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Abstract:Matrix representation of functions are required to convert an operator related problem to its algebraic
counterpart over certain vectors and matrices. The problems involving operators which are purely or partially
algebraic are most frequently encountered ones in applications. The algebraic operator here has a Hilbert space
domain defined over square integrable univariate functions on a specified interval and its action on its argument
is just multiplication by a function. We focus on univariate functions for simplicity in this very first step al-
though the generalization to multivariance seems to be rather straightforward. The main purpose of this work
is to introduce a conjecture to facilitate the numerical approximation of the matrix representation of the above
algebraic operator and then to prove it to get an important theorem which seems to be capable of opening new
very efficient horizons in numerical analysis and in its applications. Theorem states that the matrix represen-
tation of a univariate function is the image of the matrix representation of the independent variable under the
same function for a finite Hilbert space. Illustrative numerical implementations are also given.

Key–Words: Matrix Representation, Fluctuation Operator, Hilbert Spaces, Projection Operators, Algebraic
Multiplication Operators

1 Introduction

Matrix representations of the operators play important
roles in the development of algebraic methods for the
numerical solution of various problems. Especially,
linear operator involving problems can be treated by
using those operators’ matrix representations on a lin-
ear vector space spanned by a finite number of ba-
sis functions to get approximate solutions and it is
expected that the approximation’s quality will be in-
creased as the dimension of the linear vector space in-
creases. Amongst these types of problems, quantum
mechanical or non-equilibrium statistical mechanical
ones are linear in nature unless an unknown external
influence whose structure is to be determined together
with the other unknowns of the system (like the ex-
ternal field as a controlling agent in quantum optimal
control problems) is added to the problem [1–11]. In
these areas, the algebraic operators multiplying their
arguments by certain functions’ values are frequently
encountered. For example, in Schrödinger’s equation
potential term or external field’s scalar component are
in this category. The Liuoiville equation [12] also in-
volves this kind of operators. The matrix represen-
tations of these operators have the elements defined
through certain Hilbert spaces’ inner products which

are defined via integrals whose evaluations may not
be easy in all encountered cases and necessitate ap-
proximations. Hence the approximation of the matrix
representations of these operators are quite important
not only for the theory but also for the practical appli-
cations.

Expected values of certain functions are also im-
portant to get insight for certain probabilistic events
and they can be evaluated through quadratic forms or
Rayleigh quotients constructed over these functions’
matrix representations over a finite Hilbert space.

The matrix representation of a function, in its ab-
stract definition, does not impose any limitation on the
multivariance as long as appropriate Hilbert spaces
with appropriate inner products are in use. Hence,
what we are going to develop here does not concep-
tually differ from univariance to multivariance. How-
ever, for explicit representation reasons, it is better
to confine ourselves on the univariate functions, al-
though the multivariate functions, which may bring
certain level complications in formulae, can be treated
by using same tools as well.

Expected values of the operators are derived from
their matrix representations over basis sets appropri-
ately defined for the Hilbert space of the problem
under consideration. The exact definition requires a
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complete basis set which has generally denumerably
infinite number of elements. However, actual appli-
cations can handle only finite dimensional sets, and
hence, the matrix representation is approximated by
its counterpart defined on an appropriately chosen fi-
nite subspace of the Hilbert space under considera-
tion. As the dimension of this finite subspace is in-
creased the quality of the matrix representation is also
increased and after certain specific dimension one can
expect that the approximate representation becomes
same as the exact representation within a prescribed
numerical accuracy. The choice of the finite subspace
is very important to get a rapid convergence and in
fact it is a matter of expertise on the structuring of the
basis set elements. Especially, the creation or imita-
tion of the anticipated behavior of the unknowns in
the Hilbert space under consideration, at certain spe-
cific values of the independent variables (like singu-
lar points) in the basis set elements, is desired. Be-
yond this fact, all basis sets give slow or fast con-
vergence in the matrix representation sequences con-
structed through finite subspaces of the Hilbert space
under consideration.

