(t))(φ′(k(t))h(t)−
·

h(t))e−(ρ−n)tdt = 0

(16)
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We consider

ψ(t) =

t
∫

T

U ′(φ(k(s)) −
·

k(s))φ′(k(s))e−(ρ−n)sds,

t ∈ [T, T ′] and

g(t) = ψ(t) +G,

whereG is given by

T ′

∫

T

[U ′(φ(k(t))−
·

k(t))e−(ρ−n)t+ψ(t)]dt+G(T ′−T ) = 0

Since
h(T ) = h(T ′) = 0.

wehave

T ′

∫

T

U ′(φ(k(t)) −
·

k(t))φ′(k(t))h(t)e−(ρ−n)tdt

=

T
∫

T

·

g(t)h(t)dt = −
T ′

∫

T

g(t)
·

h(t)dt

Thus, (16) it becomes:

−
T ′

∫

T

(g(t) +U ′(φ(k(t))−
·

k(t))e−(ρ−n)t)
·

h(t)dt = 0,

(17)
for all functions h which areC1 on [T, T ′] and which
satisfyh(T ) = h(T ′) = 0.
Weconsider

h(t)=−
t
∫

T

(U ′(φ(k(s))−·k(s))e−(ρ−n)s+ψ(s))ds−G(t−T ),

t ≤ T ′.
From (17) and the definition forg andG, we obtain

T ′

∫

T

(g(t) + U ′(φ(k(t)) −
·

k(t))e−(ρ−n)t)2dt = 0.

Thus

g(t) = −U ′(φ(k(t))−
·

k(t))e−(ρ−n)t for all t ∈
[

T, T ′
]

.

Since g is a continuous function on[T, T ′] , we see

thatc(t) = φ(k(t))−
·

k(t) is a continuous function on

[T, T ′] and
·

g is a continuous function on[T, T ′] .
Hence, we conclude

·

g(t) = U ′(φ(k(t)) −
·

k(t))φ′(k(t))e−(ρ−n)t =

= − d

dt
(U ′(φ(k(t)) −

·

k(t))e(−ρ−n)t).

This is the Euler-Lagrange equation discovered in
1744 by mathematician Euler.

In next theorem, we give the sufficient conditions
for the solution of our optimal control problem P.

Theorem 2 Let (k∗(t), c∗(t)) be an admissible tra-
jectory in problemP. If there exists an absolutely
continuous functionq(t) such that for allt, the fol-
lowing conditions are satisfied

·

q(t) = q(t)(ρ− (f ′(k(t)) − δ)(1 − τ r)) (18)

q(t) = e−θc∗(t) (19)

lim
t→∞

e−(ρ−n)tq(t) = 0 (20)

then(k∗(t), c∗(t)) is an optimal trajectory in problem
P .

Proof: Let (k∗(t), c∗(t)) be an arbitrary admissible
trajectory forP.
We denote

∆=
1

θ

∞
∫

0

e−(ρ−n)t(1−e−θc∗(t))dt−1

θ

∞
∫

0

e−(ρ−n)t(1−e−θc(t))dt

(21)
and we define the function of Hamilton-Pontryagin
H : [0,∞) × [0, A] × IR × [0,∞) → IR , given by

H(k, c, p, t)=
1

θ
e−(ρ−n)t(1−e−θc)+p(f(k)−(n+δ)k−c−x)

(22)
In the following, we simplify our notation and put
k∗(t) = k∗, c∗(t) = c∗ k(t) = k, c(t) = c,
H(k, c, p, t) = H, H(k∗, c∗, p, t) = H∗.
From (22) we have

1

θ
e−(ρ−n)t(1−e−θc) =H(k, c, p, t)−p(f(k)−(n+δ)k−c−x)

and using (9) the relation (21) becomes

∆=

∞
∫

0

[H(k∗, c∗, p, t)−H(k, c, p, t)]dt+

∞
∫

0

p(
·

k−
·

k
∗

)dt.

(23)
Since

H ′′

kk(k, c, p, t) = pf ′′(k)

H ′

c(k, c, p, t) = e−(ρ−n)te−θc − p(t)

H ′′

cc(k, c, p, t) = −θe−(ρ−n)te−θc,
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we have thatH(k, c, p, t) is concave as a function of
c andk.
Using a standard result on concave functions, we ob-
tain

H(k, c, p, t)−H(k∗, c∗, p, t) ≤ ∂H∗

∂k
(k−k∗)+∂H

∗

∂c
(c−c∗).

