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Abstract: In this paper we analyze an economical growth model with taxes and exponential utility in continuous
and infinite time. This economical growth model leads to an optimal control problem. The necessary and sufficient
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1

In this paper, we consider a version of the Ramsey
growth model with taxes in infinite and continuous
time. This economy consists of a firm, a household
and a government. The firm produces goods using two
factors of production, capital and labor, it rents capital
at the rate of interest and it hires labor at the wage
ratew. Also, the firm seeks to maximize the present
value of its profits. The government imposes taxes on
capital and labor income, and it provides lump sum
transfer and public-consumption expenditures. In this
economy, the consumer chooses at any moment in
time the level of consumption so as to maximize the
global utility on the infinite time taking into account
the budget constraint for household and the govern-
ment. The utility function is given by an exponential
function. This economical growth model leads to an
optimal control problem. We prove that a necessary
condition for the control function to solve our optimal
control problem is that it is a solution of Euler equa-
tion. Also, we give the sufficient conditions for the
optimal solution of the optimal control problem. An
analogous result was formulated by S.Cruceanu and
C. Varsan [5]. Finally we investigate the effects of
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problem and we show that it is a saddle point. Also,
we examine the qualitative dynamic behavior of the
optimal solution. In Section 5,we analyze the depen-
dence of the steady staté*, c*) on the growth rate

of the labor forcen. In Section 6, we investigate the
effects of the fiscal policy changes on welfare. Some
conclusions are given in section 7.

2 The economical growth model

In this paper, based on [1], [3], [2] and [8], we con-
sider an economical growth model with public in-
tervention. The economy consists of a household,
a firm and a government. The competitive equilib-
rium achieved in a decentralized manner through per-
fect competition between the firm and the household.
Also, we assume the economy closed (i.e. all of the
stock capital must be owned by someone in economy
and the net foreign debt is zero.)

The firm produces goods, pays wages for labor,
and makes rental payments for capital on the com-
petitive market at equilibrium prices given by the net
marginal products of labor and capital.

Output is determined according to a constant re-

the fiscal policy changes on the steady-state values of tUrns to scale technology using the following produc-

capital and consumption and on welfare.

The outline of this paper is as follows. In Sec-
tion 2, we present the model which we use in this arti-
cle. In Section 3, we give the necessary and sufficient
conditions for the optimal solution of the economical
growth problem with public intervention. In Section
4, we determine the steady state of the optimal control
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tion function

Y = F(K,L) (1)
where K is the capital, L is the labor force,F' :
IR, x R, — IRy is a function of clas€? having
the following properties

OF(K,L) OF(K, L)

ok % oL

>0,VK >0,L > 0;

Issue 12, Volume 8, December 2009



WSEAS TRANSACTIONS on MATHEMATICS
0’°F(K,L) “0 0’F(K, L)
OK? T OL2

F(AK,\L) = A\F(K,L) = \Y,V\ > 0;

<0,VK >0,L > 0;

L OF(K.L) B [ OF(K,L)
Koo 0K - im0 oL
. OF(K,L) .. srkL)
T S S

F(K,0) = F(0,L) =0

The firm seeks to maximize the present value of prof-
its, given by

Profit=F(K(t), L(t)— (r(t) + 0)K (t)— w(t)L(t),
2)

taking r(t) andw(t) as given,r is the rental rate of

capital,w is wage per worker, andlis depreciation of

capital.
We define
K@) | |
k(t) = o - the capital per worker;
yt) = % — the output per worker.

Using the homogeneity condition we have

K

Y=F(K,L)=1L- F(f,l) =L- f(k),
where
f(k) = F(k,1).
Then, the output per worker is

y = f(k)

Using the properties of functioR we obtain the prop-
erties of function of clas€’?, f :

f(0) = 0; f'(k) >0, f"(k) <0,k > 0;

%imof’(k:) = 00; klim f'(k)=0.

Profit for this firm can be written as

Profit = L(t)(f(k(t)) — (r(t) +6)k(t) —w(t)) (3)

The economical condition is that on a competitive
market the maximum profit obtained by the firm is
zero, and is given by

f'(k)
f(k) = kf'(k)

r+0
w.