Now, to be more specific, we can consider the
Hilbert spaceH of continuos (continuity is imposed
here for simplicity, by paying sufficient care inte-
grable discontinuities can be added into analysis) and
therefore square integrable functions over the interval
[ a, b ] and denote its basis set, which is orthonormal
with respect to the inner product defined through an
integration weighed under the nonnegative function
w(x) over the interval[ a, b ], by

U ≡ {ui(x)}∞i=1 , x ∈ [ a, b ] (1)

The orthonormality means

(ui, uj) ≡

∫ b

a

dxw(x)ui(x)uj(x) = δij ,

1 ≤ i, j < ∞ (2)

wherew(x) may vanish at most a finite number of
times in the interval and thex dependence of the ba-
sis functions is not explicitly shown in the notation of
the inner product at the left hand side sincex plays
the role of the dummy integration (and therefore in-
dexing) variable, and,δij stands for the Kroenecker’s
delta symbol which produces1 wheni = j otherwise
0.

Now, we can define the subspaceHn spanned by
the following finite subset

Un ≡ {ui(x)}n
i=1 , x ∈ [ a, b ] , 1 ≤ n < ∞ (3)

which means that an arbitrary functiong(x) in this
subspace can be uniquely defined as the following lin-

ear combination

g(x) ≡
n∑

i=1

giui(x), x ∈ [ a, b ] (4)

wheregis symbolize the constants to specify the func-
tion g(x). The expected value of an arbitrary linear
operatorL which mapsHn onto itself, with respect
to the functiong(x), is given through the following
equality

Eg (L) ≡
(g,Lg)

(g, g)
=

gT
nLngn

gT
ngn

, L : Hn → Hn

(5)
where

gT
n ≡ [ g1 ... gn ] (6)

andLn stands for ann×n matrix whose general term
is defined as

L(i,j)
n ≡ eT

i Lnej ≡ (ui,Luj) , 1 ≤ i, j ≤ n (7)

and it is the matrix representation of the operatorL
onHn. In this formulaei represents thei-th standard
unit vector, inn dimensional cartesian space, whose
only nonzero element is located at thei-th position
and equals to1.

The matrixLn depends on the nature of the oper-
atorL and this dependence prevents universality. Our
purpose is to develop a representation of this matrix
in terms of rather universal matrices like the matrix
representation of the independent variable or certain
derived entities through rather simple relations. Be-
fore attempting to do so we focus our attention on a
specific class of operators, algebraic operators whose
actions on their operands is just multiplication by a
function which may be multivariate although we pre-
fer to deal with the univariate ones for simplicity. The
extension what we are going to obtain for the univari-
ate case to the multivariate cases seems to be con-
ceptually straightforward, however, there will be of
course a certain level of mathematical complication in
the formulae. This extension is out of the scope of this
paper.

The paper is organized as follows. The second
section focuses on a theorem for the approximation of
the matrix representation of a product of algebraic op-
erators whose actions on their arguments are just the
multiplications by functions. This is what we need to
prove the fluctuationlessness theorem on the approx-
imation of matrix representation of the multiplying–
by–a–function type algebraic operators. The defini-
tions of the fluctuation operator and the first order
fluctuation matrix of a function which are necessary
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for the proof of this theorem are also given in this sec-
tion. The third section focuses on the matrix represen-
tations of the natural number powers of the indepen-
dent variable. The definitions of universal fluctuation
matrices are also given in this section. The purpose
of this section together with the previous one is to
prepare the necessary background to the fluctuation-
lessness theorem for the matrix representation of an
algebraic operator which multiplies its operand by a
function’s value. The fourth section involves the ex-
planation and the proof of the fluctuationlessness the-
orem. The fifth section covers certain illustrative ap-
plications. The sixth section including concluding re-
marks finalizes the paper.

