ON DIFFERENT TYPES OF NON-ADDITIVE SET MULTIFUNCTIONS

ANCA CROITORU
"Al.I. Cuza" University, Faculty of Mathematics, Bd. Carol I, No. 11, Iaşi, 700506, ROMANIA croitoru@uaic.ro
ALINA GAVRILUŢ
"Al.I. Cuza" University, Faculty of Mathematics
Bd. Carol I, No. 11, Iaşi, 700506, ROMANIA
gavrilut@uaic.ro
NIKOS E. MASTORAKIS
Military Institutes of University Education (ASEI), Hellenic Naval Academy
Terma Hatzikyriakou, 18593, GREECE
mastor@wseas.org
GABRIEL GAVRILUŢ
Comarna College of Iaşi, Romania
gavrilutgabriel@yahoo.com

Abstract

In this paper, we study different types of non-additive set multifunctions (such as: uniformly autocontinuous, null-additive, null-null-additive), presenting relationships among them and some of their properties regarding atoms and pseudo-atoms. We also study non-atomicity and non-pseudo-atomicity of regular null-additive set multifunctions defined on the Baire (Borel respectively) δ-ring of a Hausdorff locally compact space and taking values in the family of non-empty closed subsets of a real normed space.

Key-words: uniformly autocontinuous, null-null-additive, (pseudo)-atom, non-(pseudo)-atomic, extension, regular, Darboux property.

1 Introduction

The theory of fuzziness has many applications in probabilities (e.g. Dempster [3], Shafer [30]), computer and systems sciences, artificial intelligence (e.g. Mastorakis [21]), physics, biology, medicine (e.g. Pham, Brandl, Nguyen N.D. and Nguyen T.V. [27] in prediction of osteoporotic fractures), theory of probabilities, economic mathematics, human decision making (e.g. Liginlal on Ow [20]).

In the last years, many authors (e.g. Choquet [2], Denneberg [4], Dobrakov [5], Li [19], Pap [24, 25, 26], Precupanu [28], Sugeno [31], Suzuki [32]) investigated the non-additive field of measure theory due to its applications in mathematical economics, statistics or theory of games (see e.g. Aumann and Shapley [1]). In non-additive measure theory, some continuity conditions are used to prove important results with respect to non-additive measures (for example, Theorem of Egoroff in Li [19]). Many concepts and results of classical measure theory (such as: regularity, extension, decomposition, integral) have been studied in the
set-valued case. In [11-15] and [22] we extended and studied the concepts of atom, pseudo-atom, Darboux property, semi-convexity to the case of set-valued set functions.

In this paper, we study different types of nonadditive set multifunctions (such as: uniformly autocontinuous, null-additive, null-null-additive), presenting relationships among them and some of their properties regarding atoms and pseudo-atoms. We also study non-atomicity and non-pseudo-atomicity of regular null-additive set multifunctions defined on the Baire (Borel respectively) δ-ring of a Hausdorff locally compact space and taking values in $\mathcal{P}_{f}(X)$, the family of non-empty closed subsets of a real normed space X. We also improve in this paper several results of $[11,12,13,14]$ established for multisubmeasures.

2 Preliminaries

Let T be an abstract nonvoid set, $\mathcal{P}(T)$ the family of all subsets of T and \mathcal{C} a ring of subsets of T. The usage of different types of the domain \mathcal{C} will be adequate
to the results that will be proved and also with respect to the references.

By $i=\overline{1, n}$ we mean $i \in\{1,2, \ldots, n\}$, for $n \in$ \mathbb{N}^{*}, where \mathbb{N} is the set of all naturals and $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. We also denote $\mathbb{R}_{+}=[0,+\infty), \overline{\mathbb{R}}_{+}=[0,+\infty]$ and $\overline{\mathbb{R}}=[-\infty, \infty]$. We make the convention $\infty-\infty=0$.

Definition 2.1. A set function $\nu: \mathcal{C} \rightarrow \overline{\mathbb{R}}_{+}$is said to be:
(i) monotone if $\nu(A) \leq \nu(B)$, for every $A, B \in$ \mathcal{C}, with $A \subseteq B$.
(ii) null-monotone if for every $A, B \in \mathcal{C}, A \subseteq B$ and $\nu(B)=0 \Rightarrow \nu(A)=0$.
(iii) a submeasure (in the sense of Drewnowski [6]) if $\nu(\emptyset)=0, \nu$ is monotone and subadditive, that is, $\nu(A \cup B) \leq \nu(A)+\nu(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B=\emptyset$.
(iv) finitely additive if $\nu(\emptyset)=0$ and $\nu(A \cup B)=$ $\nu(A)+\nu(B)$, for every $A, B \in \mathcal{C}$, so that $A \cap B=\emptyset$.
(v) exhaustive if $\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=0$, for every sequence of pairwise disjoint sets $\left(A_{n}\right) \subset \mathcal{C}$.
(vi) increasing convergent if $\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=$ $\nu(A)$, for every increasing sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, with $A_{n} \nearrow A$ (that is, $A_{n} \subseteq A_{n+1}$, for every $n \in \mathbb{N}^{*}$ and $A=\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{C}$).
(vii) decreasing convergent if $\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=$ $\nu(A)$, for every decreasing sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, with $A_{n} \searrow A$ (that is, $A_{n} \supseteq A_{n+1}$, for every $n \in \mathbb{N}^{*}$ and $\left.A=\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{C}\right)$.
(viii) order-continuous (shortly o-continuous) if $\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=0$, for every sequence of sets $\left(A_{n}\right) \subset$ \mathcal{C}, so that $A_{n} \searrow \emptyset$.
(ix) autocontinuous from above if for every $A \in \mathcal{C}$ and every $\left(B_{n}\right) \subseteq \mathcal{C}$, so that $\lim _{n \rightarrow \infty} \nu\left(B_{n}\right)=0$, we have $\lim _{n \rightarrow \infty} \nu\left(A \cup B_{n}\right)=\nu(A)$.
(x) uniformly autocontinuous if for every $\varepsilon>0$, there is $\delta(\varepsilon)>0$, so that for every $A \in \mathcal{C}$ and every $B \in \mathcal{C}$, with $\nu(B)<\delta$, we have $\nu(A \cup B)<\nu(A)+\varepsilon$.
(xi) null-additive if $\nu(A \cup B)=\nu(A)$, whenever $A, B \in \mathcal{C}$ and $\nu(B)=0$.
(xii) null-null-additive if $\nu(A \cup B)=0$, whenever $A, B \in \mathcal{C}$ and $\nu(A)=\nu(B)=0$.

Definition 2.2. Let $\nu: \mathcal{C} \rightarrow \mathbb{R}_{+}$be a set function, with $\nu(\emptyset)=0$.
(i) A set $A \in \mathcal{C}$ is said to be an atom of ν if $\nu(A)>0$ and for every $B \in \mathcal{C}$, with $B \subseteq A$, we have $\nu(B)=0$ or $\nu(A \backslash B)=0$.
(ii) A set $A \in \mathcal{C}$ is called a pseudo-atom of ν if $\nu(A)>0$ and $B \in \mathcal{C}, B \subseteq A$ implies $\nu(B)=0$ or $\nu(B)=\nu(A)$.
(iii) ν is said to be non-atomic (non-pseudoatomic respectively) if it has no atoms (no pseudoatoms respectively).

Now, let (X, d) be a metric space. $\mathcal{P}_{0}(X)$ is the family of all non-empty subsets of $X, \mathcal{P}_{f}(X)$ the family of non-empty closed subsets of X and $\mathcal{P}_{b f}(X)$ the family of non-empty closed bounded subsets of X.

For every $M, N \in \mathcal{P}_{0}(X)$, we denote $h(M, N)=\max \{e(M, N), e(N, M)\}$, where $e(M, N)=\sup _{x \in M} d(x, N)$ is the excess of M over N and $d(x, N)$ is the distance from x to N. It is known that h becomes an extended metric on $\mathcal{P}_{f}(X)$ (i.e. is a metric which can also take the value $+\infty$) and h becomes a metric (called Hausdorff) on $\mathcal{P}_{b f}(X)$ (Hu and Papageorgiou [16]).

In the sequel, $(X,\|\cdot\|)$ will be a real normed space, with the distance d induced by its norm. On $\mathcal{P}_{0}(X)$ we consider the Minkowski addition " + ", defined by:

$$
M \stackrel{\bullet}{+} N=\overline{M+N}, \text { for every } M, N \in \mathcal{P}_{0}(X)
$$

where $M+N=\{x+y \mid x \in M, y \in N\}$ and $\overline{M+N}$ is the closure of $M+N$ with respect to the topology induced by the norm of X.

We denote $|M|=h(M,\{0\})$, for every $M \in$ $\mathcal{P}_{0}(X)$, where 0 is the origin of X. We have $|M|=$ $\sup \|x\|$, for every $M \in \mathcal{P}_{0}(X)$. $x \in M$

Definition 2.3. I. If $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ is a set multifunction, then μ is said to be:
(i) monotone if $\mu(A) \subseteq \mu(B)$, for every $A, B \in$ \mathcal{C}, with $A \subseteq B$.
(ii) null-monotone if for every $A, B \in \mathcal{C}, A \subseteq B$ and $\mu(B)=\{0\} \Rightarrow \mu(A)=\{0\}$.
(iii) a multisubmeasure if it is monotone, $\mu(\emptyset)=$ $\{0\}$ and $\mu(A \cup B) \subseteq \mu(A)+\mu(B)$, for every $A, B \in$ \mathcal{C}, with $A \cap B=\emptyset$ (or, equivalently, for every $A, B \in$ $\mathcal{C})$.
(iv) a multimeasure if $\mu(\emptyset)=\{0\}$ and $\mu(A \cup$ $B)=\mu(A)+\mu(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B=$ \emptyset.
(v) autocontinuous from above if for every $A \in \mathcal{C}$ and every $\left(B_{n}\right) \subset \mathcal{C}$ so that $\lim _{n \rightarrow \infty}\left|\mu\left(B_{n}\right)\right|=0$, we have $\lim _{n \rightarrow \infty} h\left(\mu\left(A \cup B_{n}\right), \mu(A)\right)=0$.
(vi) uniformly autocontinuous if for every $\varepsilon>0$, there is $\delta(\varepsilon)=\delta>0$, so that for every $A \in \mathcal{C}$ and every $B \in \mathcal{C}$, with $|\mu(B)|<\delta$, we have $h(\mu(A \cup$ $B), \mu(A))<\varepsilon$.
(vii) null-additive if for every $A, B \in \mathcal{C}, \mu(B)=$ $\{0\} \Rightarrow \mu(A \cup B)=\mu(A)$.
(viii) null-null-additive if for every $A, B \in \mathcal{C}$, so that $\mu(A)=\mu(B)=\{0\}$, we have $\mu(A \cup B)=\{0\}$.