(24)
Using the transformationq(t) = e(ρ−n)tp(t) in (18)
we have the equation of the adjoint variablep ,
∂H∗

∂k
= − ·

p.

Using (24) and
∂H∗

∂k
= − ·

p in (23), we obtain that

∆ ≥
∞
∫

0

(·p(k−k∗)+p(
·

k−
·

k
∗

))dt+

∞
∫

0

∂H∗

∂c
(c∗−c)dt.

(25)
We differentiate (22) with respect toc and using (19)
we obtain the maximum condition

H(k∗(t), c∗(t), p(t), t) ≥ H(k∗(t), c, p(t), t),∀c ∈ [0, A]

i.e.
∂H∗

∂c
(c∗ − c) ≥ 0, ∀ c ∈ [0, A] . (26)

From (26) we have that the second integral in (25) is
≥ 0, so

∆ ≥
∞
∫

0

(
·

p(k − k∗) + p(
·

k −
·

k
∗

))dt (27)

or equivalently,

∆ ≥
∞
∫

0

d

dt
(p(k − k∗))dt = p(k − k∗)|∞0 .

Hence, using (20) we obtain the inequality

1

θ

∞
∫

0

e−(ρ−n)t(1 − e−θc∗(t))dt

≥ 1

θ

∞
∫

0

e−(ρ−n)t(1 − e−θc(t))dt,

which prove that(k∗(t), c∗(t)) is an optimal trajectory
in problemP .

Remark 3 The optimal trajectory of the problem(P)
in the conditions of a competitive equilibrium is the
solution of the following system

·

k(t) = f(k(t)) − (n+ δ)k(t) − x− c(t) (28)
·

c(t) = −1

θ
[ρ− (1 − τ r)(f

′(k(t)) − δ)]. (29)

4 Qualitative analysis of the optimal
solution

Proposition 4 The system of differential equations

·

k (t) = f (k (t)) − (n+ δ)k (t) − x− c (t) (30)
·

c (t) = −1

θ

[

ρ− (1 − τ r)
(

f ′ (k (t)) − δ
)]

(31)

exhibits saddle-path stability.

Proof: In order to determinate the steady state of
the above system we choose the stationary solutions
k (t) = k∗, c (t) = c∗. From

·

c (t) = 0 we obtain

f ′ (k) =
ρ

1 − τ r
+ δ. (32)

Using the properties of the functionf , it results that
the equation (32) has a unique solutionk = k∗ with
which we may determine

c∗ = f (k∗) − (n+ δ)k∗ − x. (33)

The point(k∗, c∗) represents a steady state for the sys-
tem of differential equations.

In order to investigate the stability of the steady
state(k∗, c∗) we linearize the system (30)-(31)in the
steady state (k∗, c∗) and we obtain

·

k(t) ≈
(

f ′ (k∗) − n− δ
)

(k(t) − k∗) − (c(t) − c∗)

·

c (t) ≈
1

θ
(1 − τ r) f

′′ (k∗) (k (t) − k∗)

The matrix of the linearized system is
(

f ′ (k∗) − n− δ −1
1

θ
(1 − τ r) f

′′ (k∗) 0

)

.

The eigenvalues are solutions of equation

λ2 − λ
(

f ′ (k∗) − n− δ
)

+
1

θ
(1 − τ r) f

′′ (k∗) = 0.

(34)
Becausef is a concave function, it results that the de-
terminant of the equation is positive

∆ =
(

f ′ (k∗) − n− δ
)2 − 4

1

θ
(1 − τ r) f

′′ (k∗) > 0

and

p =
1

θ
(1 − τ r) f

′′ (k∗) < 0.

Hence, the equation (34) has two real roots for the
contrary signs

λ1,2 =
(f ′ (k∗) − n− δ) ±

√
∆

2
. (35)
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Using (32), it results that the relation (35) which
gives the eigenvalues, can be written thus

λ1,2 =

ρ

1 − τ r
±

√
∆

2

The eigenvalues of the linearized system being the real
numbers with contrary signs, it results that the steady
state(k∗, c∗) is the saddle point.