2 Approximate factorization for the
matrix representation to a binary
product of function operators

Let us consider the operatorx̂ whose domain isH (de-
fined in the previous section) and its action on a func-
tion g(x) from this Hilbert space is defined as

x̂g(x) = xg(x), x ∈ [ a, b, ] , g(x) ∈ H (8)

If we consider the subspaceHn which was introduced
in the previous section and define the projection oper-
ators

Pjg(x) ≡ uj(x) (uj , g) , 1 ≤ j ≤ n, g(x) ∈ H (9)

wherePj projects to the one dimensional subspace
spanned byuj(x) in Hn and the multidimensional
projection operator

P (n) ≡

n∑
j=1

Pj (10)

which maps toHn then we can write the following
identity whereI represents the unit operator onH

I ≡ P (n) +
[
I − P (n)

]
(11)

The interpretation of the operator
[
I − P (n)

]
may require a little bit more details. To this end, we
can write

g(x) ≡ P (n)g(x)+
[
I−P (n)

]
g(x), g(x) ∈ H (12)

whereP (n)g(x) belongs toHn while
[
I−P (n)

]
g(x)

lies in its complementary space. SinceP (n), as being

a projection operator, is idempotent; one can easily
show that

P (n)
[
I − P (n)

]
= P (n) − P (n)2

= P (n) − P (n) = 0̂ (13)

is a valid equality wherê0 stands for the zero opera-
tor onH. (13) guarantees thatP (n)g(x) is orthogo-
nal to

[
I − P (n)

]
g(x) for any function inH. There-

fore (12) corresponds to an orthogonal decomposition.
This is quite natural because the basis set ofHn and
its complementary space are orthogonal. Now, one
can write

[
I − P (n)

]
g(x) =

∞∑
i=n+1

giui(x), g(x) ∈ H (14)

which has infinite number of terms oscillating around
zero because of orthogonalities of the basis functions.
These infinite number of oscillations result in some-
how arbitrary increases and decreases from zero and
we may call them fluctuations to use the terminology
of probability related sciences like quantum mechan-
ics, statistical mechanics. By referring to this termi-
nology we will call

[
I − P (n)

]
“Fluctuation Opera-

tor”.
(14) implies that the real numbers defined by∥∥[

I − P (n)
]
g
∥∥ (n = 1, 2, ...) values form a nonin-

creasing sequence whose limit is zero. That is,

lim
n→∞

∥∥∥[
I − P (n)

]
g
∥∥∥ = 0 g(x) ∈ H (15)

This means that the image ofg(x) under the operator[
I − P (n)

]
must diminish asn grows unboundedly.

Now we can define the following operators to pro-
ceed

Lf1
g(x) ≡ f1 (x̂) g(x) ≡ f1 (x) g(x),

g(x) ∈ H (16)

Lf2
g(x) ≡ f2 (x̂) g(x) ≡ f2 (x) g(x),

g(x) ∈ H (17)

from where the following product operator is defined

Lf1f2
g(x) ≡ Lf1

Lf2
g(x), g(x) ∈ H (18)

where the functionsf1(x) andf2(x) are assumed to
be analytic on the interval[ a, b ] although we do not
need the actual analiticity in the proof of the theorem
of this section. We will need it in the proof of the
fluctuationlessness theorem.

The general terms of the matrix representations of
the operators in (16) and (17) overHn can be written
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through the following equalities

eT
i L

(n)
f1

ej ≡ (ui, f1 (x̂)uj) , 1 ≤ i, j ≤ n (19)

eT
i L

(n)
f2

ej ≡ (ui, f2 (x̂)uj) , 1 ≤ i, j ≤ n (20)

and the following one for the product operator in (18)

eT
i L

(n)
f1f2

ej ≡ (ui, f1 (x̂) f2 (x̂)uj) ,

1 ≤ i, j ≤ n (21)

Now by using the identity given in (11) here we can
get the following equality

(ui, f1 (x̂) f2 (x̂)uj) ≡
(
ui, f1 (x̂) P (n)f2 (x̂) uj

)
+

(
ui, f1 (x̂)

[
I − P (n)

