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1 Introduction

The theory of fuzziness has many applications in
probabilities (e.g. Dempster [3], Shafer [30]), com-
puter and systems sciences, artificial intelligence (e.g.
Mastorakis [21]), physics, biology, medicine (e.g.
Pham, Brandl, Nguyen N.D. and Nguyen T.V. [27] in
prediction of osteoporotic fractures), theory of proba-
bilities, economic mathematics, human decision mak-
ing (e.g. Liginlal on Ow [20]).

In the last years, many authors (e.g. Choquet [2],
Denneberg [4], Dobrakov [5], Li [19], Pap [24, 25,
26], Precupanu [28], Sugeno [31], Suzuki [32]) inves-
tigated the non-additive field of measure theory due
to its applications in mathematical economics, statis-
tics or theory of games (see e.g. Aumann and Shapley
[1]). In non-additive measure theory, some continu-
ity conditions are used to prove important results with
respect to non-additive measures (for example, Theo-
rem of Egoroff in Li [19]). Many concepts and results
of classical measure theory (such as: regularity, exten-
sion, decomposition, integral) have been studied in the

set-valued case. In [11-15] and [22] we extended and
studied the concepts of atom, pseudo-atom, Darboux
property, semi-convexity to the case of set-valued set
functions.

In this paper, we study different types of non-
additive set multifunctions (such as: uniformly auto-
continuous, null-additive, null-null-additive), present-
ing relationships among them and some of their prop-
erties regarding atoms and pseudo-atoms. We also
study non-atomicity and non-pseudo-atomicity of reg-
ular null-additive set multifunctions defined on the
Baire (Borel respectively)δ-ring of a Hausdorff lo-
cally compact space and taking values inPf (X), the
family of non-empty closed subsets of a real normed
spaceX. We also improve in this paper several results
of [11,12,13,14] established for multisubmeasures.

2 Preliminaries

Let T be an abstract nonvoid set,P(T ) the family of
all subsets ofT andC a ring of subsets ofT . The us-
age of different types of the domainC will be adequate
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to theresults that will be proved and also with respect
to the references.

By i = 1, n we meani ∈ {1, 2, . . . , n}, for n ∈
N∗, whereN is the set of all naturals andN∗ = N\{0}.
We also denoteR+ = [0,+∞), R+ = [0, +∞] and
R = [−∞,∞]. We make the convention∞−∞ = 0.

Definition 2.1. A set functionν : C → R+ is
saidto be:

(i) monotoneif ν(A) ≤ ν(B), for everyA,B ∈
C, with A ⊆ B.

(ii) null-monotoneif for every A,B ∈ C, A ⊆ B
andν(B) = 0 ⇒ ν(A) = 0.

(iii) a submeasure(in the sense of Drewnowski
[6]) if ν(∅) = 0, ν is monotone andsubadditive, that
is, ν(A ∪ B) ≤ ν(A) + ν(B), for everyA,B ∈ C,
with A ∩B = ∅.

(iv) finitely additiveif ν(∅) = 0 andν(A ∪B) =
ν(A)+ ν(B), for everyA,B ∈ C, so thatA∩B = ∅.

(v) exhaustiveif lim
n→∞ ν(An) = 0, for every se-

quence of pairwise disjoint sets(An) ⊂ C.
(vi) increasing convergentif lim

n→∞ ν(An) =

ν(A), for every increasing sequence of sets
(An)n∈N∗ ⊂ C, with An ↗ A (that is,An ⊆ An+1,

for everyn ∈ N∗ andA =
∞∪

n=1
An ∈ C).

(vii) decreasing convergentif lim
n→∞ ν(An) =

ν(A), for every decreasing sequence of sets
(An)n∈N∗ ⊂ C, with An ↘ A (that is,An ⊇ An+1,

for everyn ∈ N∗ andA =
∞∩

n=1
An ∈ C).

(viii) order-continuous(shortly o-continuous) if
lim

n→∞ ν(An) = 0, for every sequence of sets(An) ⊂
C, so thatAn ↘ ∅.

(ix) autocontinuous from aboveif for everyA ∈ C
and every(Bn) ⊆ C, so that lim

n→∞ ν(Bn) = 0, we

have lim
n→∞ ν(A ∪Bn) = ν(A).

(x) uniformly autocontinuousif for every ε > 0,
there isδ(ε) > 0, so that for everyA ∈ C and every
B ∈ C, with ν(B) < δ, we haveν(A∪B) < ν(A)+ε.

(xi) null-additiveif ν(A ∪B) = ν(A), whenever
A, B ∈ C andν(B) = 0.

(xii) null-null-additiveif ν(A∪B) = 0, whenever
A, B ∈ C andν(A) = ν(B) = 0.

Definition 2.2. Let ν : C → R+ be a set function,
with ν(∅) = 0.

(i) A set A ∈ C is said to be anatom of ν if
ν(A) > 0 and for everyB ∈ C, with B ⊆ A, we
haveν(B) = 0 or ν(A\B) = 0.

(ii) A set A ∈ C is called apseudo-atomof ν if
ν(A) > 0 andB ∈ C, B ⊆ A impliesν(B) = 0 or
ν(B) = ν(A).

(iii) ν is said to benon-atomic (non-pseudo-
atomic respectively) if it has no atoms (no pseudo-
atoms respectively).

Now, let (X, d) be a metric space.P0(X) is the
family of all non-empty subsets ofX,Pf (X) the fam-
ily of non-empty closed subsets ofX andPbf (X) the
family of non-empty closed bounded subsets ofX.

For every M,N ∈ P0(X), we denote
h(M,N) = max{e(M, N), e(N, M)}, where
e(M, N) = sup

x∈M
d(x,N) is the excess ofM over N

andd(x,N) is the distance fromx to N. It is known
thath becomes an extended metric onPf (X) (i.e. is
a metric which can also take the value+∞) andh be-
comes a metric (called Hausdorff) onPbf (X) (Hu and
Papageorgiou [16]).

In the sequel,(X, ‖ · ‖) will be a real normed
space, with the distanced induced by its norm. On

P0(X) we consider the Minkowski addition “
•
+”, de-

fined by:

M
•
+ N = M + N, for everyM, N ∈ P0(X),

whereM +N = {x+y|x ∈ M,y ∈ N} andM + N
is theclosure ofM + N with respect to the topology
induced by the norm ofX.

We denote|M | = h(M, {0}), for every M ∈
P0(X), where0 is the origin ofX. We have|M | =
sup
x∈M

‖x‖, for everyM ∈ P0(X).

Definition 2.3. I. If µ : C → P0(X) is a set
multifunction, thenµ is said to be:

(i) monotoneif µ(A) ⊆ µ(B), for everyA,B ∈
C, with A ⊆ B.

(ii) null-monotoneif for everyA,B ∈ C, A ⊆ B
andµ(B) = {0} ⇒ µ(A) = {0}.