(4)
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X. Assuming that the government must run a bal-
anced budget at each moment in time and that tax
rates, transfers, and public-consumption expenditures
per unit of labor £ = %,s = %) are constant over
time, then we have the government budget constraint
waitten in terms per capita

e (f'(k) = 0)k + Tu(f (k) — kf'(k)) =z + 5 (5)

where the left-hand side is the total tax revenue per
unit of labor, and the right-hand side gives total ex-
penditure. Given constant values of+ s and 7.,
equation can be solved for the value of,, that will
preserve budget balance for each valué .of

In this economy the consumer chooses at any mo-
ment in time the level of consumptiat{t) so that to
maximize the global utility, given by

[e.9]

[ - erevar
0

U=—- 6)

and subject to the budget constraint for the household,
given by

K (t) = (1=7,)r(DK (£) +(1 = w(DL(£)+S—C(2).

Wherec is the consumptiory > 0 is the discount rate
andé > 0.

The size of the household grows at rate

The budget constraint for the household can be
rewritten in per capita terms as

k(t)= (1=, )r(t) k() +(1~Tw)w(t) +s—c(t-nk(t).
wherec(t) = % is the consumption per capita.

The initial stock of capital for the household is
K. Thus, the initial stock of capital per capitaig.

In the conditions of a competitive equilibrium and
taking into account the government budget constraint ,
the budget constraint for household in per capita terms
can be rewritten as:

k(1)

FE@®) = (n+Ok(E) —z —ct). ()

3 Determination of optimality condi-
tions

The economical problem is to choose in every mo-

We assume that the government taxes labor and net ment ¢, the size of consumption so as to maximize the

capital incomes at proportional rateg andr,.. We

global utility taking into account the government bud-

also assume that the tax revenue is allocated between get constraint and the budget constraint for household

lump-sum transfelS and public consumption goods
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and the initial stock of capitakg, in the conditions
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of competitive equilibrium, leads us to the following
mathematical optimization proble(®) :

The problem P. To determine(k*, c*) which
maximizes the following functional

[e.e]

L mtommr (g g tety gy

o
0

(8)

in the class of functiong € AC([0,00),IR4), and
c € X, where

X = {c:[0,00) — [0,A],c—measurabled < oo}
which verifies:

FE@®) = (n 4+ Ok(t) — 2z —c(t) (9)

k(0) ko (10)

In our problem P, k is the state variable andis
the control variable.

Definition 1 A trajectory (k(t), c(t)) is called an ad
missible trajectory, with initial capitalky, for the
problem (P) if it verifies the relation (9)-(10).

Definition 2 An admissible trajectory(k*(t), c*(t)) ,
is called optimal trajectory if:

_% / e (p=mE(] _ o=0e(0)) gy <
0
L iy e
S_E e WPTIHT — e W)dt

for every admissible trajectory(k(t),c(t)) of the
problem(P).

In the following theorem we prove that a solution
of our optimal control problem must satisfy a certain
differential equation called the Euler equation.

We denote:

¢(k(t))

f(k(t)) — (n+0)k(t) — . (11)

Ue(t) = — 5 (1~ )

(12)
Theorem 1 If (c(t), k(t)) is an optimal trajectory of
the problem(P), then it verifies the Euler-Lagrange
equation:

- d

—0c(t)—(p—n)t
7\ )

_ e—@c(t)—(p—n)tqb/(k(t))'
(13)
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Proof: Let (c(t), k(t)) by an optimal trajectory of
the problem(P).

From (9) and (11), we havgt) = ¢(k(t)) — k(t).
Choose [T, T'] such that¢'(k(t)) is continuous on
[T, T']. Let h by any C?—function on [T, T'] which
satisfiesh(T") = h(T") = 0.

