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Abstract:In this paper, we study different types of non-additive set multifunctions (such as: uniformly autocontin-
uous, null-additive, null-null-additive), presenting relationships among them and some of their properties regarding
atoms and pseudo-atoms. We also study non-atomicity and non-pseudo-atomicity of regular null-additive set mul-
tifunctions defined on the Baire (Borel respectivelying of a Hausdorff locally compact space and taking values

in the family of non-empty closed subsets of a real normed space.
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1 Introduction set-valued case. In [11-15] and [22] we extended and
studied the concepts of atom, pseudo-atom, Darboux
property, semi-convexity to the case of set-valued set

The theory of fuzziness has many applications in functions.

probabilities (e.g. Dempster [3], Shafer [30]), com- . .
puter and systems sciences, artificial intelligence (e.g. .Ir.] this paper, We_study d|fferer1t types of non-
Mastorakis [21]), physics, biology, medicine (e.g. addl_tlve set multlfun.cpons (such as: u_r_uformly auto-
Pham. Brandl Né]uyen N D and Ng;uyen TV. [27]in continuous, null-additive, null-null-additive), present-

prediction of osteoporotic fractures), theory of proba- m% relatlonsc?lps a;nong th%m anddsomte of the\l/(/prolo-
bilities, economic mathematics, human decision mak- erlies regarding atoms and pseudo-atoms. € also
ing (e.g. Liginlal on Ow [20]) study non-atomicity and non-pseudo-atomicity of reg-

ular null-additive set multifunctions defined on the
In the last years, many authors (€.g. Choquet [2], paire (Borel respectively-ring of a Hausdorff lo-
Denneberg [4], Dobrakov [5], Li [19], Pap [24, 25,

; _ cally compact space and taking valuesip(X), the
26], Precupanu [28], Sugeno [31], Suzuki [32]) inves-  family of non-empty closed subsets of a real normed
tigated the non-additive field of measure theory due

; - . : _ 4~ spaceX. We also improve in this paper several results
to its applications in mathematical economics, statis-

\ of [11,12,13,14] established for multisubmeasures.
tics or theory of games (see e.g. Aumann and Shapley

[1]D. In non-additive measure theory, some continu-

ity conditions are used to prove important results with 2 Preliminaries

respect to non-additive measures (for example, Theo-

rem of Egoroff in Li [19]). Many concepts and results Let 7" be an abstract nonvoid sé2(7") the family of
of classical measure theory (such as: regularity, exten- all subsets of" andC a ring of subsets df'. The us-
sion, decomposition, integral) have been studied in the age of different types of the domairwill be adequate
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to theresults that will be proved and also with respect
to the references.

Byi = 1,nwemeani € {1,2,...,n}, forn €
N*, whereN is the set of all naturals aié* = N\{0}.
We also denot® ;. = [0, +o00), Ry = [0, +oo] and
R = [—0o0, 0o]. We make the conventior — oo = 0.

Definition 2.1. A set functionv :
saidto be:

(i) monotonef v(A) < v(B), for everyA, B €
C,with A C B.

(ii) null-monotonef foreveryA,B € C,AC B
andv(B) =0= v(A) = 0.

(iii) a submeasurgin the sense of Drewnowski
[6]) if (D) = 0, v is monotone andubadditive that
is, V(AU B) < v(A) +v(B), for everyA,B € C,
with AN B = 0.

(iv) finitely additiveif () = 0 andv(AU B) =
v(A)+v(B), foreveryA, B € C, sothatAN B = ().

(v) exhaustivef nhféo v(A,) = 0, for every se-

quence of pairwise disjoint setsl,,) C C.
(vi) increasing convergenif lim v(4,) =

v(A), for every increasing sequence of sets
(Ap)nen+ C C, with 4,, 7 A (thatis, A, C A,41,

for everyn € N* andA = (ﬁleAn € ().

C—>R+is

(vii) decreasing convergenf lim v(A,) =

v(A), for every decreasing sequence of sets
(Ap)nen C C, with 4, \, A (thatis,A,, O A,41,

for everyn € N* andA = ?iAn € ().