]
f2 (x̂) uj

)
,

1 ≤ i, j ≤ n (22)

Since the fluctuation operator realizes a projection it
is identical to its square. On the other hand, both the
fluctuation operator and the algebraic operatorf1 (x̂)
are hermitian. These permit us to write(
ui, f1 (x̂)

[
I − P (n)

]
f2 (x̂) uj

)
=

([
I − P (n)

]
f1 (x̂)ui,

[
I − P (n)

]
f2 (x̂)uj

)
,

1 ≤ i, j ≤ n (23)

which means∣∣∣(ui, f1 (x̂)
[
I − P (n)

]
f2 (x̂) uj

)∣∣∣
≤

∥∥∥[
I − P (n)

]
f1 (x̂)ui

∥∥∥ ∥∥∥[
I − P (n)

]
f2 (x̂) uj

∥∥∥ ,

1 ≤ i, j ≤ n (24)

because of the Cauchy–Schwarz inequalities. If we
define the following operatorsF1 andF2 which are
in fact the reduced–by–idempotency forms of the op-
erators at the rightmost norm terms of above equa-
tion, and, will be called “First Order Fluctuation Op-
erators”of the functionsf1(x) andf2(x) because the
fluctuation operator appears only once in the struc-
tures of these operators

F1 ≡ f1 (x̂)
[
I − P (n)

]
f1 (x̂) , (25)

F2 ≡ f2 (x̂)
[
I − P (n)

]
f2 (x̂) (26)

then we can symbolize their matrix representations on
Hn by F

(n)
1 andF

(n)
2 respectively. This enables us to

rewrite (24) as follows∣∣∣(ui, f1 (x̂)
[
I − P (n)

]
f2 (x̂) uj

)∣∣∣
≤

(
eT

i F
(n)
1 ei

) 1

2

(
eT

j F
(n)
2 ej

) 1

2

, 1 ≤ i, j ≤ n (27)

Function based fluctuation operatorsF1 andF2 some-
how measure the smoothness of the functionsf1(x)
and f2(x) and more fluctuation means less smooth-
ness and vice versa.

Since the norms in the right hand side of (24) tend
to vanish whenn grows up to infinity, as long asU is
complete; the fluctuation operator containing term at
the right hand side of (22) becomes negligible beside
the fluctuation operator free term. Hence we can write

(ui, f1 (x̂) f2 (x̂)uj) ≈
(
ui, f1 (x̂)P (n)f2 (x̂)uj

)

=
n∑

k=0

(ui, f1 (x̂)uk) (uk, f2 (x̂)uj) ,

1 ≤ i, j ≤ n (28)

We call this approximate equality “Fluctuationless-
ness Approximation”. In matrix representation termi-
nology, this approximation can be written by using the
matrices given in (19), (20), and (21) as follows

L
(n)
f1f2

≈ L
(n)
f1

L
(n)
f2

, 1 ≤ n < ∞ (29)

This is the mathematical statement of the following
theorem:

Theorem 1 The matrix representation of a binary
product of function type operators is the product of
the individual matrix representations of those opera-
tors with the same ordering of their operator counter-
parts, at the fluctuationless limit.

which will be called “Fluctuationlessness Theorem
for a Binary Product”.

3 Matrix representations for natural
number powers of the independent
variable

We can use Theorem 1 to approximate the matrix rep-
resentations of the natural number powers of the op-
eratorx̂. If we denote the matrix representation ofx̂k

on the subspaceHn by X
(n)
k then we can write

eT
i X

(n)
k ej ≡

(
ui, x̂

kuj

)
,

1 ≤ i, j ≤ n, k = 0, 1, 2, ... (30)

We can write the following approximation formula for
X

(n)
2 by considering the operator̂x2 as the product of

x̂ with itself.

X
(n)
2 ≈ X2, X ≡ X

(n)
1 (31)
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Now we can proceed one step ahead and consider the
operatorx̂3 as the product̂x2x̂. This allows us to write
the following approximations in accordance with The-
orem 1 and (31).