For each real number € IR, we define a new func-
tion k1 (t) by k1(t) = k(t) + ah(t), asin fig. 1

A

T T
Fig.1
Note that ife is small, the functiork; (¢) is "near” the
functionk(t).
We define

T
In(a) = /U(¢(/€(t)+ah(t))—(k(t)+ah(t)))e—(p—n)tdt.
T

(14)
Becausek(t) is an optimal trajectory, we have

U((k(t)) — k(t))e~P~mrdt

T
T

Tl
T

> [ U(@k(t) + ah(t) — (k(t) + ah(t)e ™ dt
forall a € IR.
Thus, Jp(a) < Jp(0) for all « € IR. Hence the

)
function Jj (o) has a maximum at = 0, so that
Jy,(0) = 0. (15)
Now, looking at (14), we see that to calculate
J;(0) we must differentiate the integral with respect

to a parameter appearing in the integrand.
Conversely, (15) implies

T/
[ U6 O) & (e )~ h(e)e 0 e = 0
T

(16)
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We consider

b(t) = / U (6(k(s)) — k(s))¢/ (k(s))e™~™ods,
T
t e [T, T'] and

whered is given by

T/

/ 0 (&(k(£))—k(8))e~ ™ (1) d+ G(T'—T) = 0

T

Since
W(T) = h(T") = 0
we have
i
[ U 6h(e)) ~ k) ((e)hitre o
TT T’
— [t = [ g
T T
Thus, (16) it becomes:
N
- [ a0 + U 0(0k(e)) — kD ity =
' (17)

for all functions h which areC! on [T, T'] and which
satisfy h(T') = h(T")
We consider

h(t) = —/(U'(QS(k‘(S))—'k(S))e_(”_")SJrfl,b(S))ds—G(t—T),
T

t<T.
From (17) and the definition foy andG, we obtain

Tl

/ (9(t) + U'(@(k(t)) — k(t))e~ ") 2dt = 0.

T

Thus

g(t) = —U'(¢(k(t))—k(t)e ™" forallt € [T,T"].

Since g is a continuous function ofi’, 7’|, we see

thatc(t) = ¢(k(t)) — k(t) is a continuous function on
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[T, T'] and g is a continuous function off’, T"] .
Hence, we conclude

g(t) = U'((k(t)) = k(1))@ (k(8))e™ P~ =
= Lok - ke,

This is the Euler-Lagrange equation discovered in
1744 by mathematician Euler.

In next theorem, we give the sufficient conditions
for the solution of our optimal control problem P.

Theorem 2 Let (k*(t),c*(t)) be an admissible tra-
jectory in problemP. If there exists an absolutely
continuous functiory(t) such that for all¢, the fol-
lowing conditions are satisfied

q(t) = q(t)(p— (f'(k(t)) —0)(1 — 7)) (18)
gt) = 0 (19)
Jim e~ =g () = 0 (20)

then(k*(t), c*(t)) is an optimal trajectory in problem
P.

Proof: Let (k*(t),c*(t)) be an arbitrary admissible
trajectory forP.

We denote
100——t —0c*(t 100——t —0Oc(t
A=g [ e (P=m)t(1—e c())dt—g e (Pt (1—e 0t
0

(21)
and we define the function of Hamilton-Pontryagin
H :[0,00) x [0,A] x IR x [0,00) — IR, given by

H(k 1) = 5o 01— ) p(f ()4 6)h-c-2)
(22)

In the following, we simplify our notation and put

k*(t) = k*, ¢*(t) = c* k(t) =k, c(t) = ¢,

H(k,c,p,t) = H, H(k* c*,pt)=H*

From (22) we have

1
¢ =) = H(k, . p, thp(f (k) — (n+0)k—c—2)
and using (9) the relation (21) becomes
8= [l .t Hik cop0ldee [ ik )t

0

(23)
Since
Hl/e/k(k7 D, t) = pf//(k)
Hl(k,c,p,t) = e~ (p—mjtg—fc _ p(t)

Hé;(k’c’pﬂf) —96_(p_")te_907
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we have thatH (k, ¢, p, t) is concave as a function of

c andk.

Using a standard result on concave functions, we ob-
tain

H* oH*
- * % < A o *.
H(k,.p, - H(K ", p,t) < (k") + 8%228 )

Using the transformatiog(t) = e(*=™p(t) in (18)
we have the equation of the adjoint variahe,
OH*
ok

-

*

Using (24) anda;]”r€ = —pin (23), we obtain that
A> [(plk—k)+p( k k ))dt—i—/a;i (c*—c)it.
0 0
(25)

We differentiate (22) with respect toand using (19)
we obtain the maximum condition

H(E*(t),c"(t),p(t),t) > H(k*(t),c,p
i.e.