(iii) a multisubmeasureif it is monotone,µ(∅) =
{0} andµ(A∪B) ⊆ µ(A) + µ(B), for everyA,B ∈
C, with A∩B = ∅ (or, equivalently, for everyA,B ∈
C).

(iv) a multimeasureif µ(∅) = {0} and µ(A ∪
B) = µ(A)+µ(B), for everyA, B ∈ C, with A∩B =
∅.

(v) autocontinuous from aboveif for everyA ∈ C
and every(Bn) ⊂ C so that lim

n→∞ |µ(Bn)| = 0, we

have lim
n→∞h(µ(A ∪Bn), µ(A)) = 0.

(vi) uniformly autocontinuousif for every ε > 0,
there isδ(ε) = δ > 0, so that for everyA ∈ C and
everyB ∈ C, with |µ(B)| < δ, we haveh(µ(A ∪
B), µ(A)) < ε.

(vii) null-additiveif for everyA,B ∈ C, µ(B) =
{0} ⇒ µ(A ∪B) = µ(A).
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(viii) null-null-additiveif for everyA,B ∈ C, so
thatµ(A) = µ(B) = {0}, we haveµ(A ∪B) = {0}.

Remark 2.4. I. All the concepts of Definition 2.3
may also be defined in the caseX = R (for (iii) and
(iv) we must suppose, moreover, thatµ(A) + µ(B) is
well defined for everyA,B ∈ C).

II. If µ is Pf (X)-valued, then in Definition 2.3-

(iii) and (iv) it usually appears“
•
+ ” instead of“ +

”, because the sum of two closed sets is not always
closed.

III. In some of our following results, we shall as-
sumeµ to bePf (X)-valued, when we needh to be an
extended metric.

IV. Every monotone set multifunction is null-
monotone.

V. Every monotone multimeasure is a multisub-
measure.

VI. For any multivalued set functionµ : C →
P0(X), we consider the set functionµ : P(T ) → R+,
calledthevariationof µ, defined for everyA ∈ P(T )
by:

µ(A) = sup{
n∑

i=1

|µ(Bi)|;Bi ⊂ A,Bi ∈ C,

∀i ∈ {1, . . . , n}, Bi ∩Bj = ∅,∀i 6= j}.
For everyA ∈ C, we have|µ(A)| ≤ µ(A). So,if

µ(A) = 0, thenµ(A) = {0}. If µ is null-monotone,
thenµ(A) = 0 if and only if µ(A) = {0}, for every
A ∈ C. If µ is a multisubmeasure, thenµ is finitely
additive (Gavriluţ [7]).

SupposeT ∈ C andµ is a multisubmeasure, so
thatµ is countablyadditive andµ(T ) > 0. Thenwe
can generate a system of upper and lower probabilities
(with applications in statistical inference - see Demp-
ster [3]) in the following way:

LetA = {E ⊂ X|µ−1(E), µ+1(E) ∈ C}, where
for everyE ⊂ X,

µ−1(E) = {t ∈ T |µ({t}) ∩ E 6= ∅}
andµ+1(E) = {t ∈ T |µ({t}) ⊂ E}. For everyE ∈
A, we definethe upper probabilityof E to be

P ∗(E) =
µ(µ−1(E))

µ(T )

andthelowerprobabilityof E to be

P∗(E) =
µ(µ+1(E))

µ(T )
.

We remark thatP ∗, P∗ : A → [0, 1] andP∗(E) ≤
P ∗(E), for everyE ∈ A.

One may regardµ(µ−1(E)) asthe largest possi-
ble amount of probability from the measureµ thatcan
betransferred to outcomesx ∈ E andµ(µ+1(E)) as
the minimal amount of probability that can be trans-
ferred to outcomesx ∈ E.

Remark 2.5. Definitions 2.3 generalize those of
Definition 2.1 in two directions.

I. Let ν : C → R+ bea set function andµ : C →
Pf (R+) definedbyµ(A) = {ν(A)}, for everyA ∈ C.
Then the following statements hold:

(i) µ is null-monotone (null-additive, null-null-
additive, autocontinuous from above respectively) if
and only if the same isν.

(ii) µ is a multimeasure if and only ifν is finitely
additive.

(iii) µ is monotone if and only ifν is constant,
ν(A) = α ∈ [0, +∞], for everyA ∈ C. In this case,
µ(A) = {α}, for everyA ∈ C. So, the monotonicity
becomes interesting in set-valued case, when the set
multifunction is not single-valued.

(iv) If µ is uniformly autocontinuous, thenν is
uniformly autocontinuous too. Indeed, letε > 0.
Sinceµ is uniformly autocontinuous, there isδ(ε) =
δ > 0 such that

(1)
∀A ∈ C, ∀B ∈ C, |µ(B)| < δ
⇒ h(µ(A ∪B), µ(A)) < ε.

Let A ∈ C andB ∈ C so thatν(B) = |µ(B)| < δ.
From (1), it followsh(µ(A∪B), µ(A)) = |ν(A∪B)−
ν(A)| < ε, which impliesν(A ∪ B) < ν(A) + ε. So
ν is uniformly autocontinuous.

The converse is not valid. For example, letT =
{a, b}, C = P(T ), ν(T ) = 1, ν({a}) = 0, ν({b}) =
ν(∅) = 2 andµ(A) = {ν(A)}, for everyA ∈ C.

We prove thatν is uniformly autocontinuous: for
everyε > 0, let δ = 1

2 > 0. Thenν(B) < 1
2 ⇒ B =

{a}. We now haveν(A ∪ B) < ν(A) + ε, for every
A ∈ C. Soν is uniformly autocontinuous.

But µ is not uniformly autocontinuous. Indeed,
there existsε = 1 such that for everyδ > 0, there
existA = {b} andB = {a} with |µ(B)| = 0 < δ, so
thath(µ(A ∪B), µ(A)) = 1 = ε.

(v) If ν is monotone and uniformly autocon-
tinuous, thenµ is also uniformly autocontinuous.
This results from the following equality:h(µ(A ∪
B), µ(A)) = |ν(A∪B)−ν(A)| = ν(A∪B)−ν(A),
for everyA,B ∈ C, sinceν is monotone.

II. Let ν : C → R+ be a set function andµ :
C → Pf (R+) definedby µ(A) = [0, ν(A)], for every
A ∈ C. Then the following statements hold:

(i) µ is monotone (null-monotone, autocontinu-
ous from above, null-additive, null-null-additive re-
spectively) if and only if the same isν.
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(ii) µ is a multisubmeasure (a multimeasure re-
spectively) if and only ifν is a submeasure (finitely
additive respectively).

(iii) If µ is uniformly autocontinuous, thenν is
also uniformly autocontinuous. (One reasons like in
I-(iv) from above). To see that the converse is not
valid, we considerν defined like in I-(iv) andµ(A) =
[0, ν(A)], for everyA ∈ C. Thus,ν is uniformly auto-
continuous, butµ is not uniformly autocontinuous.