Remark 2.4. I. All the concepts of Definition 2.3 may also be defined in the case $X=\overline{\mathbb{R}}$ (for (iii) and (iv) we must suppose, moreover, that $\mu(A)+\mu(B)$ is well defined for every $A, B \in \mathcal{C}$).
II. If μ is $\mathcal{P}_{f}(X)$-valued, then in Definition 2.3(iii) and (iv) it usually appears " + " instead of " + ", because the sum of two closed sets is not always closed.
III. In some of our following results, we shall assume μ to be $\mathcal{P}_{f}(X)$-valued, when we need h to be an extended metric.
IV. Every monotone set multifunction is nullmonotone.
V. Every monotone multimeasure is a multisubmeasure.
VI. For any multivalued set function $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{0}(X)$, we consider the set function $\bar{\mu}: \mathcal{P}(T) \rightarrow \overline{\mathbb{R}}_{+}$, called the variation of μ, defined for every $A \in \mathcal{P}(T)$ by:

$$
\begin{gathered}
\bar{\mu}(A)=\sup \left\{\sum_{i=1}^{n}\left|\mu\left(B_{i}\right)\right| ; B_{i} \subset A, B_{i} \in \mathcal{C}\right. \\
\left.\forall i \in\{1, \ldots, n\}, B_{i} \cap B_{j}=\emptyset, \forall i \neq j\right\}
\end{gathered}
$$

For every $A \in \mathcal{C}$, we have $|\mu(A)| \leq \bar{\mu}(A)$. So, if $\bar{\mu}(A)=0$, then $\mu(A)=\{0\}$. If μ is null-monotone, then $\bar{\mu}(A)=0$ if and only if $\mu(A)=\{0\}$, for every $A \in \mathcal{C}$. If μ is a multisubmeasure, then $\bar{\mu}$ is finitely additive (Gavriluţ [7]).

Suppose $T \in \mathcal{C}$ and μ is a multisubmeasure, so that $\bar{\mu}$ is countably additive and $\bar{\mu}(T)>0$. Then we can generate a system of upper and lower probabilities (with applications in statistical inference - see Dempster [3]) in the following way:

Let $\mathcal{A}=\left\{E \subset X \mid \mu^{-1}(E), \mu^{+1}(E) \in \mathcal{C}\right\}$, where for every $E \subset X$,

$$
\mu^{-1}(E)=\{t \in T \mid \mu(\{t\}) \cap E \neq \emptyset\}
$$

and $\mu^{+1}(E)=\{t \in T \mid \mu(\{t\}) \subset E\}$. For every $E \in$ \mathcal{A}, we define the upper probability of E to be

$$
P^{*}(E)=\frac{\bar{\mu}\left(\mu^{-1}(E)\right)}{\bar{\mu}(T)}
$$

and the lower probability of E to be

$$
P_{*}(E)=\frac{\bar{\mu}\left(\mu^{+1}(E)\right)}{\bar{\mu}(T)}
$$

We remark that $P^{*}, P_{*}: \mathcal{A} \rightarrow[0,1]$ and $P_{*}(E) \leq$ $P^{*}(E)$, for every $E \in \mathcal{A}$.

One may regard $\bar{\mu}\left(\mu^{-1}(E)\right)$ as the largest possible amount of probability from the measure $\bar{\mu}$ that can be transferred to outcomes $x \in E$ and $\bar{\mu}\left(\mu^{+1}(E)\right)$ as the minimal amount of probability that can be transferred to outcomes $x \in E$.

Remark 2.5. Definitions 2.3 generalize those of Definition 2.1 in two directions.
I. Let $\nu: \mathcal{C} \rightarrow \overline{\mathbb{R}}_{+}$be a set function and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}\left(\overline{\mathbb{R}}_{+}\right)$defined by $\mu(A)=\{\nu(A)\}$, for every $A \in \mathcal{C}$. Then the following statements hold:
(i) μ is null-monotone (null-additive, null-nulladditive, autocontinuous from above respectively) if and only if the same is ν.
(ii) μ is a multimeasure if and only if ν is finitely additive.
(iii) μ is monotone if and only if ν is constant, $\nu(A)=\alpha \in[0,+\infty]$, for every $A \in \mathcal{C}$. In this case, $\mu(A)=\{\alpha\}$, for every $A \in \mathcal{C}$. So, the monotonicity becomes interesting in set-valued case, when the set multifunction is not single-valued.
(iv) If μ is uniformly autocontinuous, then ν is uniformly autocontinuous too. Indeed, let $\varepsilon>0$. Since μ is uniformly autocontinuous, there is $\delta(\varepsilon)=$ $\delta>0$ such that

$$
\begin{align*}
& \forall A \in \mathcal{C}, \forall B \in \mathcal{C},|\mu(B)|<\delta \\
& \Rightarrow h(\mu(A \cup B), \mu(A))<\varepsilon \tag{1}
\end{align*}
$$

Let $A \in \mathcal{C}$ and $B \in \mathcal{C}$ so that $\nu(B)=|\mu(B)|<\delta$. From (1), it follows $h(\mu(A \cup B), \mu(A))=\mid \nu(A \cup B)-$ $\nu(A) \mid<\varepsilon$, which implies $\nu(A \cup B)<\nu(A)+\varepsilon$. So ν is uniformly autocontinuous.

The converse is not valid. For example, let $T=$ $\{a, b\}, \mathcal{C}=\mathcal{P}(T), \nu(T)=1, \nu(\{a\})=0, \nu(\{b\})=$ $\nu(\emptyset)=2$ and $\mu(A)=\{\nu(A)\}$, for every $A \in \mathcal{C}$.

We prove that ν is uniformly autocontinuous: for every $\varepsilon>0$, let $\delta=\frac{1}{2}>0$. Then $\nu(B)<\frac{1}{2} \Rightarrow B=$ $\{a\}$. We now have $\nu(A \cup B)<\nu(A)+\varepsilon$, for every $A \in \mathcal{C}$. So ν is uniformly autocontinuous.

But μ is not uniformly autocontinuous. Indeed, there exists $\varepsilon=1$ such that for every $\delta>0$, there exist $A=\{b\}$ and $B=\{a\}$ with $|\mu(B)|=0<\delta$, so that $h(\mu(A \cup B), \mu(A))=1=\varepsilon$.
(v) If ν is monotone and uniformly autocontinuous, then μ is also uniformly autocontinuous. This results from the following equality: $h(\mu(A \cup$ $B), \mu(A))=|\nu(A \cup B)-\nu(A)|=\nu(A \cup B)-\nu(A)$, for every $A, B \in \mathcal{C}$, since ν is monotone.
II. Let $\nu: \mathcal{C} \rightarrow \overline{\mathbb{R}}_{+}$be a set function and μ : $\mathcal{C} \rightarrow \mathcal{P}_{f}\left(\overline{\mathbb{R}}_{+}\right)$defined by $\mu(A)=[0, \nu(A)]$, for every $A \in \mathcal{C}$. Then the following statements hold:
(i) μ is monotone (null-monotone, autocontinuous from above, null-additive, null-null-additive respectively) if and only if the same is ν.
(ii) μ is a multisubmeasure (a multimeasure respectively) if and only if ν is a submeasure (finitely additive respectively).
(iii) If μ is uniformly autocontinuous, then ν is also uniformly autocontinuous. (One reasons like in I-(iv) from above). To see that the converse is not valid, we consider ν defined like in I-(iv) and $\mu(A)=$ $[0, \nu(A)]$, for every $A \in \mathcal{C}$. Thus, ν is uniformly autocontinuous, but μ is not uniformly autocontinuous.
(iv) If ν is monotone and uniformly autocontinuous, then μ is uniformly autocontinuous. (The proof follows like in I-(v) from above).

Theorem 2.6. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction. Then the following statements hold:
I. If μ is a multisubmeasure, then μ is uniformly autocontinuous.
II. If μ is a multisubmeasure, then μ is nulladditive.
III. If μ is uniformly autocontinuous, then μ is autocontinuous from above and null-null-additive.
IV. If μ is autocontinuous from above, then μ is null-monotone and null-null-additive.
V. If μ is null-additive, then μ is null-null-additive and null-monotone.
VI. Suppose $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(X)$. If μ is autocontinuous from above, then μ is null-additive.

These relationships are synthetized in the following schema:

$"-->$ means the hypothesis $" \mu: \mathcal{C} \rightarrow \mathcal{P}_{f} "$ msm=multisubmeasure n-mon=null-monotone uac=uniformly autocontinuous n-add=null-additive n-n-add=null-null-additive
$a c-a b=a u t o c o n t i n u o u s ~ f r o m ~ a b o v e ~$

Proof. I. Let $A \in \mathcal{C}, \varepsilon>0$ and $B \in \mathcal{C}$ such that $|\mu(B)|<\varepsilon$. Since μ is monotone, it results $\mu(A) \subseteq$ $\mu(A \cup B)$ which implies $e(\mu(A), \mu(A \cup B))=0$.