X
(n)
3 ≈ X

(n)
2 X

(n)
1 ≈ X3 (32)

Being inspired by (31) and (32) we can propose the
following general approximation formula

X
(n)
k ≈ Xk, k = 0, 1, 2, ... (33)

which matches (31) and (32) fork = 2 andk = 3
respectively. It becomes exact whenk = 0 andk = 1
as can be easily proven. Therefore all conditions for
a mathematical induction are provided. By assuming
that (33) holds for certaink value we can write

X
(n)
k+1 ≈ X

(n)
k X ≈ Xk+1, k = 0, 1, 2, ... (34)

This completes the proof of the following theorem

Theorem 2 The matrix representation of a natural
number power of the operator̂x is the same natural
number power of the matrix representation ofx̂, at
the fluctuationless limit.

which will be called “Fluctuationlessness Approxima-
tion for Natural Number Power of the Independent
Variable”.

The smoothness of the functionxk decreases as
the natural numberk increases. This implies that the
error coming from the ignorance of the fluctuations
grows parallel to the increase ink.

4 Fluctuationlessness Theorem for
algebraic operators which multiply
their operands by a function

Consider the following algebraic operator whose ac-
tion on its operand fromH is the multiplication by a
given functionf(x) which is assumed to be analytic
on the interval[ a, b ]

Lfg(x) ≡ f (x̂) g(x) ≡ f(x)g(x),

g(x) ∈ Hn (35)

The analiticity off(x) on the interval[ a, b ] guaran-
tees the convergence of the following power series ex-
panded atx = (a + b)/2 for entire interval[ a, b ]

f(x) =
∞∑

k=0

fk

(
x −

a + b

2

)k

(36)

wherefk is equivalent to the quotient of the function’s
k–th order derivative’s value atx = a+b

2 by k!. This
power series expansion implies

f (x̂) =

∞∑
k=0

fk

(
x̂ −

a + b

2
Î

)k

(37)

Since it is a linear procedure to take the matrix rep-
resentation, the matrix representation of the operator
will be an infinite sum over the matrix representation
of the summand of (37). This means that we can write

F(n) =

∞∑
k=0

fk

k∑
ℓ=0

(
k

ℓ

)(
−

a + b

2

)ℓ

X
(n)
k−ℓ (38)

where we can use fluctuationless theorem on the nat-
ural number powers of the independent variable, that
is,

X
(n)
k−ℓ ≈ Xk−ℓ, k = 0, 1, 2..., ℓ = 0, 1, ..., k (39)

which enables us to get an analytical approximate
structure for the finite sum in (38)

k∑
ℓ=0

(
k

ℓ

) (
−

a + b

2

)ℓ

X
(n)
k−ℓ ≈

(
X−

a + b

2
I(n)

)k

,

k = 0, 1, 2, ... (40)

where we have used the fact that the zeroth power of
X is n × n unit matrix I(n) which is also equivalent
to the rightmost matrix in the above equation whenk
meets0.

We can now focus on the spectrum ofn × n ma-
trix X. Its spectrum composes of real values because
of its symmetry. On the other hand, a quadratic form
constructed overX is equivalent to the integral of the
product of a function, which is positive since it is
the square of a linear combination of the basis func-
tions, by the independent variablex over the interval
[ a, b, ]. Hence a Rayleigh quotient constructed over
X is bounded byb anda respectively from above and
below. This means that that the spectrum ofX is lo-
cated in the interval[ a, b ] as we expect. This fact
guarantees that the power series over the rightmost
power term in (40) with linear combination coefficient
fk converge. This, however, implies that

F(n) ≈

∞∑
k=0

fk

(
X−

a + b

2
I(n)

)k

≡ f (X) (41)

because of the analyticity off(x) over the entire in-
terval[ a, b ]. This result can be stated in the following
theorem.
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Theorem 3 The matrix representation of an alge-
braic multiplication–by–a–univariate–function type
operator, whose function is analytic on the interval
[ a, b ], overHn is the image of the matrix represen-
tation of the independent variable overHn under the
function of the considered algebraic operator, at the
fluctuationlessness limit.