(t),t),¥c € [0, A]

OH*
Jc

From (26) we have that the second integral in (25) is
>0,s0

(c"=¢)>0, Yece[0,4]. (26)

Az [t k) plh -k et @)
0
or equivalently,
Td
A > / dt( p(k —k™))dt = p(k—k*)\go.

0
Hence, using (20) we obtain the inequality

1 [o¢]
5/6—(p—n)t(1
0

1 / (=t (1 _ =0e(t)) gy

0

which prove thatk*(t),
in problemP.

— e W)t

>

>

c*(t)) is an optimal trajectory

Remark 3 The optimal trajectory of the proble(®)
in the conditions of a competitive equilibrium is the
solution of the following system

fk(1)) =

_é[p — (1 — Tr)(f/(k(t)) B

(n+0)k(t) —x — c(t) (28)
5] (29)
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4 Qualitative analysis of the optimal
solution

Proposition 4 The system of differential equations

() = f (k@) - (n+ 6>k<t> —z—c(t) (30)
o) =~ [o— (L—7) (7' (k (1) ~9)] (3D)

exhibits saddle-path stability.

Proof: In order to determinate the steady state of
the above system we choose the stationary solutions

k(t) = k*, c(t) = c¢*. Frome (t) = 0 we obtain

f (k) = 2

d.
1—TT+

(32)

Using the properties of the functiofy it results that
the equation (32) has a unique solutibr= k£* with
which we may determine

¢ =) -

The point(k*, ¢*) represents a steady state for the sys-
tem of differential equations.

In order to investigate the stability of the steady
state(k*, ¢*) we linearize the system (30)-(31)in the
steady statek*, ¢*) and we obtain

(f (k) = n— 8) ((t) — k) ~
g (1= ) £ () (K (1) ~ &°)
The matrix of the
f'(k*)—n-6 -1
(g (L=7) f" (k) 0 ) |

The eigenvalues are solutions of equation

(n+0)k* —x. (33)

Q

(et) =)

X

linearized system s

1

S(L=7) [ (k) =0
(34)

Becausef is a concave function, it results that the de-

terminant of the equation is positive

N =X () —n—0)+

(F/ (k) —n— 8)> — 42 (L —7) f" (k") > 0

A= 2

and )
pP=3 (1—-7.)f" (k") <o.

Hence, the equation (34) has two real roots for the
contrary signs

—0)+VA

(39)
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Using (32), it results that the relation (35) which
gives the eigenvalues, can be written thus

The eigenvalues of the linearized system being the real
numbers with contrary signs, it results that the steady
state(k*, ¢*) is the saddle point.

Because the steady stdte’, ¢*) is saddle point,
there are two manifolds passing through the steady
state: a stable manifoltd; and an instable manifold
W;. The dynamic equilibrium follows the stable man-
ifold

p
1—7,

1= ) (k)

Theorem 3 i) The eigenvector, corresponding to the
_n)2_
n) 7

eigenvalue
p
" \/(1_ Tr
2 )

tangent in the steady staté:*,c¢*) to the stable
manifold W is given byv = a(1,v2), « € R

AL =

P p 4 .
vy = 1—7, - n+\/(1 — Ty —n)2—5(1 — )k )
5 ;
ii) The eigenvector, corresponding to the eigen-
value
R S TR
Ay = 1—7, 1—7, 0

2 I

tangent in the steady statgk*,c*) to the stable
manifold W; is given byw= «a(1,ws), «€ R where

-

Proof: The matrix of the linearized system is :

fE) = (n+6) -1
; 0

(1—70) f" (k")
Its eigenvalues are the roots of the characteristic
equation

p
_1-7

2
1—7,

— )= 51— 7))
2

w2

A=

AN —trAX+det A=0

—n and

wheretrA = f/(k)-(n+5) = P
—T

(1 —=70) f7 (k7).