(iv) If ν is monotone and uniformly autocontinu-
ous, thenµ is uniformly autocontinuous. (The proof
follows like in I-(v) from above).

Theorem 2.6.Letµ : C → P0(X) be a set multi-
function. Then the following statements hold:

I. If µ is a multisubmeasure, thenµ is uniformly
autocontinuous.

II. If µ is a multisubmeasure, thenµ is null-
additive.

III. If µ is uniformly autocontinuous, thenµ is au-
tocontinuous from above and null-null-additive.

IV. If µ is autocontinuous from above, thenµ is
null-monotone and null-null-additive.

V. If µ is null-additive, thenµ is null-null-additive
and null-monotone.

VI. Supposeµ : C → Pf (X). If µ is autocontinu-
ous from above, thenµ is null-additive.

These relationships are synthetized in the follow-
ing schema:

msm

²² ))RRRRRRRRRRRRRR
// n-mon

uac

++WWWWWWWWWWWWWWWWWWWWWWWWWW

²²

33ggggggggggggggggggggggggg //_______ n-add

vvlllllllllllll

99ssssssssss

n-n-add ac-aboo

eeJ
J

J
J

J

OO

” //___ ” means the hypothesis ”µ : C → Pf ”
msm=multisubmeasure
n-mon=null-monotone
uac=uniformly autocontinuous
n-add=null-additive
n-n-add=null-null-additive
ac-ab=autocontinuous from above

Proof. I. Let A ∈ C, ε > 0 andB ∈ C such that
|µ(B)| < ε. Sinceµ is monotone, it resultsµ(A) ⊆
µ(A ∪B) which impliese(µ(A), µ(A ∪B)) = 0.

Sinceµ(A ∪B) ⊆ µ(A) + µ(B), it follows:

e(µ(A∪B), µ(A)) ≤ h(µ(A)+µ(B), µ(A)) ≤ |µ(B)| < ε.

So,h(µ(A ∪ B), µ(A)) < ε, which proves thatµ is
uniformly autocontinuous.

II. Let A,B ∈ C, so thatµ(B) = {0}. Sinceµ
is monotone, we haveµ(A) ⊆ µ(A ∪ B). Sinceµ
is a multisubmeasure, we haveµ(A ∪ B) ⊆ µ(A) +
µ(B) = µ(A). Soµ(A ∪ B) = µ(A), which proves
thatµ is null-additive.

III. First, we prove thatµ is autocontinuous from
above. LetA ∈ C and(Bn) ⊂ C, so that|µ(Bn)| →
0. Sinceµ is uniformly autocontinuous, for everyε >
0, there isδ(ε) = δ > 0, so that for everyA ∈ C and
everyB ∈ C, with |µ(B)| < δ, we have

(2) h(µ(A ∪B), µ(A)) < ε.

Since |µ(Bn)| → 0, there isn0 ∈ N, such that
|µ(Bn)| < δ, for every n ∈ N, n ≥ n0. From
(2) it follows h(µ(A ∪ Bn), µ(A)) < ε, for every
naturaln ≥ n0, which implies that lim

n→∞h(µ(A ∪
Bn), µ(A)) = 0. Soµ is autocontinuous from above.
We now prove thatµ is null-null-additive. LetA,B ∈
C, such thatµ(A) = µ(B) = {0}. So, |µ(B)| =
0 < δ and, sinceµ is uniformly autocontinuous, it re-
sults|µ(A ∪ B)| < ε, for everyε > 0. This implies
µ(A ∪B) = {0}. Soµ is null-null-additive.

IV. First, we prove thatµ is null-monotone. Let
A,B ∈ C, so thatA ⊆ B and µ(B) = {0}. Let
Bn = B, for everyn ∈ N. So |µ(Bn)| → 0. Since
µ is autocontinuous from above, we obtain|µ(A)| =
h(µ(A ∪ Bn), µ(A)) → 0. This implies|µ(A)| =
0 and so,µ(A) = {0}, which shows thatµ is null-
monotone. We now show thatµ is null-null-additive.
Let A, B ∈ C, such thatµ(A) = µ(B) = {0} and
let Bn = B, for every n ∈ N. Then |µ(Bn)| →
0. Sinceµ is autocontinuous from above, we have
lim

n→∞h(µ(A ∪ Bn), µ(A)) = 0. This implies|µ(A ∪
B)| = 0, soµ(A ∪ B) = {0} and thusµ is null-null-
additive.

V. It results straightforward from definitions.
VI. Let A,B ∈ C so thatµ(B) = {0}. We con-

siderBn = B, for everyn ∈ N, so |µ(Bn)| → 0.
By the autocontinuity from above, it followsh(µ(A∪
B), µ(A)) = 0. Sinceµ is Pf (X)-valued, it results
µ(A ∪ B) = µ(A), which proves thatµ is null-
additive. ¤

In the following examples we observe that the
converses of the statements of Theorem 2.6 are not
valid.

Examples 2.7
I. Let T = N, C = P(N) andµ : C → Pf (R)

defined for everyA ∈ C by µ(A) = {0} if A is fi-
nite andµ(A) = [1,∞), if A is countable. Thenµ
is uniformly autocontinuous and it is not a multisub-
measure.

II. Let T = {a, b}, C = P(T ) and µ : C →
Pf (R) defined byµ(T ) = [0, 2], µ({a}) = µ({b}) =
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[0, 1
2 ] andµ(∅) = {0}. Thenµ is null-additive, but it

is not a multisubmeasure.
III. Let T = [0, 1], C the Borelσ-algebra onT ,

λ : C → R+ the Lebesgue measure andµ : C →
Pf (R+) definedby µ(A) = {ν(A)}, whereν(A) =
tg(π

2 λ(A)), for everyA ∈ C.
According to Example 4-[17],ν is autocontinu-

ous from above. From Remark 2.5-I-(i), it results that
µ is autocontinuous from above.

According to Example 4-[17],ν is not uniformly
autocontinuous. Now, from Remark 2.5-I-(iv), it fol-
lows thatµ is not uniformly autocontinuous.

IV. Let T = {a, b}, C = P(T ) and µ : C →
Pf (R) defined byµ(T ) = [0, 2], µ({b}) = [0, 1] and
µ({a}) = µ(∅) = {0}. Thenµ is null-monotone and
null-null-additive, but it is not a multisubmeasure, not
null-additive and, sinceµ isPf -valued, not uniformly
autocontinuous and not autocontinuous from above.

V. Let T = {a, b}, C = P(T ) and µ : C →
Pf (R) defined byµ(A) = {1, 2} if A = T and
µ(A) = {0} otherwise. Thenµ is null-monotone, but
µ is not null-null-additive and not null-additive.

VI. Let T = {a, b}, C = P(T ) and µ : C →
Pf (R) defined byµ(A) = {1, 2} if A = {a} or A =
{b}, µ(∅) = {3} andµ({a, b}) = {0}. Thenµ is
null-null-additive, but not null-monotone.