Because the steady state(k∗, c∗) is saddle point,
there are two manifolds passing through the steady
state: a stable manifoldWs and an instable manifold
Wi. The dynamic equilibrium follows the stable man-
ifold

Theorem 3 i) The eigenvector, corresponding to the
eigenvalue

λ1 =

ρ

1 − τ r
− n−

√

(
ρ

1− τ r
− n)2− 4

θ
(1− τ r)f ′′(k∗)

2
,

tangent in the steady state(k∗, c∗) to the stable
manifoldWs is given byv = α(1, v2), α ∈ R

v2 =

ρ

1 −τ r
− n+

√

(
ρ

1 − τ r
−n)2− 4

θ
(1 − τ r)f ′′(k∗)

2
;

ii) The eigenvector, corresponding to the eigen-
value

λ2 =

ρ

1 − τ r
−n+

√

(
ρ

1−τ r
−n)2− 4

θ
(1−τ r)f ′′(k∗)

2
,

tangent in the steady state(k∗, c∗) to the stable
manifoldWi is given byω= α(1, ω2), α∈ R where

ω2 =

ρ

1 − τ r
−n−

√

(
ρ

1 − τ r
− n)2− 4

θ
(1 − τ r)f ′′(k∗)

2
.

Proof: The matrix of the linearized system is :

A=

(

f ′ (k∗) − (n+ δ) −1
1

θ
(1 − τ r) f

′′ (k∗) 0

)

Its eigenvalues are the roots of the characteristic
equation

λ2 − trAλ+ detA = 0

wheretrA = f ′(k∗)-(n+δ) =
ρ

1−τ r
−n and

detA =
1

θ
(1 − τ r) f

′′ (k∗).

So, the eigenvalues are given by

λ1 =

ρ

1−τ r
−n−

√

(
ρ

1−τ r
−n)2− 4

θ
(1−τ r)f ′′(k∗)

2
<0.

and

λ2 =

ρ

1−τ r
−n+

√

(
ρ

1−τ r
−n)2− 4

θ
(1−τ r)f ′′(k∗)

2
>0

Next, we shall calculate the eigenvectorv =

(v1, v2)
T associated to the eigenvalueλ1. This vector

is tangent in the steady state(k∗, c∗) to the optimal
trajectory.

The eigenvector is the solution of the equation

Av = λ1v, v = (v1, v2)
T

Therefore,
(

f ′ (k∗) − n− δ − λ1 −1
1

θ
(1 − τ r) f

′′ (k∗) −λ1

)

(

v1
v2

)

=

(

0
0

)

,

which means that
(

f ′ (k∗) − n− δ − λ1

)

v1 − v2 = 0

1

θ
(1 − τ r) f

′′ (k∗) v1 − λ1v2 = 0.

Normalizingv1 = 1 and taking into account (32)
we obtainv =(1, v2) , where

v2 =

ρ

1−τ r
−n+

√

(
ρ

1−τ r
−n)2− 4

θ
(1−τ r)f ′′(k∗)

2
>0.

The slope of the stable manifoldWs in the steady state
(k∗, c∗) will be given byv2.

In the same way for the eigenvalueλ2 we obtain
the associated eigenvectorω= (1, ω2), where

ω2 =

ρ

1 −τr
−n−

√

(
ρ

1− τ r
−n)2− 4

θ
(1−τ r)f ′′(k∗)

2
<0.

The slope of the instable manifoldWi in the steady
state(k∗, c∗) will be given byω2.

5 The dependence of the steady state
(k∗, c∗) on the growth rate of the la-
bor force n

Proposition 5 The functionc∗ (n) is strictly decreas-
ing with respect ton andk∗ does not depend onn.
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Proof: Differentiating with respect ton the relation

f ′ (k∗) =
ρ

1 − τ r
+ δ

weobtain

f ′′ (k∗)
dk∗

dn
= 0

consequently,
dk∗

dn
= 0.