Since $\mu(A \cup B) \subseteq \mu(A)+\mu(B)$, it follows:

So, $h(\mu(A \cup B), \mu(A))<\varepsilon$, which proves that μ is uniformly autocontinuous.
II. Let $A, B \in \mathcal{C}$, so that $\mu(B)=\{0\}$. Since μ is monotone, we have $\mu(A) \subseteq \mu(A \cup B)$. Since μ is a multisubmeasure, we have $\mu(A \cup B) \subseteq \mu(A)+$ $\mu(B)=\mu(A)$. So $\mu(A \cup B)=\mu(A)$, which proves that μ is null-additive.
III. First, we prove that μ is autocontinuous from above. Let $A \in \mathcal{C}$ and $\left(B_{n}\right) \subset \mathcal{C}$, so that $\left|\mu\left(B_{n}\right)\right| \rightarrow$ 0 . Since μ is uniformly autocontinuous, for every $\varepsilon>$ 0 , there is $\delta(\varepsilon)=\delta>0$, so that for every $A \in \mathcal{C}$ and every $B \in \mathcal{C}$, with $|\mu(B)|<\delta$, we have

$$
\begin{equation*}
h(\mu(A \cup B), \mu(A))<\varepsilon \tag{2}
\end{equation*}
$$

Since $\left|\mu\left(B_{n}\right)\right| \rightarrow 0$, there is $n_{0} \in \mathbb{N}$, such that $\left|\mu\left(B_{n}\right)\right|<\delta$, for every $n \in \mathbb{N}, n \geq n_{0}$. From (2) it follows $h\left(\mu\left(A \cup B_{n}\right), \mu(A)\right)<\varepsilon$, for every natural $n \geq n_{0}$, which implies that $\lim _{n \rightarrow \infty} h(\mu(A \cup$ $\left.\left.B_{n}\right), \mu(A)\right)=0$. So μ is autocontinuous from above. We now prove that μ is null-null-additive. Let $A, B \in$ \mathcal{C}, such that $\mu(A)=\mu(B)=\{0\}$. So, $|\mu(B)|=$ $0<\delta$ and, since μ is uniformly autocontinuous, it results $|\mu(A \cup B)|<\varepsilon$, for every $\varepsilon>0$. This implies $\mu(A \cup B)=\{0\}$. So μ is null-null-additive.
IV. First, we prove that μ is null-monotone. Let $A, B \in \mathcal{C}$, so that $A \subseteq B$ and $\mu(B)=\{0\}$. Let $B_{n}=B$, for every $n \in \mathbb{N}$. So $\left|\mu\left(B_{n}\right)\right| \rightarrow 0$. Since μ is autocontinuous from above, we obtain $|\mu(A)|=$ $h\left(\mu\left(A \cup B_{n}\right), \mu(A)\right) \rightarrow 0$. This implies $|\mu(A)|=$ 0 and so, $\mu(A)=\{0\}$, which shows that μ is nullmonotone. We now show that μ is null-null-additive. Let $A, B \in \mathcal{C}$, such that $\mu(A)=\mu(B)=\{0\}$ and let $B_{n}=B$, for every $n \in \mathbb{N}$. Then $\left|\mu\left(B_{n}\right)\right| \rightarrow$ 0 . Since μ is autocontinuous from above, we have $\lim _{n \rightarrow \infty} h\left(\mu\left(A \cup B_{n}\right), \mu(A)\right)=0$. This implies $\mid \mu(A \cup$ $B) \mid=0$, so $\mu(A \cup B)=\{0\}$ and thus μ is null-nulladditive.
V. It results straightforward from definitions.
VI. Let $A, B \in \mathcal{C}$ so that $\mu(B)=\{0\}$. We consider $B_{n}=B$, for every $n \in \mathbb{N}$, so $\left|\mu\left(B_{n}\right)\right| \rightarrow 0$. By the autocontinuity from above, it follows $h(\mu(A \cup$ $B), \mu(A))=0$. Since μ is $\mathcal{P}_{f}(X)$-valued, it results $\mu(A \cup B)=\mu(A)$, which proves that μ is nulladditive.

In the following examples we observe that the converses of the statements of Theorem 2.6 are not valid.

Examples 2.7

I. Let $T=\mathbb{N}, \mathcal{C}=\mathcal{P}(\mathbb{N})$ and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined for every $A \in \mathcal{C}$ by $\mu(A)=\{0\}$ if A is finite and $\mu(A)=[1, \infty)$, if A is countable. Then μ is uniformly autocontinuous and it is not a multisubmeasure.
II. Let $T=\{a, b\}, \mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(T)=[0,2], \mu(\{a\})=\mu(\{b\})=$
$\left[0, \frac{1}{2}\right]$ and $\mu(\emptyset)=\{0\}$. Then μ is null-additive, but it is not a multisubmeasure.
III. Let $T=[0,1], \mathcal{C}$ the Borel σ-algebra on T, $\lambda: \mathcal{C} \rightarrow \mathbb{R}_{+}$the Lebesgue measure and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}\left(\overline{\mathbb{R}}_{+}\right)$defined by $\mu(A)=\{\nu(A)\}$, where $\nu(A)=$ $\operatorname{tg}\left(\frac{\pi}{2} \lambda(A)\right)$, for every $A \in \mathcal{C}$.

According to Example 4-[17], ν is autocontinuous from above. From Remark 2.5-I-(i), it results that μ is autocontinuous from above.

According to Example 4-[17], ν is not uniformly autocontinuous. Now, from Remark 2.5-I-(iv), it follows that μ is not uniformly autocontinuous.
IV. Let $T=\{a, b\}, \mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(T)=[0,2], \mu(\{b\})=[0,1]$ and $\mu(\{a\})=\mu(\emptyset)=\{0\}$. Then μ is null-monotone and null-null-additive, but it is not a multisubmeasure, not null-additive and, since μ is \mathcal{P}_{f}-valued, not uniformly autocontinuous and not autocontinuous from above.
V. Let $T=\{a, b\}, \mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(A)=\{1,2\}$ if $A=T$ and $\mu(A)=\{0\}$ otherwise. Then μ is null-monotone, but μ is not null-null-additive and not null-additive.
VI. Let $T=\{a, b\}, \mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(A)=\{1,2\}$ if $A=\{a\}$ or $A=$ $\{b\}, \mu(\emptyset)=\{3\}$ and $\mu(\{a, b\})=\{0\}$. Then μ is null-null-additive, but not null-monotone.
VII. Let $T=[0,+\infty), \mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(\emptyset)=\{0\}, \mu(A)=A$ if $\operatorname{card} A=$ $1, \mu(A)=[0, \delta(A)]$ if A is bounded with $\operatorname{card} A \geq 2$ and $\mu(A)=[0, \infty)$ if A is not bounded. Here, $\operatorname{card} A$ is the cardinal of A and $\delta(A)=\sup \{\|t-s\| ; t, s \in$ $A\}$ is the diameter of A. Then μ is null-additive, but not autocontinuous from above. Indeed, there exist $A=\{1\}$ and $B_{n}=\left[0, \frac{1}{n}\right]$, for every $n \in \mathbb{N}^{*}$, such that $\left|\mu\left(B_{n}\right)\right|=\frac{1}{n} \rightarrow 0$, but $h\left(\mu\left(A \cup B_{n}\right), \mu(A)\right)=$ $h([0,1],\{1\})=1 \nrightarrow 0$.

Remark 2.8. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction and the set function $|\mu|: \mathcal{C} \rightarrow \overline{\mathbb{R}}_{+}$defined by $|\mu|(A)=|\mu(A)|$, for every $A \in \mathcal{C}$. Then the following statements hold:
I. μ is null-monotone (null-null-additive respectively) if and only if the same is $|\mu|$.
II. If μ is monotone, then $|\mu|$ is also monotone. The converse is not true. Indeed, let $T=\{a, b\}, \mathcal{C}=$ $\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(T)=\{1\}$, $\mu(\{a\})=\mu(\{b\})=[0,1]$ and $\mu(\emptyset)=\{0\}$. We have $|\mu(A)|=1$ if $A \neq \emptyset$ and $|\mu(\emptyset)|=0$. Then $|\mu|$ is monotone, but μ is not monotone.
III. If μ is null-additive, then $|\mu|$ is null-additive. The converse is not valid. Indeed, let $T=\{a, b\}, \mathcal{C}=$ $\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(T)=[0,1]$, $\mu(\{a\})=\{1\}$ and $\mu(\{b\})=\mu(\emptyset)=\{0\}$. We have $|\mu(A)|=1$ if $A=T$ or $A=\{a\}$ and $|\mu(A)|=0$ if
$A=\{b\}$ or $A=\emptyset$. Then $|\mu|$ is null-additive, but μ is not null-additive.
IV. If μ is autocontinuous from above, then $|\mu|$ is autocontinuous from above and this results from the inequality:
$||\mu(A \cup B)|-|\mu(A)|| \leq h(\mu(A \cup B), \mu(A)), \forall A, B \in \mathcal{C}$.
The converse is not true. Indeed, let $T=[0,1]$, $\mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(\emptyset)=$ $\mu(\{0\})=\{0\}, \mu(A)=A$ if $A=\left[0, \frac{1}{n}\right], n \in \mathbb{N}^{*}$, $\mu(A)=[0,1]$ if $A=\left[0, \frac{1}{n}\right] \cup\{1\}, n \in \mathbb{N}^{*}$ and $\mu(A)=\{1\}$ otherwise. Then $|\mu(A)|=0$ if $A=\emptyset$ or $A=\{0\},|\mu(A)|=\frac{1}{n}$ if $A=\left[0, \frac{1}{n}\right], n \in \mathbb{N}^{*}$ and $|\mu(A)|=1$ otherwise.