VII. Let T = [0, +∞), C = P(T ) andµ : C →
Pf (R) defined byµ(∅) = {0}, µ(A) = A if cardA =
1, µ(A) = [0, δ(A)] if A is bounded with cardA ≥ 2
andµ(A) = [0,∞) if A is not bounded. Here, cardA
is the cardinal ofA andδ(A) = sup{‖t − s‖; t, s ∈
A} is the diameter ofA. Thenµ is null-additive, but
not autocontinuous from above. Indeed, there exist
A = {1} andBn = [0, 1

n ], for every n ∈ N∗, such
that |µ(Bn)| = 1

n → 0, but h(µ(A ∪ Bn), µ(A)) =
h([0, 1], {1}) = 19 0.

Remark 2.8. Let µ : C → P0(X) be a set mul-
tifunction and the set function|µ| : C → R+ defined
by |µ|(A) = |µ(A)|, for everyA ∈ C. Then the fol-
lowing statements hold:

I. µ is null-monotone (null-null-additive respec-
tively) if and only if the same is|µ|.

II. If µ is monotone, then|µ| is also monotone.
The converse is not true. Indeed, letT = {a, b}, C =
P(T ) andµ : C → Pf (R) defined byµ(T ) = {1},
µ({a}) = µ({b}) = [0, 1] andµ(∅) = {0}. We have
|µ(A)| = 1 if A 6= ∅ and |µ(∅)| = 0. Then |µ| is
monotone, butµ is not monotone.

III. If µ is null-additive, then|µ| is null-additive.
The converse is not valid. Indeed, letT = {a, b}, C =
P(T ) andµ : C → Pf (R) defined byµ(T ) = [0, 1],
µ({a}) = {1} andµ({b}) = µ(∅) = {0}. We have
|µ(A)| = 1 if A = T or A = {a} and|µ(A)| = 0 if

A = {b} or A = ∅. Then|µ| is null-additive, butµ is
not null-additive.

IV. If µ is autocontinuous from above, then|µ| is
autocontinuous from above and this results from the
inequality:
∣∣|µ(A∪B)|−|µ(A)|∣∣ ≤ h(µ(A∪B), µ(A)), ∀A,B ∈ C.

The converse is not true. Indeed, letT = [0, 1],
C = P(T ) andµ : C → Pf (R) defined byµ(∅) =
µ({0}) = {0}, µ(A) = A if A =

[
0, 1

n

]
, n ∈ N∗,

µ(A) = [0, 1] if A =
[
0, 1

n

] ∪ {1}, n ∈ N∗ and
µ(A) = {1} otherwise. Then|µ(A)| = 0 if A = ∅
or A = {0}, |µ(A)| = 1

n if A =
[
0, 1

n

]
, n ∈ N∗ and

|µ(A)| = 1 otherwise.
Let us prove that|µ| is autocontinuous from

above. ConsiderA ∈ C and (Bn) ⊂ C so that
|µ(Bn)| → 0. Then we may suppose, without any
loss of generality, thatBn ∈ {∅, {0}, [0, 1

n ]}, for ev-
eryn ∈ N∗. It follows |µ(A ∪Bn)| → |µ(A)|, which
proves that|µ| is autocontinuous from above.

We now show thatµ is not autocontinuous from
above. Indeed, there existA = {1} andBn = [0, 1

n ],
for every n ∈ N∗, such that|µ(Bn)| = 1

n → 0 and
h(µ(A ∪Bn), µ(A)) = h([0, 1], {1}) = 1 9 0. Soµ
is not autocontinuous from above.

V. If µ is uniformly autocontinuous, then the same
is |µ| and this results like in IV. The converse is not
valid. Indeed, we considerµ as in IV. Sinceµ is
not autocontinuous from above, according to Theorem
2.6-III, it results thatµ is not uniformly autocontinu-
ous. We prove that|µ| is uniformly autocontinuous.
Let ε > 0 and δ = ε. Also, let B ∈ C, so that
|µ(B)| < δ = ε. Then |µ(A ∪ B)| < |µ(A)| + ε,
for everyA ∈ C, which proves that|µ| is uniformly
autocontinuous.

Definition 2.9. (Gavriluţ [7-10]) A set multifunc-
tion µ : C → P0(X) is said to be:

(i) exhaustiveif lim
n→∞ |µ(An)| = 0, for every pair-

wise disjoint sequence of sets(An)n∈N∗ ⊂ C.
(ii) order continuous (shortly, o-continuous)

lim
n→∞ |µ(An)| = 0, for every sequence of sets

(An)n∈N∗ ⊂ C, such thatAn ↘ ∅.
(iii) increasing convergentif µ(

∞⋃
n=1

An) =

lim
n→∞µ(An) with respect toh, for every increasing se-

quence of sets(An)n∈N∗ ⊂ C, such thatAn ↗ A,

whereA =
∞⋃

n=1
An ∈ C.

(iv) decreasing convergentif µ(
∞⋂

n=1
An) =

lim
n→∞µ(An) with respect toh, for every decreasing
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sequenceof sets(An)n∈N∗ ⊂ C, such thatAn ↘ A,

whereA =
∞⋂

n=1
An ∈ C.

(v) fuzzyif µ(∅) = {0} andµ is monotone, in-
creasing convergent and decreasing convergent.

Remark 2.10. (Gavriluţ [7-10]) I. If µ : C →
Pf (X) is exhaustive and increasing convergent, then
µ is o-continuous.

II. SupposeC is aσ-ring andµ : C → Pf (X) is
monotone and o-continuous. Thenµ is exhaustive.

III. Supposeµ : C → Pf (X) is uniformly au-
tocontinuous, withµ(∅) = {0}. Then the following
statements hold:

(i) If µ is o-continuous, thenµ is increasing con-
vergent.

(ii) µ is o-continuous if and only ifµ is decreasing
convergent.

(iii) If µ is monotone, thenµ is o-continuous if
and only if it is fuzzy.

IV. If ν : C → R+ is a set function andµ :
C → Pf (R) is defined byµ(A) = [0, ν(A)], for every
A ∈ C, thenµ is exhaustive (o-continuous, increas-
ing convergent, decreasing convergent, fuzzy respec-
tively) if and only if the same isν.

V. If C is finite, then any set multifunction, with
µ(∅) = {0} is exhaustive, o-continuous, increasing
convergent and decreasing convergent.

3 Atoms and pseudo-atoms

In this section, we present some properties of atoms
and pseudo-atoms for different types of set multifunc-
tions.

Definition 3.1. Let µ : C → P0(X) be a set
multifunction, withµ(∅) = {0}.

(i) A set A ∈ C is said to be anatom of µ if
µ(A) ) {0} and for everyB ∈ C, with B ⊆ A, we
haveµ(B) = {0} or µ(A\B) = {0}.

(ii) A set A ∈ C is called apseudo-atomof µ if
µ(A) ) {0} and for everyB ∈ C, with B ⊆ A, we
haveµ(B) = {0} or µ(B) = µ(A).