Therefore, because
dk∗

dn
= 0, k∗ (n) does not depend

on n.
Differentiating with respect ton the relation

c∗ = f (k∗) − (n+ δ)k∗ − x

weobtain

dc∗

dn
= f ′ (k∗)

dk∗

dn
− (n+ δ)

dk∗

dn
− k∗

or equivalently

dc∗

dn
=
(

f ′ (k∗) − n− δ
) dk∗

dn
− k∗

Because
dk∗

dn
= 0 , we obtain

dc∗

dn
= −k∗ < 0, there-

forec∗ (n) is strictly decreasing with respect ton.
Due to the fact that the parametern represents

the growth rate of labor force, the result of the above
theorem from an economic point of view, would be
interpreted as following: the optimum level of cap-
ital is not influenced by labor force and if the labor
force would grow in time then the optimum level of
consumption per capita would shrink in time as well.
A reduction of labor force would lead to a rise in the
optimum consumption level per capita.

6 Change in Public Policy

We will study the effects of a tax change. We sup-
pose that the economy is initially at the steady state
corresponding to the given values of the different tax
parameters. Also, we suppose that the government
changes the tax rate on interest income from the initial
value τ r to a new oneτ1

r, keeping total expenditure
per unit of labors+ x constant, and adjusting the tax
rate on wage incomeτw as needed to preserve budget
balance at any moment in time.

In the following, we will determine the effects of
the fiscal policy change on the steady-state values of

capitalk and consumptionc, given by the solution of
the system

·

c (t) = 0 ⇔ f ′ (k) =
ρ

1 − τ r
+ δ (36)

·

k (t) = 0 ⇔ c = f (k) − (n+ δ)k − x (37)

Let (k∗, c∗) be the steady state value of the capital
k and the consumptionc.

Proposition 6 The function k∗(τ r) is strictly de-
creasing with respect toτ r.

Proof: Due to the relation (36),k∗ verifies

f ′ (k∗) =
ρ

1 − τ r
+ δ. (38)

Differentiating with respect toτ r on both mem-
bers of the relation (38) we obtain

f ′′ (k∗)
dk∗

dτ r
=

ρ

(1 − τ r)
2 .

Hence, we have

dk∗

dτ r
=

1

f ′′ (k∗)

ρ

(1 − τ r)
2 .

This equality and the fact that the functionf is
strictly concave imply

dk∗

dτ r
< 0.

Therefore,k∗(τ r) is strictly decreasing with re-
spect toτ r.

With x fixed, the position of the
·

k = 0 line does
not depend on the value ofτ r.

According to the Proposition 6, we have that a
decrease inτ r increases the steady-state value of the
capital from the initial valuek∗ to a new onek∗1and

shifts the
·

c (t) = 0 isocline to the right, determining
the new steady-state value of the consumption, as in
fig. 2.

The effect on consumption depends on the slope

of the
·

k (t) = 0 isocline at the steady state(k∗, c∗),
given by

c′ (k∗) = f ′ (k∗) − (n+ δ) =
ρ

1 − τ r
− n (39)

Becausec′ (k∗) > 0, we obtain that a decrease inτ r

will grow the steady state value of consumption from
the initial valuec∗ to a new onec∗1.

Therefore, a decrease inτ r encourages accumu-
lation by growing the net return on saving. In the long
run, therefore, the capital is an decreasing function of
τ r.
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Fig. 2

Because the steady state utility, given by

u (c∗) = −1

θ

∞
∫

0

e−(ρ−n)te−θc∗dt = − 1

θ (ρ− n)
e−θc∗

is a decreasing function of steady state consumption,
decreases inτ r will grow steady state value of con-
sumption and therefore will grow welfare.

In order to calculate the net changes upon welfare,
we shall evaluate the utility function with respect to
the tax rate on interest incomeτ r. For this we define

V (τ r) =
1

θ

∞
∫

0

e−(ρ−n)t
(

1 − e−θct(τk)
)

dt (40)

which expresses the global utility of the representa-
tive household as a function of the tax rate on interest
incomeτ r.

ct (τ r) represents the consumption along the sta-
ble manifold of the system

·

k(t) = f(k(t)) − (n+ δ)k(t) − c(t) − x(41)
·

c(t) = −1

θ
[ρ− (1 − τ r)(f

′(k(t)) − δ)] (42)

corresponding to a given value of the tax rate on inter-
est incomeτ r.

The stable manifold of the system (41)-(42) can
be looked as the graph of the function

c = p (k, τ r) (43)

which expresses the equilibrium value of consumption
c as a function of the current value of the capitalk
and the tax rate on interest incomeτ r. This relation is

known in dynamic programming as apolicy function:
it relates the optimal value of a control variable to the
state variable.