T

1
det A = —
¢ 0
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So the eigenvalues are given by

o P _ 2_% _ 1 ( 1%
| e RV
A= <0.
2
and
4

L (e - =)

-7 1—7, 0
9= >0

2

Next, we shall calculate the eigenvector
(v1, UQ)T associated to the eigenvaliig. This vector
is tangent in the steady state*, ¢*) to the optimal
trajectory.

The eigenvector is the solution of the equation

Av=M\v, v= (Ul,Ug)T

Therefore,
frk) —n=0-21 -1 <>_<0>
GU=m) 7)) N )70 )

which means that
(f'(k:*)—n—é—)\l)vl — V2
1
5 (L=70) [ (k) v = My
Normalizingv; = 1 and taking into account (32)
we obtainv =(1,v2) , where
4
—n)2 = (=) )

P
n+\/(1_7_r
2

The slope of the stable manifoldf; in the steady state
(k*, c*) will be given byws.
In the same way for the eigenvalug we obtain
the associated eigenvector= (1,ws), where
—n)2—

.’
2

The slope of the instable manifold’; in the steady
state (k*, ¢*) will be given byw,.

0.

)
1—7,

>0.

Vo=

)
1—7,

P
1— 7,

1
5 (L=7r) f"(k¥)
f <0.

W9 =

5 The dependence of the steady state
(k*, ¢*) on the growth rate of the la-
bor force n

Proposition 5 The functionc* (n) is strictly decreas-
ing with respect tow and k* does not depend an
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Proof: Differentiating with respect ta the relation

f(E) = 72+
we obtain .
f7 (k") g 0
consequently,
vy

Therefore, becaus%k— =0, k* (n) does not depend
onn. dn
Differentiating with respect ta the relation

< =fF)—(n+ ok -2

we obtain
or equivalently

b (k) = 8) O e
Becausecgﬁk =0,we obtaindc)k = —k* <0, there-

forec* (n) ?s strictly decreasinz] with respectito

Due to the fact that the parameterrepresents
the growth rate of labor force, the result of the above
theorem from an economic point of view, would be
interpreted as following: the optimum level of cap-
ital is not influenced by labor force and if the labor
force would grow in time then the optimum level of
consumption per capita would shrink in time as well.
A reduction of labor force would lead to a rise in the
optimum consumption level per capita.

6 Change in Public Policy

We will study the effects of a tax change. We sup-
pose that the economy is initially at the steady state
corresponding to the given values of the different tax
parameters. Also, we suppose that the government
changes the tax rate on interest income from the initial
value 7, to a new oner}, keeping total expenditure
per unit of labors + x constant, and adjusting the tax
rate on wage income,, as needed to preserve budget
balance at any moment in time.

In the following, we will determine the effects of
the fiscal policy change on the steady-state values of
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capitalk and consumptiom, given by the solution of
the system

p

c(t) = Oﬁf’(k):l_T +0 (36)
k(t) = 0sc=f(k) - (n+0)k—a (37)
Let(k*, ¢*) be the steady state value of the capital

k and the consumption.

Proposition 6 The function k*(7,) is strictly de-
creasing with respect ta,..

Proof: Due to the relation (36)%* verifies
/ k* — p

116 =
Differentiating with respect to,. on both mem-

bers of the relation (38) we obtain

dk* p
2 k* S —
e, (1—7)

+9.

(38)

Hence, we have
dit 1y
dr, — fT) (1— 7,07

This equality and the fact that the functighis
strictly concave imply

dk*
ar < 0.

Therefore,k*(7,) is strictly decreasing with re-
spect tor,.

With « fixed, the position of thé: = 0 line does
not depend on the value of.

According to the Proposition 6, we have that a
decrease i, increases the steady-state value of the
cepital from the initial valuek* to a new onekjand
shifts the ¢ (t) = 0 isocline to the right, determining
the new steady-state value of the consumption, as in
fig. 2.

The effect on consumption depends on the slope

of the k (t) = 0 isocline at the steady staté*, ¢*),
given by

p
1—7,

¢ (k) = f' (k) = (n+9) = -n  (39)
Because’ (k*) > 0, we obtain that a decrease in
will grow the steady state value of consumption from
the initial valuec* to a new one’j.