(iii) µ is said to benon-atomic (non-pseudo-
atomic respectively) if it has no atoms (no pseudo-
atoms respectively).

(iv) µ hasthe Darboux propertyif for every A ∈
C, with µ(A) ! {0} and everyp ∈ (0, 1), there is
B ∈ C so thatB ⊆ A andµ(B) = p µ(A).

Remark 3.2. Let µ : C → P0(X) be a set multi-
function, withµ(∅) = {0}.

I. If µ is monotone, thenµ is non-atomic (non-
pseudo-atomic respectively) if for everyA ∈ C, with

µ(A) ) {0}, there isB ∈ C so thatB ⊆ A, µ(B) )
{0} andµ(A\B) ) {0} (µ(A) ) µ(B) respectively).

II. If µ is null-monotone, thenA ∈ C is an atom
of µ if and only if A is an atom ofµ.

III. If µ is null-additive, then every atom ofµ is
a pseudo-atom ofµ (as we shall see in Examples 3.5-
I, the converse is not valid). Consequently, any non-
pseudo-atomic monotone null-additive set multifunc-
tion is non-atomic.

Definition 3.3. Let µ1, µ2 : C → P0(X) be set
multifunctions. One says thatµ1 is absolutely contin-
uous with respect toµ2 (denoted byµ1 ¿ µ2) if for
everyA ∈ C, µ2(A) = {0} ⇒ µ1(A) = {0}.

Remark 3.4.
I. Let µ1, µ2 : C → P0(X) be monotone set

multifunctions so thatµ1(∅) = µ2(∅) = {0} and
µ1 ¿ µ2. Let A ∈ C, with µ1(A) ) {0}. If A is
an atom ofµ2, thenA is an atom ofµ1 too.

II. Supposeµ1, µ2 : C → P0(X) are monotone
set multifunctions so thatµ1(∅) = µ2(∅) = {0},
µ1 ¿ µ2 andµ1(A) ) {0}, for everyA ∈ C\{∅}.
If µ1 is non-atomic, thenµ2 is also non-atomic.

Example 3.5.I. Let T = {a, b, c}, C = P(T ) and
µ : C → Pf (R) defined byµ(A) = [0, 1] if A 6= ∅
andµ(A) = {0} if A = ∅. Thenµ is null-additive,
A = {a, b} is a pseudo-atom ofµ, but not an atom of
µ.

II. Let T = 2N = {0, 2, 4, . . .}, C = P(T ) and
for everyA ∈ C:

µ(A) =

{
{0}, if A = ∅
1
2A ∪ {0}, if A 6= ∅

where1
2A = {x

2 | x ∈ A}. µ is amultisubmeasure.
If A ∈ C, with cardA= 1 andA 6= {0} or A ∈

C, A = {0, 2n}, n ∈ N∗, thenA is an atom ofµ (and
a pseudo-atom ofµ too, according to Remark 3.2-III
and Theorem 2.6-II). By cardA we mean the cardinal
of A.

If A ∈ C, with cardA ≥ 2 and there exista, b ∈ A
such thata 6= b andab 6= 0, thenA is not a pseudo-
atom ofµ (and not an atom ofµ, according to Remark
3.2-III).

III. Let C = P(N) andµ : C → Pf (R) defined
for everyA ∈ C by

µ(A) =





{0}, if A is finite

{0} ∪ [nA, +∞), if A is infinite and

nA = min A.

Thenµ is monotone and non-pseudo-atomic.
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Remark 3.6. Let µ : C → P0(X) be a set multi-
function, withµ(∅) = {0}.

I. If A ∈ C is a pseudo-atom ofµ andB ∈ C, B ⊆
A such thatµ(B) ) {0}, thenB is a pseudo-atom of
µ andµ(B) = µ(A).

II. Supposeµ is null-monotone andµ(∅) = {0}.
If A ∈ C is an atom ofµ andB ∈ C, B ⊆ A such that
µ(B) ) {0}, thenB is an atom ofµ andµ(A\B) =
{0}.

Theorem 3.7.Supposeµ : C → P0(X) is mono-
tone, so thatµ(∅) = {0} andA, B ∈ C are pseudo-
atoms ofµ. Then the following statements hold:

I. µ(A) 6= µ(B) ⇒ µ(A ∩B) = {0}.
II. Supposeµ is null-null-additive. Ifµ(A∩B) =

{0}, thenA\B andB\A are pseudo-atoms ofµ and
µ(A\B) = µ(A), µ(B\A) = µ(B).

Proof. I) Supposeµ(A ∩ B) ) {0}. According
to Remark 3.6-I, we haveµ(A∩B) = µ(A) = µ(B),
which is false.

II. Let us prove thatµ(A\B) ) {0}. Suppose on
the contrary thatµ(A\B) = {0}. Sinceµ is null-null-
additive, we haveµ(A) = µ((A\B) ∪ (A ∩ B)) =
{0}, which is false. So,µ(A\B) ) {0} and from
Remark 3.6-I, it results thatA\B is a pseudo-atom
of µ andµ(A\B) = µ(A). Analogously,B\A is a
pseudo-atom ofµ andµ(B\A) = µ(B). ¤

Theorem 3.8.Supposeµ : C → P0(X) is mono-
tone and null-null-additive, so thatµ(∅) = {0} and
A, B ∈ C are pseudo-atoms ofµ. Then there exist
pairwise disjoint setsE1, E2, E3 ∈ C, with A ∪ B =
E1∪E2∪E3, such that, for everyi ∈ {1, 2, 3}, either
Ei is a pseudo-atom ofµ, or µ(Ei) = {0}.

Proof. Let E1 = A∩B,E2 = A\B, E3 = B\A.
We have the following cases:

(i) µ(E1) = {0}. According to Theorem 3.7-
II, E2 andE3 are pseudo-atoms ofµ andµ(E2) =
µ(A), µ(E3) = µ(B).

(ii) µ(E1) ) {0}, µ(E2) ) {0}, µ(E3) ) {0}.
By Remark 3.6-I,E1 is a pseudo-atom ofµ and
µ(E1) = µ(A) = µ(B). Analogously,E2 andE3

are pseudo-atoms ofµ.
(iii) µ(E1) ) {0}, µ(E2) = {0}, µ(E3) ) {0}.

From Remark 3.6-I, it results thatE1 is a pseudo-atom
of µ andµ(E1) = µ(A) = µ(B). Analogously,E3 is
a pseudo-atom ofµ andµ(E3) = µ(B).

The last two cases are similar to (iii).
(iv) µ(E1) ) {0}, µ(E2) ) {0}, µ(E3) = {0}.
(v) µ(E1) ) {0}, µ(E2) = µ(E3) = {0}. ¤

Remark 3.9. By induction, the same result of
Theorem 3.8 can be obtained for every finite fam-
ily {Ai}n

i=1 of pseudo-atoms ofµ. Consequently, we

can write
n⋃

i=1
Ai = (

m⋃
j=1

Bj) ∪ E, where{Bj}m
j=1, E

are pairwise disjoint sets ofC, such that{Bj}m
j=1 are

pseudo-atoms ofµ andµ(E) = {0}.