We call this “Fluctuationlessness Theorem for
Functions”. This is a very important issue because
it brings the universality to the evaluation of the ma-
trix representations at least approximately. This is be-
cause of (41) where the matrix representation needs
the evaluation ofX first and this procedure does not
depend on the structure off(x), hence it is universal.
There are many ways to evaluate the matrixf (X).
However, the best one seems to be using the spectral
method where the spectral decomposition of the ma-
trix X is constructed first and then the eigenvalues in
the formula changed by the images of the eigenvalues
underf . This enables us to deal with the solution of
the eigenvalue problem of the matrixX first. It is of
course universal, that is, does not depend onf . The
dependence onf appears only when we construct the
images of the eigenvalues underf , and obviously, this
is rather simple operation since it does not require the
solution of any set of equations.

Last discussions imply thatf (X) can be ex-
pressed as a linear combination of thef values eval-
uated at the eigenvalues ofX with matrix coefficients
each of which is the projection matrix projecting to the
eigenspace spanned by the eigenvector corresponding
to X’s eigenvalue used as thef ’s evaluation point.
This means that fluctuation free matrix representa-
tion stated in the fluctuationless theorem above has a
quadrature [13–24] like structure.

5 Illustrative numerical implementa-
tions

In this section we are going to apply fluctuationless-
ness theorem (Theorem 3) on three different functions
chosen from three essential categories to discuss the
efficiency of the theorem on different functional char-
acters. Our purpose is to compare the actual matrix
representation of a functionf(x), F(n), with its fluc-
tuationless approximation,f (X). We could do this
elementwise but it would leave us with presentation
of many values, plots, the number of which would
increase asn grows, that is, it would be too much
comprehensive for the presentation in a scientific pa-
per. Instead, we could compare one or two, but just a
few, global features like the norms of these two enti-
ties, to get just a few real valued properties for each

n value. We are going to use two basic functionals:
(1) Increase in Diagonal Square Dominancy and (2)
Relative Error. The first one of these functionals is
based on the increase in the following entity we call
“Diagonal Square Dominancy Measurer”

µdsd

(
F(n)

)
≡

Tr
(
Diag

(
F(n)

)2
)

Tr
(
F(n)2

) (42)

where we have used the symmetry of the matrixF(n).
The numerator and the denominator of (42)’s right
hand side are in fact the Frobenius norm squares of
the diagonal matrix ofF(n) and itself. The reason
why we do not use square roots of the numerator and
denominator as is done in the square norm definition
lies in the fact that square rooting is avoided (if pos-
sible) in especially symbolic computer programming
or scripting although it does not seem to be problem-
atic at the first glance. To complete the definition of
the first functional mentioned above we need to use
the spectral components of the matrixX. If we de-
note thei–th eigenvalue and the corresponding nor-
malized eigenvector ofX by ξi and xi respectively
then we can define an orthornomal matrix,Q, whose
columns from left to right are the vectorsxis in as-
cending subindex. The linear mapping on the carte-
sian counterpart ofHn under this matrix results in an
n dimensional rotation in axes such that the matrix
X becomes diagonal under this mapping so does the
matrixf (X). A similar action is expected for the ma-
trix F(n) which is approximated byf (X), in accor-
dance with the fluctuationlessness theorem. Although
we may not expect an exact diagonalization inF(n)

after the rotation, we may expect an increase in the
diagonal square dominancy of the same matrix. If we
define

F
(n)
rot ≡ QTF(n)Q (43)

and therefore

µdsd

(
F

(n)
rot

)
≡

Tr

(
Diag

(
F

(n)
rot

)2
)

Tr

(
F

(n)
rot

2
) (44)

then we can arrive at the following functional which
measures the increase (we call it increase since we ex-
pect so, but, depending on the structure of the function
f , it may decrease seldomly) in the matrixF(n) after
the rotation

Idsd

(
F(n)

)
≡ µdsd

(
F

(n)
rot

)
− µdsd

(
F(n)

)
(45)
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This is the first one of what we want to use in qual-
ity investigations of this section. We callIdsd

(
F(n)

)
“Diagonal Square Dominancy Increase”.