Let us prove that $|\mu|$ is autocontinuous from above. Consider $A \in \mathcal{C}$ and $\left(B_{n}\right) \subset \mathcal{C}$ so that $\left|\mu\left(B_{n}\right)\right| \rightarrow 0$. Then we may suppose, without any loss of generality, that $B_{n} \in\left\{\emptyset,\{0\},\left[0, \frac{1}{n}\right]\right\}$, for every $n \in \mathbb{N}^{*}$. It follows $\left|\mu\left(A \cup B_{n}\right)\right| \rightarrow|\mu(A)|$, which proves that $|\mu|$ is autocontinuous from above.

We now show that μ is not autocontinuous from above. Indeed, there exist $A=\{1\}$ and $B_{n}=\left[0, \frac{1}{n}\right]$, for every $n \in \mathbb{N}^{*}$, such that $\left|\mu\left(B_{n}\right)\right|=\frac{1}{n} \rightarrow 0$ and $h\left(\mu\left(A \cup B_{n}\right), \mu(A)\right)=h([0,1],\{1\})=1 \nrightarrow 0$. So μ is not autocontinuous from above.
V. If μ is uniformly autocontinuous, then the same is $|\mu|$ and this results like in IV. The converse is not valid. Indeed, we consider μ as in IV. Since μ is not autocontinuous from above, according to Theorem 2.6-III, it results that μ is not uniformly autocontinuous. We prove that $|\mu|$ is uniformly autocontinuous. Let $\varepsilon>0$ and $\delta=\varepsilon$. Also, let $B \in \mathcal{C}$, so that $|\mu(B)|<\delta=\varepsilon$. Then $|\mu(A \cup B)|<|\mu(A)|+\varepsilon$, for every $A \in \mathcal{C}$, which proves that $|\mu|$ is uniformly autocontinuous.

Definition 2.9. (Gavriluţ [7-10]) A set multifunction $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ is said to be:
(i) exhaustive if $\lim _{n \rightarrow \infty}\left|\mu\left(A_{n}\right)\right|=0$, for every pairwise disjoint sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$.
(ii) order continuous (shortly, o-continuous) $\lim _{n \rightarrow \infty}\left|\mu\left(A_{n}\right)\right|=0$, for every sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, such that $A_{n} \searrow \emptyset$.
(iii) increasing convergent if $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=$ $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ with respect to h, for every increasing sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, such that $A_{n} \nearrow A$, where $A=\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{C}$.
(iv) decreasing convergent if $\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=$ $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ with respect to h, for every decreasing
sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, such that $A_{n} \searrow A$, where $A=\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{C}$.
(v) fuzzy if $\mu(\emptyset)=\{0\}$ and μ is monotone, increasing convergent and decreasing convergent.

Remark 2.10. (Gavriluţ [7-10]) I. If $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(X)$ is exhaustive and increasing convergent, then μ is o-continuous.
II. Suppose \mathcal{C} is a σ-ring and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(X)$ is monotone and o-continuous. Then μ is exhaustive.
III. Suppose $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(X)$ is uniformly autocontinuous, with $\mu(\emptyset)=\{0\}$. Then the following statements hold:
(i) If μ is o-continuous, then μ is increasing convergent.
(ii) μ is o-continuous if and only if μ is decreasing convergent.
(iii) If μ is monotone, then μ is o-continuous if and only if it is fuzzy.
IV. If $\nu: \mathcal{C} \rightarrow \mathbb{R}_{+}$is a set function and $\mu:$ $\mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ is defined by $\mu(A)=[0, \nu(A)]$, for every $A \in \mathcal{C}$, then μ is exhaustive (o-continuous, increasing convergent, decreasing convergent, fuzzy respectively) if and only if the same is ν.
V. If \mathcal{C} is finite, then any set multifunction, with $\mu(\emptyset)=\{0\}$ is exhaustive, o-continuous, increasing convergent and decreasing convergent.

3 Atoms and pseudo-atoms

In this section, we present some properties of atoms and pseudo-atoms for different types of set multifunctions.

Definition 3.1. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction, with $\mu(\emptyset)=\{0\}$.
(i) A set $A \in \mathcal{C}$ is said to be an atom of μ if $\mu(A) \supsetneq\{0\}$ and for every $B \in \mathcal{C}$, with $B \subseteq A$, we have $\mu(B)=\{0\}$ or $\mu(A \backslash B)=\{0\}$.
(ii) A set $A \in \mathcal{C}$ is called a pseudo-atom of μ if $\mu(A) \supsetneq\{0\}$ and for every $B \in \mathcal{C}$, with $B \subseteq A$, we have $\mu(B)=\{0\}$ or $\mu(B)=\mu(A)$.
(iii) μ is said to be non-atomic (non-pseudoatomic respectively) if it has no atoms (no pseudoatoms respectively).
(iv) μ has the Darboux property if for every $A \in$ \mathcal{C}, with $\mu(A) \supseteq\{0\}$ and every $p \in(0,1)$, there is $B \in \mathcal{C}$ so that $B \subseteq A$ and $\mu(B)=p \mu(A)$.

Remark 3.2. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction, with $\mu(\emptyset)=\{0\}$.
I. If μ is monotone, then μ is non-atomic (non-pseudo-atomic respectively) if for every $A \in \mathcal{C}$, with
$\mu(A) \supsetneq\{0\}$, there is $B \in \mathcal{C}$ so that $B \subseteq A, \mu(B) \supsetneq$ $\{0\}$ and $\mu(A \backslash B) \supsetneq\{0\}(\mu(A) \supsetneq \mu(B)$ respectively $)$.
II. If μ is null-monotone, then $A \in \mathcal{C}$ is an atom of μ if and only if A is an atom of $\bar{\mu}$.
III. If μ is null-additive, then every atom of μ is a pseudo-atom of μ (as we shall see in Examples 3.5I, the converse is not valid). Consequently, any non-pseudo-atomic monotone null-additive set multifunction is non-atomic.

Definition 3.3. Let $\mu_{1}, \mu_{2}: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be set multifunctions. One says that μ_{1} is absolutely continuous with respect to μ_{2} (denoted by $\mu_{1} \ll \mu_{2}$) if for every $A \in \mathcal{C}$, $\mu_{2}(A)=\{0\} \Rightarrow \mu_{1}(A)=\{0\}$.

Remark 3.4.

I. Let $\mu_{1}, \mu_{2}: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be monotone set multifunctions so that $\mu_{1}(\emptyset)=\mu_{2}(\emptyset)=\{0\}$ and $\mu_{1} \ll \mu_{2}$. Let $A \in \mathcal{C}$, with $\mu_{1}(A) \supsetneq\{0\}$. If A is an atom of μ_{2}, then A is an atom of μ_{1} too.
II. Suppose $\mu_{1}, \mu_{2}: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ are monotone set multifunctions so that $\mu_{1}(\emptyset)=\mu_{2}(\emptyset)=\{0\}$, $\mu_{1} \ll \mu_{2}$ and $\mu_{1}(A) \supsetneq\{0\}$, for every $A \in \mathcal{C} \backslash\{\emptyset\}$. If μ_{1} is non-atomic, then μ_{2} is also non-atomic.

Example 3.5. I. Let $T=\{a, b, c\}, \mathcal{C}=\mathcal{P}(T)$ and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(A)=[0,1]$ if $A \neq \emptyset$ and $\mu(A)=\{0\}$ if $A=\emptyset$. Then μ is null-additive, $A=\{a, b\}$ is a pseudo-atom of μ, but not an atom of μ.
II. Let $T=2 \mathbb{N}=\{0,2,4, \ldots\}, \mathcal{C}=\mathcal{P}(T)$ and for every $A \in \mathcal{C}$:

$$
\mu(A)= \begin{cases}\{0\}, & \text { if } A=\emptyset \\ \frac{1}{2} A \cup\{0\}, & \text { if } A \neq \emptyset\end{cases}
$$

where $\frac{1}{2} A=\left\{\left.\frac{x}{2} \right\rvert\, x \in A\right\} . \mu$ is a multisubmeasure.
If $A \in \mathcal{C}$, with $\operatorname{card} A=1$ and $A \neq\{0\}$ or $A \in$ $\mathcal{C}, A=\{0,2 n\}, n \in \mathbb{N}^{*}$, then A is an atom of μ (and a pseudo-atom of μ too, according to Remark 3.2-III and Theorem 2.6-II). By card A we mean the cardinal of A.

If $A \in \mathcal{C}$, with $\operatorname{card} A \geq 2$ and there exist $a, b \in A$ such that $a \neq b$ and $a b \neq 0$, then A is not a pseudoatom of μ (and not an atom of μ, according to Remark 3.2-III).
III. Let $\mathcal{C}=\mathcal{P}(\mathbb{N})$ and $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined for every $A \in \mathcal{C}$ by

$$
\mu(A)= \begin{cases}\{0\}, & \text { if } A \text { is finite } \\ \{0\} \cup\left[n_{A},+\infty\right), & \text { if } A \text { is infinite and } \\ & n_{A}=\min A .\end{cases}
$$

Then μ is monotone and non-pseudo-atomic.

Remark 3.6. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction, with $\mu(\emptyset)=\{0\}$.
I. If $A \in \mathcal{C}$ is a pseudo-atom of μ and $B \in \mathcal{C}, B \subseteq$ A such that $\mu(B) \supsetneq\{0\}$, then B is a pseudo-atom of μ and $\mu(B)=\mu(A)$.
II. Suppose μ is null-monotone and $\mu(\emptyset)=\{0\}$. If $A \in \mathcal{C}$ is an atom of μ and $B \in \mathcal{C}, B \subseteq A$ such that $\mu(B) \supsetneq\{0\}$, then B is an atom of μ and $\mu(A \backslash B)=$ $\{0\}$.