Theorem 3.10. SupposeC is a σ-ring and µ :
C → Pf (X) is fuzzy, null-null-additive and exhaus-
tive. Then there exists a sequence(Bn)n∈N∗ of pair-
wise disjoint pseudo-atoms ofµ satisfying the condi-
tions:

(i) |µ(Bn)| ≥ |µ(Bn+1)|,∀n ∈ N∗,
(ii) lim

n→∞ |µ(Bn)| = 0,

(iii) ∀ε > 0,∃n0 ∈ N∗, such that
|µ(

⋃∞
k=n0

Bk)| < ε.

Proof. LetAm = {E ∈ C|E is a pseudo-atom of
µ and 1

m ≤ |µ(E)| < 1
m+1}, for everym ∈ N∗. Then

Am contains at most finite pairwise disjoint sets. Sup-
pose, on the contrary, there are infinite pairwise dis-
joint sets(En)n∈N∗ ⊂ Am. So, we have|µ(En)| ≥
1
m , for everyn ∈ N∗. Sinceµ is exhaustive, it fol-
lows lim

n→∞ |µ(En)| = 0, which is false. Hence, there

exist at most finite pairwise disjoint pseudo-atoms in
Am, for everym ∈ N∗ and denote all of them by
{Bn}∞n=1. Now, (i) is evidently satisfied. Since(Bn)
are pairwise disjoint andµ is exhaustive, it results

(ii). We remark that
∞⋂

n=1

∞⋃
k=n

Bk = ∅. If we denote

An =
∞⋃

k=n

Bk, for every n ∈ N∗, then we have

An ↘ ∅. Sinceµ is o-continuous (according to Re-
mark 2.10-I), it follows lim

n→∞ |µ(An)| = 0. Conse-

quently, for everyε > 0, there existsn0 ∈ N∗, such

that |µ(An0)| < ε, that is |µ(
∞⋃

k=n0

Bk)| < ε, which

proves (iii). ¤
In the end of this section, we establish the follow-

ing result which will be useful in section 4.

Proposition 3.11. SupposeC1, C2 are two rings
so thatC1 ⊆ C2 andC1 is dense inC2 with respect to
a monotone null-additive set multifunctionµ : C2 →
Pf (X) (that is, for everyε > 0 and everyA ∈ C2,
there isB ∈ C1 so thatB ⊆ A and |µ(A\B)| < ε),
with µ(∅) = {0}. If µ is non-atomic (non-pseudo-
atomic respectively) onC2, thenµ is also non-atomic
(non-pseudo-atomic respectively) onC1.

Proof. Suppose that, on the contrary, there is an
atom (pseudo-atom respectively)A ∈ C1 for µ/C1 .
Then µ(A) ! {0} and for everyB ∈ C1 with
B ⊆ A we haveµ(B) = {0} or µ(A\B) = {0}
(µ(A) = µ(B) respectively).
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BecauseA ∈ C2, µ(A) ! {0} and µ is non-
atomic (non-pseudo-atomic respectively) onC2, there
is B0 ∈ C2 so thatB0 ⊆ A, µ(B0) ! {0} and
µ(A\B0) ! {0} (µ(A) ! µ(B0) respectively). Then
|µ(B0)| > 0 and, sinceC1 is dense inC2, for ε0 =
|µ(B0)|, there existsC0 ∈ C1 so thatC0 ⊆ B0 and
|µ(B0\C0)| < ε0.

Now, becauseC0 ∈ C1 andC0 ⊆ A, by the as-
sumption made we getµ(C0) = {0} or µ(A\C0) =
{0} (µ(A) = µ(C0) respectively).

I. If µ(C0) = {0}, then, by the null-additivity of
µ, |µ(B0)| = |µ((B0\C0) ∪ C0)| = |µ(B0\C0)| <
|µ(B0)|, which is false.

II. If µ(A\C0) = {0} (respectively,µ(A) =
µ(C0)), then, in both cases, by the null-additivity of
µ, µ(A) = µ(C0) ! µ(B0), which is false because
C0 ⊆ B0, soµ(C0) ⊆ µ(B0).

Consequently, µ is non-atomic (non-pseudo-
atomic respectively) onC1. ¤

4 Extension theorem by preserv-
ing non-atomicity (non-pseudo-
atomicity respectively)

In this section,X is a Banach space andµ : C →
Pbf (X) is an exhaustive set multifunction. In Gavriluţ
and Croitoru [13] the following result is established:

Lemma 4.1. For everyε > 0 and everyA ⊆ T ,
there existsK ∈ C such thatK ⊆ A and|µ(B\K)| <
ε, for everyB ∈ C, with K ⊆ B ⊆ A.

Using Lemma 4.1, we obtain the following results
which improve those of [13].

Theorem 4.2. Letµ : C → Pbf (X) be an exhaus-
tive multisubmeasure. Thenµ extends (ie.µ∗(A) =
µ(A), for every A ∈ C) to an exhaustive mono-
tone set multifunctionµ∗ : P(T ) → Pbf (X). If µ
is non-atomic (non-pseudo-atomic respectively), then
the same isµ∗.

Proof. According to [13], it only remains to es-
tablish the non-pseudo-atomicity part. Supposeµ is
non-pseudo-atomic and, on the contrary, there is a
pseudo-atomA0 for µ∗. Thenµ∗(A0) ) {0} and for
everyB ⊆ T , with B ⊆ A0, we haveµ∗(B) = {0}
or µ∗(A0) = µ∗(B). Becauseµ∗(A0) ) {0}, by the
definition ofµ∗, there existsC0 ∈ C so thatC0 ⊆ A0

andµ(C0) ) {0}.
Sinceµ is non-pseudo-atomic, there isD0 ∈ C so

that D0 ⊆ C0, µ(D0) ) {0} andµ(C0) ) µ(D0).
ForD0, µ∗(D0) = {0} or µ∗(A0) = µ∗(D0).

If µ∗(D0) = {0}, thenµ(D0) = µ∗(D0) = {0},
which is false.

If µ∗(A0) = µ∗(D0), thenµ∗(D0) = µ(D0) (
µ(C0) = µ∗(C0) ⊆ µ∗(A0) = µ∗(D0), a contradic-
tion. So,µ∗ is non–pseudo-atomic. ¤

From now on, suppose, moreover, thatC is an al-
gebra of subsets ofT .

ConsiderCµ = {A ⊆ T ; for every ε > 0,
there existK, D ∈ C such thatK ⊆ A ⊆ D and
|µ(B)| < ε, for everyB ∈ C, with B ⊆ D\K}. We
immediately observe that, because of the monotonic-
ity of µ, we also haveCµ = {A ⊆ T ; for everyε > 0,
there existK, D ∈ C such thatK ⊆ A ⊆ D and
|µ(D\K)| < ε}.