Because the slope of the stable manifold at the
steady state is negative , being given by the slope of
the stable eigenvector corresponding to the negative
eigenvalueλ1

pk = v2 =
1

2

(

ρ

1 − τ r
− n

)

+ (44)

+
1

2

√

(

ρ

1 − τ r
− n

)2

− 4

θ
(1 − τ r)f ′′(k∗)

we have that an increases of the tax rate on interest
incomeτ r will shift the manifold upward.

Thus,
pτr

> 0. (45)

Substituting the policy function into the evolution
equation of the capital, the relation (41), we obtain
the evolution equation of the capital along the stable
manifold
·

k (t) = f(k(t)) − (n + δ)k(t) − p(k(t), τ r) − x =

= χ (k (t) , τ r) . (46)

This equation has a unique steady state that coincides
with the steady state of the system (41)-(42).

Taking into account (44) and (46), we have

χk (k∗, τ r) = −pk (k∗, τ r) + (47)

+
(

f ′ (k∗) − n− δ
)

= λ1 < 0

therefore, that the steady state is stable.
The solution of the differential equation (46), de-

note withkt (τ r) , us give the equilibrium value ofk
as a function of time and the tax rate on interest in-
comeτ r.

Substituting the solution of the differential equa-
tion (46) into the policy function we obtain the tra-
jectory of consumptionc as a function of time and the
tax rate on interest incomeτ r

ct (τ r) = p (kt (τ r) , τ r) . (48)

In order to analyze the effect of the tax rate on interest
incomeτ r on the consumption we will calculate the
marginal change in consumption at the momentt, so
that:

dct (τ r)

dτ r
= pk (kt (τ r) , τ r)

dkt (τ r)

dτ r
+pτr

(kt (τ r) , τ r) .

(49)
The solution of the equation (46),kt (τ r) , must sat-
isfy the equation (41)

·

k(t, τ r)=f(k(t, τ r))−(n+δ)k(t, τ r)−p(k(t, τ r), τ r)−x
(50)
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where we denotekt (τ r) = k (t, τ r) .
Differentiating the equation (50) with respect to

τ r and taking into account the fact that
·

kτr
(t, τ r) =

dkτr

dt
(t, τ r), we have:

dkτr

dt
(t, τ r) = f ′(k(t,τ r))

dk

dτ r
(t,τ r)− (n+δ)

dk

dτ r
(t,τ r)−

−pk(k(t,τ r), τ r)
dk

dτ r
(t,τ r)−pτr

(k(t,τ r),τ r)

dkτr

dt
(t,τ r) =

dk

dτ r
(t, τ r)(f

′(k(t,τ r))−(n+ δ)− (51)

−pk(k(t, τ r), τ r)) − pτr
(k(t, τ r), τ r)

The equation (51) can be rewritten at the steady state
such as:

dkτr

dt
(t, τ r) = λ1

dk

dτ r
(t, τ r) − pτr

(k∗, τ r)

or equivalent with

·

kτr
(t) = λ1kτr

(t) − pτr
(k∗, τ r) (52)

which is a differential equation with constant coeffi-
cients

The general solution of the differential equation
(52) is given by:

kτr
(t) = eλ1tkτr

(0) +
(

1 − eλ1t
) pτr

(k∗, τ r)

λ1
(53)

Becauseλ1 < 0, the steady state value of this equa-
tion is stabile andkτr

asymptotically converges at the
steady state value, given by:

k∗τr
=
pτr

(k∗, τ r)

λ1
< 0 (54)

which is the derived of the steady state value of the
capitalk with respect toτ r.

Due to the fact thatkτr
(0) is predetermined, it re-

sults that the changes inτ r does not produce changes
in kτr

(0) .
Hence, the trajectory of the capitalkτr

is given
by:

kτr
(t) =

(

1 − eλ1t
) pτr

(k∗, τ r)

λ1
(55)

From the equation (55), we note that a reduction in the
tax rate on interest incomeτ r determines a reduction
of capitalk, towards the new value of the steady state
, at an exponential rate given by the stabile root of the
system.