Theorem 3.7. Suppose $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ is monotone, so that $\mu(\emptyset)=\{0\}$ and $A, B \in \mathcal{C}$ are pseudoatoms of μ. Then the following statements hold:
I. $\mu(A) \neq \mu(B) \Rightarrow \mu(A \cap B)=\{0\}$.
II. Suppose μ is null-null-additive. If $\mu(A \cap B)=$ $\{0\}$, then $A \backslash B$ and $B \backslash A$ are pseudo-atoms of μ and $\mu(A \backslash B)=\mu(A), \mu(B \backslash A)=\mu(B)$.

Proof. I) Suppose $\mu(A \cap B) \supsetneq\{0\}$. According to Remark 3.6-I, we have $\mu(A \cap B)=\mu(A)=\mu(B)$, which is false.
II. Let us prove that $\mu(A \backslash B) \supsetneq\{0\}$. Suppose on the contrary that $\mu(A \backslash B)=\{0\}$. Since μ is null-nulladditive, we have $\mu(A)=\mu((A \backslash B) \cup(A \cap B))=$ $\{0\}$, which is false. So, $\mu(A \backslash B) \supsetneq\{0\}$ and from Remark 3.6-I, it results that $A \backslash B$ is a pseudo-atom of μ and $\mu(A \backslash B)=\mu(A)$. Analogously, $B \backslash A$ is a pseudo-atom of μ and $\mu(B \backslash A)=\mu(B)$.

Theorem 3.8. Suppose $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ is monotone and null-null-additive, so that $\mu(\emptyset)=\{0\}$ and $A, B \in \mathcal{C}$ are pseudo-atoms of μ. Then there exist pairwise disjoint sets $E_{1}, E_{2}, E_{3} \in \mathcal{C}$, with $A \cup B=$ $E_{1} \cup E_{2} \cup E_{3}$, such that, for every $i \in\{1,2,3\}$, either E_{i} is a pseudo-atom of μ, or $\mu\left(E_{i}\right)=\{0\}$.

Proof. Let $E_{1}=A \cap B, E_{2}=A \backslash B, E_{3}=B \backslash A$. We have the following cases:
(i) $\mu\left(E_{1}\right)=\{0\}$. According to Theorem 3.7II, E_{2} and E_{3} are pseudo-atoms of μ and $\mu\left(E_{2}\right)=$ $\mu(A), \mu\left(E_{3}\right)=\mu(B)$.
(ii) $\mu\left(E_{1}\right) \supsetneq\{0\}, \mu\left(E_{2}\right) \supsetneq\{0\}, \mu\left(E_{3}\right) \supsetneq\{0\}$. By Remark 3.6-I, E_{1} is a pseudo-atom of μ and $\mu\left(E_{1}\right)=\mu(A)=\mu(B)$. Analogously, E_{2} and E_{3} are pseudo-atoms of μ.
(iii) $\mu\left(E_{1}\right) \supsetneq\{0\}, \mu\left(E_{2}\right)=\{0\}, \mu\left(E_{3}\right) \supsetneq\{0\}$. From Remark 3.6-I, it results that E_{1} is a pseudo-atom of μ and $\mu\left(E_{1}\right)=\mu(A)=\mu(B)$. Analogously, E_{3} is a pseudo-atom of μ and $\mu\left(E_{3}\right)=\mu(B)$.

The last two cases are similar to (iii).
(iv) $\mu\left(E_{1}\right) \supsetneq\{0\}, \mu\left(E_{2}\right) \supsetneq\{0\}, \mu\left(E_{3}\right)=\{0\}$.
(v) $\mu\left(E_{1}\right) \supsetneq\{0\}, \mu\left(E_{2}\right)=\mu\left(E_{3}\right)=\{0\}$.

Remark 3.9. By induction, the same result of Theorem 3.8 can be obtained for every finite family $\left\{A_{i}\right\}_{i=1}^{n}$ of pseudo-atoms of μ. Consequently, we
can write $\bigcup_{i=1}^{n} A_{i}=\left(\bigcup_{j=1}^{m} B_{j}\right) \cup E$, where $\left\{B_{j}\right\}_{j=1}^{m}, E$ are pairwise disjoint sets of \mathcal{C}, such that $\left\{B_{j}\right\}_{j=1}^{m}$ are pseudo-atoms of μ and $\mu(E)=\{0\}$.

Theorem 3.10. Suppose \mathcal{C} is a σ-ring and μ : $\mathcal{C} \rightarrow \mathcal{P}_{f}(X)$ is fuzzy, null-null-additive and exhaustive. Then there exists a sequence $\left(B_{n}\right)_{n \in \mathbb{N}^{*}}$ of pairwise disjoint pseudo-atoms of μ satisfying the conditions:
(i) $\left|\mu\left(B_{n}\right)\right| \geq\left|\mu\left(B_{n+1}\right)\right|, \forall n \in \mathbb{N}^{*}$,
(ii) $\lim _{n \rightarrow \infty}\left|\mu\left(B_{n}\right)\right|=0$,
(iii) $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}^{*}$, such that $\left|\mu\left(\bigcup_{k=n_{0}}^{\infty} B_{k}\right)\right|<\varepsilon$.

Proof. Let $\mathcal{A}_{m}=\{E \in \mathcal{C} \mid E$ is a pseudo-atom of μ and $\left.\frac{1}{m} \leq|\mu(E)|<\frac{1}{m+1}\right\}$, for every $m \in \mathbb{N}^{*}$. Then \mathcal{A}_{m} contains at most finite pairwise disjoint sets. Suppose, on the contrary, there are infinite pairwise disjoint sets $\left(E_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{A}_{m}$. So, we have $\left|\mu\left(E_{n}\right)\right| \geq$ $\frac{1}{m}$, for every $n \in \mathbb{N}^{*}$. Since μ is exhaustive, it follows $\lim _{n \rightarrow \infty}\left|\mu\left(E_{n}\right)\right|=0$, which is false. Hence, there exist at most finite pairwise disjoint pseudo-atoms in \mathcal{A}_{m}, for every $m \in \mathbb{N}^{*}$ and denote all of them by $\left\{B_{n}\right\}_{n=1}^{\infty}$. Now, (i) is evidently satisfied. Since $\left(B_{n}\right)$ are pairwise disjoint and μ is exhaustive, it results (ii). We remark that $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} B_{k}=\emptyset$. If we denote $A_{n}=\bigcup_{k=n}^{\infty} B_{k}$, for every $n \in \mathbb{N}^{*}$, then we have $A_{n} \searrow \emptyset$. Since μ is o-continuous (according to Remark 2.10-I), it follows $\lim _{n \rightarrow \infty}\left|\mu\left(A_{n}\right)\right|=0$. Consequently, for every $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}^{*}$, such that $\left|\mu\left(A_{n_{0}}\right)\right|<\varepsilon$, that is $\left|\mu\left(\bigcup_{k=n_{0}}^{\infty} B_{k}\right)\right|<\varepsilon$, which proves (iii).

In the end of this section, we establish the following result which will be useful in section 4 .

Proposition 3.11. Suppose $\mathcal{C}_{1}, \mathcal{C}_{2}$ are two rings so that $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}$ and \mathcal{C}_{1} is dense in \mathcal{C}_{2} with respect to a monotone null-additive set multifunction $\mu: \mathcal{C}_{2} \rightarrow$ $\mathcal{P}_{f}(X)$ (that is, for every $\varepsilon>0$ and every $A \in \mathcal{C}_{2}$, there is $B \in \mathcal{C}_{1}$ so that $B \subseteq A$ and $\left.|\mu(A \backslash B)|<\varepsilon\right)$, with $\mu(\emptyset)=\{0\}$. If μ is non-atomic (non-pseudoatomic respectively) on \mathcal{C}_{2}, then μ is also non-atomic (non-pseudo-atomic respectively) on \mathcal{C}_{1}.

Proof. Suppose that, on the contrary, there is an atom (pseudo-atom respectively) $A \in \mathcal{C}_{1}$ for $\mu_{/ \mathcal{C}_{1}}$. Then $\mu(A) \nsupseteq\{0\}$ and for every $B \in \mathcal{C}_{1}$ with $B \subseteq A$ we have $\mu(B)=\{0\}$ or $\mu(A \backslash B)=\{0\}$ ($\mu(A)=\mu(B)$ respectively).

Because $A \in \mathcal{C}_{2}, \mu(A) \supseteq\{0\}$ and μ is nonatomic (non-pseudo-atomic respectively) on \mathcal{C}_{2}, there is $B_{0} \in \mathcal{C}_{2}$ so that $B_{0} \subseteq A, \mu\left(B_{0}\right) \supseteq\{0\}$ and $\mu\left(A \backslash B_{0}\right) \supseteq\{0\}\left(\mu(A) \nsupseteq \mu\left(B_{0}\right)\right.$ respectively). Then $\left|\mu\left(B_{0}\right)\right|>0$ and, since \mathcal{C}_{1} is dense in \mathcal{C}_{2}, for $\varepsilon_{0}=$ $\left|\mu\left(B_{0}\right)\right|$, there exists $C_{0} \in \mathcal{C}_{1}$ so that $C_{0} \subseteq B_{0}$ and $\left|\mu\left(B_{0} \backslash C_{0}\right)\right|<\varepsilon_{0}$.