The second functional can be explicitly defined
either in the following form

εrel

(
F

(n)
rot

)
≡

Tr
((

F(n) − f (X)
)2

)
Tr

(
F(n)2

) (46)

or in its equivalent form obtained after the rotation
throughQ. We call it “Relative Error”

εrel

(
F

(n)
rot

)
≡

Tr

((
F

(n)
rot − Ξ

)2
)

Tr

(
F

(n)
rot

2
)

≡

Tr

((
F

(n)
rot − Ξ

)2
)

Tr
(
F(n)2

) (47)

where

Ξ ≡ QT f (X)Q (48)

and we have used the fact that the trace operation is
not affected by orthonormal transformations. We are

going to use theIdsd

(
F(n)

)
andεrel

(
F

(n)
rot

)
function-

als in the numerical implementations of this section as
the quality observers.

For simplicity, we are going to use the interval
[ 0, 1 ] and unit weight, here, in the implementations.
The independent variable of three functions we are
going to investigate here is taken as scaled by a pa-
rameterα to work on a family of functions instead of
a single function in each case. Thus, steepening or
flattening of the functions can be controlled by this
parameter and it becomes possible to see the role of
the smoothness on the quality of the fluctuationless
approximation.

MuPAD Computer Algebra System which has
lost its free software nature quite recently has been
used in numerical and symbolic calculations. Its nec-
essary routines for calculations have been run in high
precision when necessary and its plotting facilities
were used to produce the figures.

Here we present totally six figures, three for each

of Idsd

(
F(n)

)
andεrel

(
F

(n)
rot

)
. Each figure have five

curves painted in different colors and the color table
are given at the right uppermost part of the figures.
Colors will not be seen explicitly in black and white
prints of the paper although its pdf files will contain

them. The used colors are red, brick, green, blue, and
black forH1, H2, H3, H4, andH5 respectively.

The first function is the exponential function’s
scaled argumented version

f1(x) ≡ eαx (49)

which has no singularity at any point in the finite re-
gions of the complex domain of its real independent
variable when it is extended to take complex values.
That is, it is analytic over the interval[ 0, 1 ] and also
everywhere except infinity. It is also monotonously
increasing as the argument moves from0 to 1. The
curvature of the plot increases whenα grows over the
positive real values.
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Figure 1: The increase in diagonal square dominancy
for the functionf(x) ≡ eαx as the Hilbert subspace’s
dimension (n) increases in fluctuationlessness approx-
imation.

The Figure 1 shows the increases in diagonal
square dominancy after the rotations making indepen-
dent variable’s matrix representation diagonal, as the
dimension of the related Hilbert spaceHn increases.
Whereas Figure 2 depicts the relative error’s change
with respect toα for first five dimensions. It can be
easily noticed that the diagonal dominancy becomes
better and the relative error tends to decrease starting
from the small values of alpha as the dimension in-
creases. The greater the alpha values the smaller the
efficiency of fluctuationless theorem.

Similar behaviors may be expected for the second
function given by

f2(x) ≡
41

(1 + αx) (41 − αx)
(50)

WSEAS TRANSACTIONS on MATHEMATICS Metin Demiralp

ISSN: 1109-2769 264 Issue 6, Volume 8, June 2009



Dimension=1
Dimension=2
Dimension=3
Dimension=4
Dimension=5

5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Scaling Parameter (alpha)

R
el

at
iv

e 
E

rr
or

Figure 2: The relative error in norm square with
respect to the matrix representation of the function
f(x) ≡ eαx as the Hilbert subspace’s dimension (n)
increases in fluctuationlessness approximation.