One can easily check thatC ⊆ Cµ andCµ is an
algebra. Also,C is dense inCµ with respect toµ∗.
Indeed, for everyε > 0 and everyA ∈ Cµ, there exist
B,D ∈ C so thatB ⊆ A ⊆ D and |µ(D\B)| < ε.
Then|µ∗(A\B)| ≤ |µ∗(D\B)| = |µ(D\B)| < ε.

Theorem 4.3. Let µ : C → Pbf (X) be an ex-
haustive multisubmeasure. Ifµ is non-atomic (non-
pseudo-atomic respectively), then the same isµ∗/Cµ

and it uniquely extendsµ.

Proof. According to [13] and also the same as
in the proof of Theorem 4.2, we get thatµ∗/Cµ

is non-
atomic (non-pseudo-atomic respectively).

We now prove that the extensionµ∗ is unique.
Suppose, on the contrary, there is another set multi-
functionϕ : Cµ → Pbf (X) having the properties of
µ∗/Cµ

, which extendsµ. Let A ∈ Cµ be arbitrarily.
By the definition ofCµ, there areK, D ∈ C so that
K ⊆ A ⊆ D and |µ(D\K)| < ε. Then for every
ε > 0, we have:

e(µ∗(A), ϕ(A)) ≤ e(µ∗(A), µ∗(D)) +
+e(µ∗(D), ϕ(A)) = e(µ(D), ϕ(A)) ≤
≤ e(µ(D), µ(K)) + e(µ(K), ϕ(A)) =
e(µ(D), µ(K)) ≤
≤ |µ(D\K)| < ε,

henceµ∗(A) ⊆ ϕ(A). On the other hand,

e(ϕ(A), µ∗(A))
≤ e(ϕ(A), ϕ(D)) + e(ϕ(D), µ∗(A)) =
= e(ϕ(D), µ∗(A)) = e(µ(D), µ∗(A)) ≤
≤ e(µ(D), µ(K)) + e(µ(K), µ∗(A)) ≤
≤ |µ(D\K)|+ e(µ∗(K), µ∗(A)) =
|µ(D\K)| < ε

and the conclusion follows. ¤
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Corollary 4.4. Let µ : C → Pbf (X) be an
exhaustive multisubmeasure. Thenµ is non-atomic
(non-pseudo-atomic respectively) onC if and only if
µ∗/Cµ

is non-atomic (non-pseudo-atomic respectively).

Proof. The ”if part” follows by Theorem 4.3 and
the ”only if part” follows by Proposition 3.11, sinceC
is dense inCµ. ¤

5 Regular non-atomic (non-pseudo
atomic respectively) set multifunc-
tions

In this section, we establish some results concern-
ing non-atomicity and non-pseudo-atomicity for null-
additive regular set multifunctions defined on the
Baire (Borel respectively)δ-ring B0 (B respectively)
of a Hausdorff locally compact space and taking val-
ues inPf (X).

From now on, letT be a Hausdorff locally com-
pact space,C a ring of subsets ofT , B0 the Baireδ-
ring generated by theGδ-compact subsets ofT (that
is, compact sets which are countable intersections of
open sets) andB the Borelδ-ring generated by the
compact subsets ofT .

Definition 5.1. (Gavriluţ [11]) I. Let µ : C −→
Pf (X) be a monotone set multifunction, withµ(∅) =
{0}.

I. A setA ∈ C is said to be (with respect toµ):
(i) R - regular if for every ε > 0, there exist a

compact setK ⊆ A, K ∈ C and an open setD ⊃
A, D ∈ C such thate(µ(D), µ(K)) < ε.

(ii) Rl - regular if for everyε > 0, there is a com-
pact setK ⊆ A, K ∈ C such thate(µ(A), µ(K)) <
ε.

(iii) Rr - regular if for everyε > 0, there exists an
open setD ⊃ A,D ∈ C such thate(µ(D), µ(A)) <
ε;

II. µ is said to beR - regular (Rl - regular, Rr -
regular respectively) if everyA ∈ C is R - regular (Rl

- regular,Rr - regular respectively).

Theorem 5.2. Supposeµ : B → Pf (X) is mono-
tone, null-additive andµ(∅) = {0}. Let A ∈ B with
µ(A) ! {0}. Then the following statements hold:

I. If A is an atom ofµ, then there is a compact
setK0 ∈ B so thatK0 ⊆ A andµ(A\K0) = {0}.

II. A is an atom ofµ if and only if

(3) ∃!a ∈ A so thatµ(A\{a}) = {0}.

III. µ is non-atomic if and only ifµ is diffused,
that is

(4) µ({t}) = {0}, for everyt ∈ T.

Proof. I. Let A ∈ B be an atom ofµ andKA =
{K ⊆ A;K is a compact set andµ(A\K) = {0}} ⊂
B.

First, we prove that everyK ∈ KA is an atom
of µ. Indeed, ifK ∈ KA, then, by the null-additivity
of µ, we haveµ(A) = µ((A\K) ∪ K) = µ(K) )
{0}. Also, for everyB ∈ B, with B ⊆ K, since
K ⊆ A andA is an atom ofµ, we getµ(B) = {0} or
µ(A\B) = {0}.

If µ(A\B) = {0}, then {0} ⊆ µ(K\B) ⊆
µ(A\B) = {0}, soµ(K\B) = {0}.

Consequently,K ∈ KA is an atom ofµ.
We now prove thatK1 ∩ K2 ∈ KA, for every

K1,K2 ∈ KA. Indeed, ifK1,K2 ∈ KA, thenK1 ∩
K2 is a compact set ofT andµ(A\(K1 ∩ K2)) =
µ((A\K1) ∪ (A\K2)) = {0}.

We prove that ∩
K ∈ KA

K, denoted byK0, is a non-

void set. Suppose that, on the contrary,K0 = ∅. There

areK1,K2, ..., Kn0 ∈ KA so that
n0∩
i=1

Ki = ∅, hence

µ(
n0∩
i=1

Ki) = {0}. But
n0∩
i=1

Ki ∈ KA, which implies

µ(
n0∩
i=1

Ki) ! {0}, a contradiction.

Now, we prove thatK0 ∈ KA. Obviously,K0 is a
compact set. Let beK ∈ KA. Thenµ(A\K) = {0}.

If K = K0, thenK0 ∈ KA.
If K 6= K0, thenK0  K.
Becauseµ(A\K0) = µ((A\K) ∪ (K\K0)) =

µ(K\K0), it remains to prove thatµ(K\K0) = {0}.
Suppose, on the contrary, thatµ(K\K0) ! {0}. Con-
sider B ∈ B, with B ⊆ K\K0. Then B ⊆ K
and, sinceK is an atom ofµ, then µ(B) = {0}
or µ(K\B) = {0}. If µ(K\B) = {0}, then
µ((K\K0)\B) = {0}. So, K\K0 is an atom ofµ.
BecauseA is an atom ofµ andµ(K\K0) ! {0}, then
µ(A\(K\K0)) = {0}.