Now, because $C_{0} \in \mathcal{C}_{1}$ and $C_{0} \subseteq A$, by the assumption made we get $\mu\left(C_{0}\right)=\{0\}$ or $\mu\left(A \backslash C_{0}\right)=$ $\{0\}\left(\mu(A)=\mu\left(C_{0}\right)\right.$ respectively $)$.
I. If $\mu\left(C_{0}\right)=\{0\}$, then, by the null-additivity of $\mu,\left|\mu\left(B_{0}\right)\right|=\left|\mu\left(\left(B_{0} \backslash C_{0}\right) \cup C_{0}\right)\right|=\left|\mu\left(B_{0} \backslash C_{0}\right)\right|<$ $\left|\mu\left(B_{0}\right)\right|$, which is false.
II. If $\mu\left(A \backslash C_{0}\right)=\{0\}$ (respectively, $\mu(A)=$ $\left.\mu\left(C_{0}\right)\right)$, then, in both cases, by the null-additivity of $\mu, \mu(A)=\mu\left(C_{0}\right) \nsupseteq \mu\left(B_{0}\right)$, which is false because $C_{0} \subseteq B_{0}$, so $\mu\left(C_{0}\right) \subseteq \mu\left(B_{0}\right)$.

Consequently, μ is non-atomic (non-pseudoatomic respectively) on \mathcal{C}_{1}.

4 Extension theorem by preserving non-atomicity (non-pseudoatomicity respectively)

In this section, X is a Banach space and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{b f}(X)$ is an exhaustive set multifunction. In Gavriluţ and Croitoru [13] the following result is established:

Lemma 4.1. For every $\varepsilon>0$ and every $A \subseteq T$, there exists $K \in \mathcal{C}$ such that $K \subseteq A$ and $|\mu(B \backslash K)|<$ ε, for every $B \in \mathcal{C}$, with $K \subseteq B \subseteq A$.

Using Lemma 4.1, we obtain the following results which improve those of [13].

Theorem 4.2. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{b f}(X)$ be an exhaustive multisubmeasure. Then μ extends (ie. $\mu^{*}(A)=$ $\mu(A)$, for every $A \in \mathcal{C})$ to an exhaustive monotone set multifunction $\mu^{*}: \mathcal{P}(T) \rightarrow \mathcal{P}_{b f}(X)$. If μ is non-atomic (non-pseudo-atomic respectively), then the same is μ^{*}.

Proof. According to [13], it only remains to establish the non-pseudo-atomicity part. Suppose μ is non-pseudo-atomic and, on the contrary, there is a pseudo-atom A_{0} for μ^{*}. Then $\mu^{*}\left(A_{0}\right) \supsetneq\{0\}$ and for every $B \subseteq T$, with $B \subseteq A_{0}$, we have $\mu^{*}(B)=\{0\}$ or $\mu^{*}\left(A_{0}\right)=\mu^{*}(B)$. Because $\mu^{*}\left(A_{0}\right) \supsetneq\{0\}$, by the definition of μ^{*}, there exists $C_{0} \in \mathcal{C}$ so that $C_{0} \subseteq A_{0}$ and $\mu\left(C_{0}\right) \supsetneq\{0\}$.

Since μ is non-pseudo-atomic, there is $D_{0} \in \mathcal{C}$ so that $D_{0} \subseteq C_{0}, \mu\left(D_{0}\right) \supsetneq\{0\}$ and $\mu\left(C_{0}\right) \supsetneq \mu\left(D_{0}\right)$. For $D_{0}, \mu^{*}\left(D_{0}\right)=\{0\}$ or $\mu^{*}\left(A_{0}\right)=\mu^{*}\left(D_{0}\right)$.

If $\mu^{*}\left(D_{0}\right)=\{0\}$, then $\mu\left(D_{0}\right)=\mu^{*}\left(D_{0}\right)=\{0\}$, which is false.

If $\mu^{*}\left(A_{0}\right)=\mu^{*}\left(D_{0}\right)$, then $\mu^{*}\left(D_{0}\right)=\mu\left(D_{0}\right) \subsetneq$ $\mu\left(C_{0}\right)=\mu^{*}\left(C_{0}\right) \subseteq \mu^{*}\left(A_{0}\right)=\mu^{*}\left(D_{0}\right)$, a contradiction. So, μ^{*} is non-pseudo-atomic.

From now on, suppose, moreover, that \mathcal{C} is an algebra of subsets of T.

Consider $\mathcal{C}_{\mu}=\{A \subseteq T ;$ for every $\varepsilon>0$, there exist $K, D \in \mathcal{C}$ such that $K \subseteq A \subseteq D$ and $|\mu(B)|<\varepsilon$, for every $B \in \mathcal{C}$, with $B \subseteq D \backslash K\}$. We immediately observe that, because of the monotonicity of μ, we also have $\mathcal{C}_{\mu}=\{A \subseteq T$; for every $\varepsilon>0$, there exist $K, D \in \mathcal{C}$ such that $K \subseteq A \subseteq D$ and $|\mu(D \backslash K)|<\varepsilon\}$.

One can easily check that $\mathcal{C} \subseteq \mathcal{C}_{\mu}$ and \mathcal{C}_{μ} is an algebra. Also, \mathcal{C} is dense in \mathcal{C}_{μ} with respect to μ^{*}. Indeed, for every $\varepsilon>0$ and every $A \in \mathcal{C}_{\mu}$, there exist $B, D \in \mathcal{C}$ so that $B \subseteq A \subseteq D$ and $|\mu(D \backslash B)|<\varepsilon$. Then $\left|\mu^{*}(A \backslash B)\right| \leq\left|\mu^{*}(D \backslash B)\right|=|\mu(D \backslash B)|<\varepsilon$.

Theorem 4.3. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{b f}(X)$ be an exhaustive multisubmeasure. If μ is non-atomic (non-pseudo-atomic respectively), then the same is $\mu_{/ \mathcal{C}_{\mu}}^{*}$ and it uniquely extends μ.

Proof. According to [13] and also the same as in the proof of Theorem 4.2, we get that $\mu_{/ \mathcal{C}_{\mu}}^{*}$ is nonatomic (non-pseudo-atomic respectively).

We now prove that the extension μ^{*} is unique. Suppose, on the contrary, there is another set multifunction $\varphi: \mathcal{C}_{\mu} \rightarrow \mathcal{P}_{b f}(X)$ having the properties of $\mu_{/ \mathcal{C}_{\mu}}^{*}$, which extends μ. Let $A \in \mathcal{C}_{\mu}$ be arbitrarily. By the definition of \mathcal{C}_{μ}, there are $K, D \in \mathcal{C}$ so that $K \subseteq A \subseteq D$ and $|\mu(D \backslash K)|<\varepsilon$. Then for every $\varepsilon>0$, we have:

$$
\begin{aligned}
& e\left(\mu^{*}(A), \varphi(A)\right) \leq e\left(\mu^{*}(A), \mu^{*}(D)\right)+ \\
& +e\left(\mu^{*}(D), \varphi(A)\right)=e(\mu(D), \varphi(A)) \leq \\
& \leq e(\mu(D), \mu(K))+e(\mu(K), \varphi(A))= \\
& e(\mu(D), \mu(K)) \leq \\
& \leq|\mu(D \backslash K)|<\varepsilon,
\end{aligned}
$$

hence $\mu^{*}(A) \subseteq \varphi(A)$. On the other hand,

$$
\begin{aligned}
& e\left(\varphi(A), \mu^{*}(A)\right) \\
& \leq e(\varphi(A), \varphi(D))+e\left(\varphi(D), \mu^{*}(A)\right)= \\
& =e\left(\varphi(D), \mu^{*}(A)\right)=e\left(\mu(D), \mu^{*}(A)\right) \leq \\
& \leq e(\mu(D), \mu(K))+e\left(\mu(K), \mu^{*}(A)\right) \leq \\
& \leq|\mu(D \backslash K)|+e\left(\mu^{*}(K), \mu^{*}(A)\right)= \\
& |\mu(D \backslash K)|<\varepsilon
\end{aligned}
$$

and the conclusion follows.

Corollary 4.4. Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{b f}(X)$ be an exhaustive multisubmeasure. Then μ is non-atomic (non-pseudo-atomic respectively) on \mathcal{C} if and only if $\mu_{/ \mathcal{C}_{\mu}}^{*}$ is non-atomic (non-pseudo-atomic respectively).

Proof. The "if part" follows by Theorem 4.3 and the "only if part" follows by Proposition 3.11, since \mathcal{C} is dense in \mathcal{C}_{μ}.

5 Regular non-atomic (non-pseudo atomic respectively) set multifunctions

In this section, we establish some results concerning non-atomicity and non-pseudo-atomicity for nulladditive regular set multifunctions defined on the Baire (Borel respectively) δ-ring \mathcal{B}_{0} (\mathcal{B} respectively) of a Hausdorff locally compact space and taking values in $\mathcal{P}_{f}(X)$.

From now on, let T be a Hausdorff locally compact space, \mathcal{C} a ring of subsets of T, \mathcal{B}_{0} the Baire δ ring generated by the G_{δ}-compact subsets of T (that is, compact sets which are countable intersections of open sets) and \mathcal{B} the Borel δ-ring generated by the compact subsets of T.

Definition 5.1. (Gavriluţ [11]) I. Let $\mu: \mathcal{C} \longrightarrow$ $\mathcal{P}_{f}(X)$ be a monotone set multifunction, with $\mu(\emptyset)=$ $\{0\}$.
I. A set $A \in \mathcal{C}$ is said to be (with respect to μ):
(i) $R-$ regular if for every $\varepsilon>0$, there exist a compact set $K \subseteq A, K \in \mathcal{C}$ and an open set $D \supset$ $A, D \in \mathcal{C}$ such that $e(\mu(D), \mu(K))<\varepsilon$.
(ii) R_{l} - regular if for every $\varepsilon>0$, there is a compact set $K \subseteq A, K \in \mathcal{C}$ such that $e(\mu(A), \mu(K))<$ ε.
(iii) R_{r} - regular if for every $\varepsilon>0$, there exists an open set $D \supset A, D \in \mathcal{C}$ such that $e(\mu(D), \mu(A))<$ ε;
II. μ is said to be R - regular (R_{l} - regular, R_{r} regular respectively) if every $A \in \mathcal{C}$ is R - regular (R_{l} - regular, R_{r} - regular respectively).