where there are two polar singularities at the right
hand sides. They are located on the real axis outside
the interval[ 0, 1 ]. The left pole is positioned at the
point−1/α and moves from minus infinity to the ori-
gin asα grows unboundedly. However it never gets
the value of0. The second pole’s location is41/α
and it remains outside the interval[ 0, 1 ] as long as
α does not arrive at or exceeds41. For α ≥ 41 the
pole becomes an interior point of the interval[ 0, 1 ]
and destroys the proper integrability of the function
f2 over the interval[ 0, 1 ]. Although it may be pos-
sible to use improper integration which excludes in-
terior poles this is not a natural way and it is out of
the content of the fluctuationless theorem here. Hence
we have depicted the curves for the real values ofα
between0 and40 here to avoid this singularity. The
results are given in Figure 3 and 4.
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Figure 3: The increase in diagonal square dominancy
for the functionf(x) ≡ 1/ (1 + αx) (41 − αx) as the
Hilbert subspace’s dimension (n) increases in fluctua-
tionlessness approximation.
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Figure 4: The relative error in norm square with
respect to the matrix representation of the function
f(x) ≡ 1/ (1 + αx) (41 − αx) as the Hilbert sub-
space’s dimension (n) increases in fluctuationlessness
approximation.

The sharp upward variation tendency around the sin-
gularity in the curves is apparent and evidently due to
the pole atα = 41.

The third and therefore last example is for the fol-
lowing oscilllatory function

f3(x) ≡ cos (αx) (51)

whose oscillation frequency increases asα tends to
grow. The function is analytic everywhere except in-
finity. The oscillatory behavior is reflected to the plots
which are given in Figure 5 and 6. However, the order
of the fluctuationlessness aproximation, that is,n or
the dimension ofHn suppresses all oscillatory behav-
ior of the relative error starting from small values of
α.
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Figure 5: The increase in diagonal square dominan-
cy for the functionf(x) ≡ cos (αx) as the Hilbert
subspace’s dimension (n) increases in fluctuationless-
ness approximation.
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Figure 6: The relative error in norm square with
respect to the matrix representation of the function
f(x) ≡ cos (αx) as the Hilbert subspace’s dimension
(n) increases in fluctuationlessness approximation.

In this example, there is no singularity issue, the
negative effects on efficiency come from the oscilla-
tory behaviour of the function and may require higher
dimensional matrices to get the same efficiency as the
monotonous functions.

One important point to be emphasized on here
before closing the section is the removable singu-
lar structures especially in the first and third exam-
ples. These may not be easily handled by all kind
of programming or scripting languages unless specific
coding efforts are spent. This is perhaps one of the
strongest reasons why symbolic scripting languages
or computer algebraic systems are preferred to be used
in the implementations of this paper.

6 Concluding remarks

An important theorem which seems to be powerful to
open new horizons in various problems of sciences
and engineering is given with its proof in this paper.
This very first form of it is limited to the matrix rep-
resentations of algebraic operators whose actions on
their operands are just multiplication with a specified
univariate function which is assumed to be analytic
on the interval of the inner product used in the def-
inition of the matrix representation. However, there
are many signals implying the possibility of extending
this theorem to the multivariate functions and towards
the integrable singularities, in our studies. Our current
researches on many application of this theorem is also
encouraging.

The fact that even lower dimensions like 3,4,5
give very promising results with high accuracy urges

us to apply this theorem in diverse fields of problems.
Although we have not given explicitly the relative er-
ror it is very small for alpha values around or less
than 1. It is possible to get even ten decimal digits
around these alpha values as long as the function is
sufficiently smooth and the approximation becomes
exact (as naturally expected) when the function un-
der consideration is linear. On the other hand, there
are certain implications that it will be possible to in-
crease the accuracy via certain appropriate transfor-
mation for less efficient cases.

At this point, the function’s smoothness and sin-
gularity free nature over the related interval are es-
sential items to get higher accuracy. We believe that
by taking these facts into consideration one can find
many utilization area of this theorem.
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