Consequently,KA = {B ⊆ A; B is a compact set
andµ(A\B) = {0}} andKK\K0

= {C ⊆ K\K0;C
is a compact set andµ((K\K0)\C) = {0}}.

Let be C ∈ KK\K0
. Then µ((K\K0)\C) =

{0} and, sinceµ(A\(K\K0)) = {0}, we get that
µ(A\C) = {0}, which impliesC ∈ KA. Therefore,
K0 ⊆ C, but C ⊆ K\K0, a contradiction. Conse-
quently,µ(K\K0) = {0}.

So, if A ∈ B is an atom ofµ, there is a compact
setK0 ∈ B so thatK0 ⊆ A andµ(A\K0) = {0}.

II. The ”if part”. Let A ∈ B be an atom ofµ. We
show that the setK0 from the proof of I is a singleton
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{a}. Suppose,on the contrary, that there exista, b ∈
A, with a 6= b andK0 ⊇ {a, b}.

Since T is a Hausdorff locally compact space,
there exists an open neighbourhoodV of a so that
b /∈ V . Obviously, K0 = (K0\V ) ∪ (K0 ∩ V ) and
K0\V , K0 ∩ V arenonvoid, compact subsets ofA.

We prove thatK0\V ∈ KA or K0 ∩ V ∈ KA.
Indeed,if K0\V /∈ KA and K0 ∩ V /∈ KA, then
µ(A\(K0\V )) ) {0} andµ(A\(K0 ∩ V )) ) {0}.
SinceA is an atom ofµ, thenµ(K0\V ) = {0} and
µ(K0 ∩ V ) = {0}. Thenµ(K0) = {0} and since
µ(A\K0) = {0}, we have{0}  µ(A) = {0}, a con-
tradiction. Consequently,K0\V ∈ KA or K0 ∩ V ∈
KA. BecauseK0 ⊆ K, for everyK ∈ KA, we get that
K0 ⊆ K0\V or K0 ⊆ K0 ∩ V , which is impossible.
So,∃a ∈ A so thatµ(A\{a}) = {0}.

For the uniqueness: suppose, on the contrary, that
there area, b ∈ A, with a 6= b, µ(A\{a}) = {0}
and µ(A\{b}) = {0}. Then {0} ⊆ µ({a}) ⊆
µ(A\{b}) = {0}, soµ({a}) = {0} and this implies
µ(A) = {0}, which is a contradiction.

The ”only if part” . ConsiderA ∈ B, with
µ(A) ! {0} having the property (3) and letB ∈ B,
with B ⊆ A. If a /∈ B, thenB ⊆ A\{a}. Be-
causeµ(A\{a}) = {0}, thenµ(B) = {0}. If a ∈ B,
thenA\B ⊆ A\{a}, henceµ(A\B) = {0}. Conse-
quently,A is an atom ofµ.

III. The ”only if part” . Suppose that, on the
contrary, there is an atomA0 ∈ C of µ. By II,
∃!a ∈ A0 so thatµ(A0\{a}) = {0}. On the other
hand,µ({a}) = {0}, soµ(A0) = {0}, a contradic-
tion. Consequently,µ is non-atomic.

The ”if part” . Suppose that, on the contrary, there
is t0 ∈ T so thatµ({t0}) ! {0}. Becauseµ is non-
atomic, there is a setB ∈ B such thatB ⊆ {t0},
µ(B) ! {0} andµ({t0}\B) ! {0}. Consequently,
B = ∅ or B = {t0}, which is false. ¤

Remark 5.3.
I. If C = B0 (orB), then the condition

(5) ∀t ∈ T,∃At ∈ C s.t. t ∈ At andµ(At) = {0}
implies the condition

(6)
∀B ∈ C, with µ(B) ! {0},∀t ∈ T ,
∃At ∈ C s.t. t ∈ At ande(µ(B), µ(At)) > 0.

II. If C = B, then (5) is equivalent to (4).

Theorem 5.4. Let C = B0 (or B) and µ : C →
Pf (X) monotone, null-null-additive, withµ(∅) =
{0}. If µ is R-regular and if it has the property(6),
then it is non-pseudo-atomic. If, moreover,µ is null-
additive, thenµ is also non-atomic.

Proof. Supose that, on the contrary, there is a
pseudo-atomB ∈ C of µ.

Becauseµ is R-regular then, according to [10],
it is Rl-regular. Consequently, there is a compact set
K ∈ C so thatK ⊆ B andh(µ(B), µ(K)) < |µ(B)|.

We observe thatµ(K) ! {0}. Indeed, ifµ(K) =
{0}, then|µ(B)| < |µ(B)|, which is false.

According to (6), for everyt ∈ K, there exists
At ∈ C so thatt ∈ At ande(µ(B), µ(At)) > 0.

Becauseµ is R-regular then, by [10], it isRr-
regular. Then, for everyt ∈ K, for At there is an
open setDt ∈ C so thatAt ⊆ Dt and

e(µ(Dt), µ(At)) ≤ h(µ(Dt), µ(At)) <
< e(µ(B), µ(At)).

Sincet ∈ At andAt ⊆ Dt, thenK ⊆ ∪
t∈K

Dt.

Consequently, there existsp ∈ N∗ so thatK ⊆
p∪

i=1
Dti , with ti ∈ K, for everyi = 1, p.

Since{0}  µ(K) = µ(
p∪

i=1
(Dti ∩ K)), by the

null-null-additivity of µ one can easily check there is
s = 1, p suchthatµ(Dts ∩K) ! {0}. Consequently,

{0} ( µ(Dts ∩K) ⊆ µ(K) ⊆ µ(B).

Obviously, we also haveµ(Dts) ! {0}.
SinceB is a pseudo-atom ofµ, µ(B) ! {0} and

µ(Dts) ! {0}, thenµ(B) = µ(B ∩Dts).
On the other hand, becausee(µ(Dts), µ(Ats)) <

e(µ(B), µ(Ats)), then

e(µ(B ∩Dts), µ(Ats)) ≤
≤ e(µ(B ∩Dts), µ(Dts)) + e(µ(Dts), µ(Ats))
= e(µ(Dts), µ(Ats)) < e(µ(B), µ(Ats)).

But µ(B) = µ(Dts ∩ B), a contradiction. So,µ is
non-pseudo-atomic, as claimed. If, moreover,µ is
null-additive, then, by Remark 3.2-III, it is also non-
atomic. ¤

Concluding remarks.

In this paper, we have presented the relation-
ships among different types of set multifunctions
(such as: multisubmeasures, uniformly autocontinu-
ous, autocontinuous from above, null-additive, null-
null-additive) and some of their properties regarding
atoms, pseudo-atoms, non-atomicity, non-pseudo-ato-
micity and extensions by preserving non-atomicity
(non-pseudo-atomicity respectively).
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[29] Riečan, B. – On the Dobrakov submeasure on
fuzzy sets, Fuzzy Sets and Systems 151, 2005,
635-641.
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