Theorem 5.2. Suppose $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ is monotone, null-additive and $\mu(\emptyset)=\{0\}$. Let $A \in \mathcal{B}$ with $\mu(A) \supseteq\{0\}$. Then the following statements hold:
I. If A is an atom of μ, then there is a compact set $K_{0} \in \mathcal{B}$ so that $K_{0} \subseteq A$ and $\mu\left(A \backslash K_{0}\right)=\{0\}$.

II. A is an atom of μ if and only if

$$
\begin{equation*}
\exists!a \in A \text { so that } \mu(A \backslash\{a\})=\{0\} \tag{3}
\end{equation*}
$$

III. μ is non-atomic if and only if μ is diffused, that is

$$
\begin{equation*}
\mu(\{t\})=\{0\}, \text { for every } t \in T \tag{4}
\end{equation*}
$$

Proof. I. Let $A \in \mathcal{B}$ be an atom of μ and $\mathcal{K}_{A}=$ $\{K \subseteq A ; K$ is a compact set and $\mu(A \backslash K)=\{0\}\} \subset$ \mathcal{B}.

First, we prove that every $K \in \mathcal{K}_{A}$ is an atom of μ. Indeed, if $K \in \mathcal{K}_{A}$, then, by the null-additivity of μ, we have $\mu(A)=\mu((A \backslash K) \cup K)=\mu(K) \supsetneq$ $\{0\}$. Also, for every $B \in \mathcal{B}$, with $B \subseteq K$, since $K \subseteq A$ and A is an atom of μ, we get $\mu(B)=\{0\}$ or $\mu(A \backslash B)=\{0\}$.

If $\mu(A \backslash B)=\{0\}$, then $\{0\} \subseteq \mu(K \backslash B) \subseteq$ $\mu(A \backslash B)=\{0\}$, so $\mu(K \backslash B)=\{0\}$.

Consequently, $K \in \mathcal{K}_{A}$ is an atom of μ.
We now prove that $K_{1} \cap K_{2} \in \mathcal{K}_{A}$, for every $K_{1}, K_{2} \in \mathcal{K}_{A}$. Indeed, if $K_{1}, K_{2} \in \mathcal{K}_{A}$, then $K_{1} \cap$ K_{2} is a compact set of T and $\mu\left(A \backslash\left(K_{1} \cap K_{2}\right)\right)=$ $\mu\left(\left(A \backslash K_{1}\right) \cup\left(A \backslash K_{2}\right)\right)=\{0\}$.

We prove that $\bigcap_{K \in \mathcal{K}_{A}} K$, denoted by K_{0}, is a nonvoid set. Suppose that, on the contrary, $K_{0}=\emptyset$. There are $K_{1}, K_{2}, \ldots, K_{n_{0}} \in \mathcal{K}_{A}$ so that $\bigcap_{i=1}^{n_{0}} K_{i}=\emptyset$, hence $\mu\left(\bigcap_{i=1}^{n_{0}} K_{i}\right)=\{0\}$. But $\bigcap_{i=1}^{n_{0}} K_{i} \in \mathcal{K}_{A}$, which implies $\mu\left(\bigcap_{i=1}^{n_{0}} K_{i}\right) \nsupseteq\{0\}$, a contradiction.

Now, we prove that $K_{0} \in \mathcal{K}_{A}$. Obviously, K_{0} is a compact set. Let be $K \in \mathcal{K}_{A}$. Then $\mu(A \backslash K)=\{0\}$.

If $K=K_{0}$, then $K_{0} \in \mathcal{K}_{A}$.
If $K \neq K_{0}$, then $K_{0} \varsubsetneqq K$.
Because $\mu\left(A \backslash K_{0}\right)=\mu\left((A \backslash K) \cup\left(K \backslash K_{0}\right)\right)=$ $\mu\left(K \backslash K_{0}\right)$, it remains to prove that $\mu\left(K \backslash K_{0}\right)=\{0\}$. Suppose, on the contrary, that $\mu\left(K \backslash K_{0}\right) \supseteq\{0\}$. Consider $B \in \mathcal{B}$, with $B \subseteq K \backslash K_{0}$. Then $B \subseteq K$ and, since K is an atom of μ, then $\mu(B)=\{0\}$ or $\mu(K \backslash B)=\{0\}$. If $\mu(K \backslash B)=\{0\}$, then $\mu\left(\left(K \backslash K_{0}\right) \backslash B\right)=\{0\}$. So, $K \backslash K_{0}$ is an atom of μ. Because A is an atom of μ and $\mu\left(K \backslash K_{0}\right) \nsupseteq\{0\}$, then $\mu\left(A \backslash\left(K \backslash K_{0}\right)\right)=\{0\}$.

Consequently, $\mathcal{K}_{A}=\{B \subseteq A ; B$ is a compact set and $\mu(A \backslash B)=\{0\}\}$ and $\mathcal{K}_{K \backslash K_{0}}=\left\{C \subseteq K \backslash K_{0} ; C\right.$ is a compact set and $\left.\mu\left(\left(K \backslash K_{0}\right) \backslash C\right)=\{0\}\right\}$.

Let be $C \in \mathcal{K}_{K \backslash K_{0}}$. Then $\mu\left(\left(K \backslash K_{0}\right) \backslash C\right)=$ $\{0\}$ and, since $\mu\left(A \backslash\left(K \backslash K_{0}\right)\right)=\{0\}$, we get that $\mu(A \backslash C)=\{0\}$, which implies $C \in \mathcal{K}_{A}$. Therefore, $K_{0} \subseteq C$, but $C \subseteq K \backslash K_{0}$, a contradiction. Consequently, $\mu\left(K \backslash K_{0}\right)=\{0\}$.

So, if $A \in \mathcal{B}$ is an atom of μ, there is a compact set $K_{0} \in \mathcal{B}$ so that $K_{0} \subseteq A$ and $\mu\left(A \backslash K_{0}\right)=\{0\}$.
II. The "if part". Let $A \in \mathcal{B}$ be an atom of μ. We show that the set K_{0} from the proof of I is a singleton
$\{a\}$. Suppose, on the contrary, that there exist $a, b \in$ A, with $a \neq b$ and $K_{0} \supseteq\{a, b\}$.

Since T is a Hausdorff locally compact space, there exists an open neighbourhood V of a so that $b \notin \bar{V}$. Obviously, $K_{0}=\left(K_{0} \backslash V\right) \cup\left(K_{0} \cap \bar{V}\right)$ and $K_{0} \backslash V, K_{0} \cap \bar{V}$ are nonvoid, compact subsets of A.

We prove that $K_{0} \backslash V \in \mathcal{K}_{A}$ or $K_{0} \cap \bar{V} \in \mathcal{K}_{A}$. Indeed, if $K_{0} \backslash V \notin \mathcal{K}_{A}$ and $K_{0} \cap \bar{V} \notin \mathcal{K}_{A}$, then $\mu\left(A \backslash\left(K_{0} \backslash V\right)\right) \supsetneq\{0\}$ and $\mu\left(A \backslash\left(K_{0} \cap \bar{V}\right)\right) \supsetneq\{0\}$. Since A is an atom of μ, then $\mu\left(K_{0} \backslash V\right)=\{0\}$ and $\mu\left(K_{0} \cap \bar{V}\right)=\{0\}$. Then $\mu\left(K_{0}\right)=\{0\}$ and since $\mu\left(A \backslash K_{0}\right)=\{0\}$, we have $\{0\} \nsubseteq \mu(A)=\{0\}$, a contradiction. Consequently, $K_{0} \backslash V \in \mathcal{K}_{A}$ or $K_{0} \cap \bar{V} \in$ \mathcal{K}_{A}. Because $K_{0} \subseteq K$, for every $K \in \mathcal{K}_{A}$, we get that $K_{0} \subseteq K_{0} \backslash V$ or $K_{0} \subseteq K_{0} \cap \bar{V}$, which is impossible. So, $\exists a \in A$ so that $\mu(A \backslash\{a\})=\{0\}$.

For the uniqueness: suppose, on the contrary, that there are $a, b \in A$, with $a \neq b, \mu(A \backslash\{a\})=\{0\}$ and $\mu(A \backslash\{b\})=\{0\}$. Then $\{0\} \subseteq \mu(\{a\}) \subseteq$ $\mu(A \backslash\{b\})=\{0\}$, so $\mu(\{a\})=\{0\}$ and this implies $\mu(A)=\{0\}$, which is a contradiction.

The "only if part". Consider $A \in \mathcal{B}$, with $\mu(A) \supsetneq\{0\}$ having the property (3) and let $B \in \mathcal{B}$, with $B \subseteq A$. If $a \notin B$, then $B \subseteq A \backslash\{a\}$. Because $\mu(A \backslash\{a\})=\{0\}$, then $\mu(B)=\{0\}$. If $a \in B$, then $A \backslash B \subseteq A \backslash\{a\}$, hence $\mu(A \backslash B)=\{0\}$. Consequently, A is an atom of μ.
III. The "only if part". Suppose that, on the contrary, there is an atom $A_{0} \in \mathcal{C}$ of μ. By II, $\exists!a \in A_{0}$ so that $\mu\left(A_{0} \backslash\{a\}\right)=\{0\}$. On the other hand, $\mu(\{a\})=\{0\}$, so $\mu\left(A_{0}\right)=\{0\}$, a contradiction. Consequently, μ is non-atomic.

The "if part". Suppose that, on the contrary, there is $t_{0} \in T$ so that $\mu\left(\left\{t_{0}\right\}\right) \supsetneq\{0\}$. Because μ is nonatomic, there is a set $B \in \mathcal{B}$ such that $B \subseteq\left\{t_{0}\right\}$, $\mu(B) \nsupseteq\{0\}$ and $\mu\left(\left\{t_{0}\right\} \backslash B\right) \nsupseteq\{0\}$. Consequently, $B=\emptyset$ or $B=\left\{t_{0}\right\}$, which is false.