Therefore, a decrease ). encourages accumu-
lation by growing the net return on saving. In the long
run, therefore, the capital is an decreasing function of

Tr.
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c c=
T
—
¢ >
¢ k=0
K K K
Fig. 2

Because the steady state utility, given by

oo

/e—(p—n)te—ec* dt = — 1 e—@c*

wle) =~ 9o —n)

0

is a decreasing function of steady state consumption,
decreases inr, will grow steady state value of con-
sumption and therefore will grow welfare.

In order to calculate the net changes upon welfare,
we shall evaluate the utility function with respect to
the tax rate on interest income. For this we define

o0

V() = % / e~ (o=t (1—e—GCt<Tk>) dt  (40)
0

which expresses the global utility of the representa-
tive household as a function of the tax rate on interest
incomer,.

¢t (T,) represents the consumption along the sta-
ble manifold of the system

B(t) = fO() = (n + 0)K(t) — c(t) — x(41)
o) = —glo— (-7 (k1) — 8] (42

corresponding to a given value of the tax rate on inter-
est incomer,..
The stable manifold of the system (41)-(42) can
be looked as the graph of the function
c=p(k,1,) (43)
which expresses the equilibrium value of consumption

¢ as a function of the current value of the capital
and the tax rate on interest incomg This relation is
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known in dynamic programming aspalicy function
it relates the optimal value of a control variable to the
state variable.

Because the slope of the stable manifold at the
steady state is negative , being given by the slope of
the stable eigenvector corresponding to the negative

P

eigenvalue\;
! )+
o\1=7, "
Y

%¢< —"Y 0

we have that an increases of the tax rate on interest
incomer,. will shift the manifold upward.
Thus,

Pr = V2 (44)

p
1—7,

+

pr,. > 0. (45)

Substituting the policy function into the evolution
equation of the capital, the relation (41), we obtain
the evolution equation of the capital along the stable
manifold

= J(k(®) = (n+0)k(t) — p(k(t), 77) — @ =
X (k(t),7r) (46)

This equation has a unique steady state that coincides
with the steady state of the system (41)-(42).
Taking into account (44) and (46), we have

—pi (K, 70) + (47)
+ (f'(k*)—n—-48) =X <0

therefore, that the steady state is stable.

The solution of the differential equation (46), de-
note withk, (7,.) , us give the equilibrium value of
as a function of time and the tax rate on interest in-
comer,.

Substituting the solution of the differential equa-
tion (46) into the policy function we obtain the tra-
jectory of consumptiomr as a function of time and the
tax rate on interest income.

e (1) =p (ke (14) 7). (48)

In order to analyze the effect of the tax rate on interest
incomer, on the consumption we will calculate the
marginal change in consumption at the momergo
that:

) (b ) ) BT

dr, dr,

k(t)

Xk (k*v 7-7")

+pr, (ke (70) , 7r) -
(49)

The solution of the equation (46}, (7,-) , must sat-

isfy the equation (41)

Bt ) = f(R(t, 7)) 040k (L, 70 )plk(t, 7, 7y )

(50)
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where we denoté, (7,,) = k (¢, 7,) .
Differentiating the equation (50) with respect to

7, and taking into account the fact that, (¢, 7,) =
dk,

(t,7,), we have:

dt

dk, o dk dk

dt (t,7r) = f (k(tTr))d—TT(thr)_ (n+5)d7_r(t7'r)_
Dukler,), ) ST~ (ke h,)

dh, o dk,

dt (tﬂ_r) - d—TT(t’TT)(f (k(t77r))_(n+5)_(51)

—pk(k(t,77), 7)) — pr, (K(t, T7), Tr)

The equation (51) can be rewritten at the steady state
such as:

dk .
dt _Ald—Tr(t’TT)_pTT (k 7T7”)

or equivalent with

ko (£) = Mk, (£) — pr, (K5, 70)

which is a differential equation with constant coeffi-
cients

The general solution of the differential equation
(52) is given hy:

(52)

k’rr- (t) — e)qtkTr (0) + (1 . 6)\1t> Dr, (];\7 77—7')
1
(53)
Because); < 0, the steady state value of this equa-
tion is stabile and:, asymptotically converges at the
steady state value, given by:

_ pTr (k*7 TT’)

kX =
Tr A\

<0 (54)
which is the derived of the steady state value of the
capital k with respect tor,.