Substituting (55) in (49), we can calculate the de-
rived of the consumption trajectory as function ofτ r:

dct(τ r)

dτ r
= pk(k

∗, τ r)(1 − eλ1t)
pτr

(k∗, τ r)

λ1
+(56)

+ pτr
(k∗, τ r)=pτr

(

(1−eλ1t)
pk

λ1
+ 1

)

.

from the equation(45) we obtain:

dc0 (τ r)

dτ r
= pτr

> 0. (57)

Using (47), (39) and (45) in (56) we obtain:

dc∞ (τ r)

dτ r
= pτr

(

pk

λ1
+ 1

)

= pτr

(

pk + λ1

λ1

)

=

=
pτr

(f ′ (k∗) − n− δ)

λ1
= (58)

=
pτr

λ1

(

ρ

1 − τ r
− n

)

< 0.

Considering the relation (57) we obtain that the im-
mediate effects of fiscal policy consist of the growth
of consumption per capita, witch determines the shift
of the optimal trajectory upwards. Considering the re-
lation (58) we obtain that the long term effects consist
in the reduction of consumption per capita until the
reach of the new steady state value.

The relations (57)-(58) show that an increase in
the tax rate of the interest incomeτ r will discour-
age the accumulation due to the reduction of the net
income rate, witch will consequently encourage the
short-term consumption, thus, on the long-term, the
capital will be reduced, a reduction witch will deter-
mine a reduction of consumption on the long-term

Next, we shall analyze the effects of the change
of income rate of capitalτ r over social welfare.

Differentiating with respect toτ r

V (τ r) =
1

θ

∞
∫

0

e−(ρ−n)t
(

1 − e−θct(τk)
)

dt (59)

evaluated in the steady state and using (56), we obtain

WSEAS TRANSACTIONS on MATHEMATICS Olivia Bundau

ISSN: 1109-2769 697 Issue 12, Volume 8, December 2009



V ′ (τk) = e−θc∗

∞
∫

0

e−(ρ−n)tdct (τ r)

dτ r
dt = (60)

= e−θc∗

∞
∫

0

e−(ρ−n)tpτr

(

(1−eλ1t)
pk

λ1
+1

)

dt=

= e−θc∗pτr

∞
∫

0

e−(ρ−n)t

(

pk+λ1

λ1
−eλ1t pk

λ1

)

dt =

= e−θc∗pτr

pk + λ1

λ1

∞
∫

0

e−(ρ−n)tdt−

− e−θc∗pτr

pk

λ1

∞
∫

0

e−(ρ−n)teλ1tdt =

= e−θc∗ pτr

λ1

(

pk + λ1

ρ− n
− pk

ρ− n− λ1

)

=

= e−θc∗pτr

ρ− n− pk − λ1

(ρ− n) (ρ− n− λ1) .

Using (47) and (39) in (60), we obtain

V ′(τ r) = e−θc∗pτr

ρ− n− ρ

1 − τ r

(ρ− n)(ρ− n− λ1)
=

= e−θc∗pτr

1

ρ− n− λ1

−τ r

1 − τ r
. (61)

Becausepτr
> 0, λ1 < 0 andρ > n, we have

V ′ (τ r) < 0. Therefore, the welfare is strictly de-
creasing function as function of the tax rate on interest
incomeτ r .

Hence, we have that the optimal policy is that the
tax rate on interest incomeτ r be zero.

7 Conclusion

In this paper we have analyzed an economic growth
model with taxes in which the utility is given by expo-
nential function. This economic growth model leads
us to an optimal control problem. We have determined
the necessary and sufficient conditions for optimality.
Using these conditions, we have shown that the opti-
mal trajectory for the optimal control problem is the
solution for a differential equations system. We have
proven the existence, uniqueness and stability of the
study state for a differential equations system. We
have shown that the optimum level of capital is not
influenced by labor force and if the labor force would

grow in time then the optimum level of consumption
per capita would shrink in time as well. We have in-
vestigated the effects of the fiscal policy changes on
the steady-state values of the capital and consumption,
and on welfare. We have shown that a decrease in tax
rate on interest incomeτ r encourages accumulation
by growing the net return on saving. On the long run,
therefore, the capital is a decreasing function ofτ r.
Also, we have shown that a decrease in tax rate on
interest incomeτ r will grow the welfare.
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