Remark 5.3.

I. If $\mathcal{C}=\mathcal{B}_{0}($ or $\mathcal{B})$, then the condition

$$
\begin{equation*}
\forall t \in T, \exists A_{t} \in \mathcal{C} \text { s.t. } t \in A_{t} \text { and } \mu\left(A_{t}\right)=\{0\} \tag{5}
\end{equation*}
$$

implies the condition

$$
\begin{align*}
& \forall B \in \mathcal{C} \text {, with } \mu(B) \supsetneq\{0\}, \forall t \in T, \\
& \exists A_{t} \in \mathcal{C} \text { s.t. } t \in A_{t} \text { and } e\left(\mu(B), \mu\left(A_{t}\right)\right)>0 . \tag{6}
\end{align*}
$$

II. If $\mathcal{C}=B$, then (5) is equivalent to (4).

Theorem 5.4. Let $\mathcal{C}=\mathcal{B}_{0}($ or $\mathcal{B})$ and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{f}(X)$ monotone, null-null-additive, with $\mu(\emptyset)=$ $\{0\}$. If μ is R-regular and if it has the property (6), then it is non-pseudo-atomic. If, moreover, μ is nulladditive, then μ is also non-atomic.

Proof. Supose that, on the contrary, there is a pseudo-atom $B \in \mathcal{C}$ of μ.

Because μ is R-regular then, according to [10], it is R_{l}-regular. Consequently, there is a compact set $K \in \mathcal{C}$ so that $K \subseteq B$ and $h(\mu(B), \mu(K))<|\mu(B)|$.

We observe that $\mu(K) \supseteq\{0\}$. Indeed, if $\mu(K)=$ $\{0\}$, then $|\mu(B)|<|\mu(B)|$, which is false.

According to (6), for every $t \in K$, there exists $A_{t} \in \mathcal{C}$ so that $t \in A_{t}$ and $e\left(\mu(B), \mu\left(A_{t}\right)\right)>0$.

Because μ is R-regular then, by [10], it is $R_{r^{-}}$ regular. Then, for every $t \in K$, for A_{t} there is an open set $D_{t} \in \mathcal{C}$ so that $A_{t} \subseteq D_{t}$ and

$$
\begin{aligned}
& e\left(\mu\left(D_{t}\right), \mu\left(A_{t}\right)\right) \leq h\left(\mu\left(D_{t}\right), \mu\left(A_{t}\right)\right)< \\
& <e\left(\mu(B), \mu\left(A_{t}\right)\right) .
\end{aligned}
$$

Since $t \in A_{t}$ and $A_{t} \subseteq D_{t}$, then $K \subseteq \underset{t \in K}{\cup} D_{t}$. Consequently, there exists $p \in \mathbb{N}^{*}$ so that $K \subseteq$ $\bigcup_{i=1}^{p} D_{t_{i}}$, with $t_{i} \in K$, for every $i=\overline{1, p}$.

Since $\{0\} \nsubseteq \mu(K)=\mu\left(\bigcup_{i=1}^{p}\left(D_{t_{i}} \cap K\right)\right)$, by the null-null-additivity of μ one can easily check there is $s=\overline{1, p}$ such that $\mu\left(D_{t_{s}} \cap K\right) \nsupseteq\{0\}$. Consequently,

$$
\{0\} \subsetneq \mu\left(D_{t_{s}} \cap K\right) \subseteq \mu(K) \subseteq \mu(B)
$$

Obviously, we also have $\mu\left(D_{t_{s}}\right) \supsetneq\{0\}$.
Since B is a pseudo-atom of $\mu, \mu(B) \supseteq\{0\}$ and $\mu\left(D_{t_{s}}\right) \supsetneq\{0\}$, then $\mu(B)=\mu\left(B \cap D_{t_{s}}\right)$.

On the other hand, because $e\left(\mu\left(D_{t_{s}}\right), \mu\left(A_{t_{s}}\right)\right)<$ $e\left(\mu(B), \mu\left(A_{t_{s}}\right)\right)$, then

$$
\begin{aligned}
& e\left(\mu\left(B \cap D_{t_{s}}\right), \mu\left(A_{t_{s}}\right)\right) \leq \\
& \leq e\left(\mu\left(B \cap D_{t_{s}}\right), \mu\left(D_{t_{s}}\right)\right)+e\left(\mu\left(D_{t_{s}}\right), \mu\left(A_{t_{s}}\right)\right) \\
& =e\left(\mu\left(D_{t_{s}}\right), \mu\left(A_{t_{s}}\right)\right)<e\left(\mu(B), \mu\left(A_{t_{s}}\right)\right)
\end{aligned}
$$

But $\mu(B)=\mu\left(D_{t_{s}} \cap B\right)$, a contradiction. So, μ is non-pseudo-atomic, as claimed. If, moreover, μ is null-additive, then, by Remark 3.2-III, it is also nonatomic.

Concluding remarks.

In this paper, we have presented the relationships among different types of set multifunctions (such as: multisubmeasures, uniformly autocontinuous, autocontinuous from above, null-additive, null-null-additive) and some of their properties regarding atoms, pseudo-atoms, non-atomicity, non-pseudo-atomicity and extensions by preserving non-atomicity (non-pseudo-atomicity respectively).

References:

[1] Aumann, R.J., Shapley, L.S. - Values of Non-atomic Games, Princeton University Press, Princeton, New Jersey, 1974.
[2] Choquet, G. - Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1953-1954), 131-292.
[3] Dempster, A.P. - Upper and lower probabilties induced by a multivalued mapping, Ann. Math. Statist. 38(1967), 325-339.
[4] Denneberg, D. - Non-additive Measure and Integral, Kluwer Academic Publishers, Dordrecht/Boston/London, 1994.
[5] Dobrakov, I. - On submeasures, I, Dissertationes Math. 112 (1974), 5-35.
[6] Drewnowski, L. - Topological rings of sets, continuous set functions. Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys. 20(1972), 269-286.
[7] Gavriluţ, A. - Properties of regularity for multisubmeasures, An. Şt. Univ. Iaşi, 50 (2004), 373392.
[8] Gavriluț, A. - Regularity and o-continuity for multisubmeasures, An. Şt. Univ. Iaşi, 50 (2004), 393-406.
[9] Gavriluț, A. - Semivariation and exhaustivity of set multifunctions (submitted).
[10] Gavriluț, A. - Regularity and autocontinuity of set multifunctions (submitted).
[11] Gavriluţ, A. - Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, Fuzzy Sets and Systems, 160 (2009), 1308-1317.
[12] Gavriluţ, A., Croitoru, A. - Fuzzy multisubmeasures and applications, Proceedings of the 9th WSEAS International Conference on Fuzzy Systems [FS'08], Sofia, Bulgaria, May 2-4, 2008, 113-119.
[13] Gavriluţ, A., Croitoru, A. - Non-atomicity for fuzzy and non-fuzzy multivalued set functions, Fuzzy Sets and Systems (2008), doi:10.1016/j.fss.2008.11.023.
[14] Gavriluţ, A., Croitoru, A. - Pseudo-atoms and Darboux property for set multifunctions, (submitted for publication).
[15] Gavriluţ, A., Croitoru, A., Gavriluţ, G. - Semiconvexity for set multifunctions, (submitted for publication).
[16] Hu, S., Papageorgiou, N. S. - Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
[17] Jiang, Q., Suzuki, H., Wang, Z., Klir, G. - Exhaustivity and absolute continuity of fuzzy measures, Fuzzy Sets and Systems 96(1998), 231238.
[18] Klimkin, V.M., Svistula, M.G. - Darboux property of a non-additive set function, Sb. Math. 192 (2001), 969-978.
[19] Li, J. - On Egoroff theorem on fuzzy measure spaces, Fuzzy Sets and Systems 135(2003), 367375.
[20] Liginlal, D., Ow, T.T. - Modelling attitude to risk in human decision process: An application of fuzzy measures, Fuzzy Sets and Systems 157(2006), 3040-3054.
[21] Mastorakis, N.E. - Fuzziness in Multidimensional Systems, Computational Intelligence and Applications, WSEAS-Press, 1999, 3-11.
[22] Mastorakis, N.E., Gavriluţ, A., Croitoru, A., Apreutesei, G. - On Darboux property of fuzzy multimeasures, Proccedings of the 10th WSEAS International Conference on Fuzzy Syst. [FS'09], Prague, Czech Republic, March 23-25, 2009.
[23] Olejcek, V. - Darboux property of regular measures, Mat. Cas. 24 (1974), no 3, 283-288.
[24] Pap, E. - On non-additive set functions, Atti. Sem. Mat. Fis. Univ. Modena 39 (1991), 345-360.
[25] Pap, E. - Regular null-additive monotone set function, Novi Sad. J. Math. 25, 2 (1995), 93-101.
[26] Pap, E. - Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht, 1995.
[27] Pham, T.D., Brandl, M., Nguyen, N.D., Nguyen, T.V. - Fuzzy measure of multiple risk factors in the prediction of osteoporotic fractures, Proceedings of the 9th WSEAS International Conference on Fuzzy Systems [FS'08], Sofia, Bulgaria, May 2-4, 2008, 171-177.
[28] Precupanu, A.M. - On the set valued additive and subadditive set functions, An. Şt. Univ. Iaşi, 29 (1984), 41-48.
[29] Riečan, B. - On the Dobrakov submeasure on fuzzy sets, Fuzzy Sets and Systems 151, 2005, 635-641.
[30] Shäfer, G. - A Mathematical Theory of Evidence, Princeton University Press, Princeton, N.J., 1976.
[31] Sugeno, M. - Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, 1974.
[32] Suzuki, H. - Atoms of fuzzy measures and fuzzy integrals, Fuzzy Sets and Systems, 41 (1991), 329-342.