Due to the fact thak,, (0) is predetermined, it re-

sults that the changes in. does not produce changes

ink-,. (0).
Hence, the trajectory of the capitél-, is given
by:
_ (1 = ot Pre (KT 70)
ke, (0) = (1 - M) Poog (55)

From the equation (55), we note that a reduction in the
tax rate on interest income. determines a reduction
of capitalk, towards the new value of the steady state
, at an exponential rate given by the stabile root of the
system.
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Substituting (55) in (49), we can calculate the de-
rived of the consumption trajectory as functionrof

dey(tr) * iy Pre (K5 77r)
i - pr(k*, 1) (1 — et N H56)
b ) =p, (10 1).

1

from the equation(45) we obtain:

dCO (7',»)
dr,

= pr, > 0. (57)

Using (47), (39) and (45) in (56) we obtain:

dcoo (7_7") Dk Pr + A1
- 7 g T D 1 = Pr =
ar, pT<A1+> < N
/ *\ _
A1
B P _
= N (1 — n) < 0.

Considering the relation (57) we obtain that the im-
mediate effects of fiscal policy consist of the growth
of consumption per capita, witch determines the shift
of the optimal trajectory upwards. Considering the re-
lation (58) we obtain that the long term effects consist
in the reduction of consumption per capita until the
reach of the new steady state value.

The relations (57)-(58) show that an increase in
the tax rate of the interest income will discour-
age the accumulation due to the reduction of the net
income rate, witch will consequently encourage the
short-term consumption, thus, on the long-term, the
capital will be reduced, a reduction witch will deter-
mine a reduction of consumption on the long-term

Next, we shall analyze the effects of the change
of income rate of capitat,. over social welfare.

Differentiating with respect to,.

Vi) =

| =

/waoefhwoﬁ(w)
0

evaluated in the steady state and using (56), we obtain
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V' (1)

dr,

6—60* /e—(p—n)t dey (Tr)dt _
0

o
ity (oo
A 1
o
— b - /e—(P—“)t p7k+/\1 —eAltp—k dt =
)\1 )\1
0
o
_ e—@c*pTT Pk + A1 /e—(p—”)tdt —
A1
0
o
— ey, DE [ o—(o-miteht gy —
A1
0
. —fc* pTr pk’ + Al pk? _
= e - =
A\ p-—n p-n-X
. - — A
— 6_00 pTr p z pk -
(- (p—n—

Using (47) and (39) in (60), we obtain

p_n_l_Tr —

p—n)(p—n—2>A)

—Tr

pr,
(

_ec* 1
Tr *
p—n—MA1—1,

=€

(61)

Becausep,, > 0, A\; < 0 andp > n, we have
V' (r,) < 0. Therefore, the welfare is strictly de-
creasing function as function of the tax rate on interest
incomer, .

Hence, we have that the optimal policy is that the
tax rate on interest income. be zero.

7 Conclusion

In this paper we have analyzed an economic growth
model with taxes in which the utility is given by expo-
nential function. This economic growth model leads
us to an optimal control problem. We have determined
the necessary and sufficient conditions for optimality.
Using these conditions, we have shown that the opti-
mal trajectory for the optimal control problem is the
solution for a differential equations system. We have
proven the existence, uniqueness and stability of the
study state for a differential equations system. We
have shown that the optimum level of capital is not
influenced by labor force and if the labor force would
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grow in time then the optimum level of consumption
per capita would shrink in time as well. We have in-
vestigated the effects of the fiscal policy changes on

0) the steady-state values of the capital and consumption,

and on welfare. We have shown that a decrease in tax
rate on interest income, encourages accumulation
by growing the net return on saving. On the long run,
therefore, the capital is a decreasing functionrpf
Also, we have shown that a decrease in tax rate on
interest income-,. will grow the welfare.
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