(viii) order-continuougshortly o-continuous if
lim v(A,) = 0, for every sequence of setd,,) C

n—oo

C, so that4,, \, 0.

(ix) autocontinuous from aboviEfor every A € C
and every(B,,) C C, so thatnli_{go v(B,) = 0, we
hc’leenli_{lgO v(AU B,) =v(A).

(x) uniformly autocontinuous for every e > 0,
there isé(¢) > 0, so that for everyd € C and every
B e C,withv(B) < ¢, we have(AUB) < v(A)+e.

(xi) null-additiveif v(A U B) = v(A), whenever
A,B € Candr(B) = 0.

(xii) null-null-additiveif v(AUB) = 0, whenever
A,B € Candv(A) =v(B) =0.

Definition 2.2. Letv : C — R, be a set function,
with v(0) = 0.

(i) Aset A € C is said to be aratomof v if
v(A) > 0 and for everyB € C, with B C A, we
haver(B) = 0 orv(A\B) = 0.

(i) A set A € C is called apseudo-atonof v if
v(A) > 0andB € C, B C Aimpliesv(B) = 0 or
v(B) =v(A).
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(i) v is said to benon-atomic (non-pseudo-
atomic respectively) if it has no atoms (no pseudo-
atoms respectively).

Now, let (X, d) be a metric spaceP,(X) is the
family of all non-empty subsets df, P, (X ) the fam-
ily of non-empty closed subsets &f andP,;(X) the
family of non-empty closed bounded subsets¥of

For every M,N € Py(X), we denote
h(M,N) = max{e(M,N),e(N,M)}, where
e(M,N) = supd(z, N) is the excess oM over N

xeM

andd(x, N) is the distance fromr to N. It is known
thath becomes an extended metric Bp(X) (i.e. is
a metric which can also take the valiec) andh be-
comes a metric (called Hausdorff) & ;(X ) (Hu and
Papageorgiou [16]).

In the sequel,(X, || - ||) will be a real normed
space, with the distanaéinduced by its norm. On

Po(X) we consider the Minkowski additiont”, de-
fined by:

M—T—N:M-i-N, for everyM, N € Py(X),

whereM + N = {z+ylzr € M,y € N} andM + N
is theclosure ofM + N with respect to the topology
induced by the norm oX.

We denote|M| = h(M,{0}), for every M €
Po(X), where0 is the origin of X. We have|M| =

sup ||z||, for everyM € Py(X).
zeM

Definition 2.3. I. If u : C — Py(X) is a set
multifunction, thenu is said to be:

(i) monotondf u(A) C u(B), foreveryA, B €
C,with A C B.

(ii) null-monotonef foreveryA,B € C,AC B
andy(B) = {0} = u(A) = {0}.

(i) a multisubmeasuré it is monotone, () =
{0} andu(AUB) C u(A) + u(B), foreveryA, B €
C, with AN B = () (or, equivalently, for everyl, B
C).

(iv) a multimeasuref u(0) = {0} and u(A U
B) = pu(A)+u(B), foreveryA, B € C,with ANB =
0.

(v) autocontinuous from abovkfor every A € C
and every(B,,) C C so that lim |u(B,)| = 0, we
have lim h(u(AU B,),u(A)) =0.

(vi) uniformly autocontinuous for everye > 0,
there isd(e) = § > 0, so that for everyd € C and
every B € C, with |u(B)| < 4, we haveh(u(A U
B), u(A)) <e.

(vii) null-additiveif for every A, B € C, u(B) =
{0} = u(AU B) = u(A).
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(viii) null-null-additiveif for everyA, B € C, so
thatu(A) = u(B) = {0}, we haveu(A U B) = {0}.

Remark 2.4.1. All the concepts of Definition 2.3
may also be defined in the cage= R (for (iii) and
(iv) we must suppose, moreover, thatd) + u(B) is
well defined for everyd, B € ().

Il If pis Pg(X)-valued, then in Definition 2.3-

(i) and (iv) it usually appears -T- ” instead of“ +

”, because the sum of two closed sets is not always

closed.

lll. In some of our following results, we shall as-
sumey to beP; (X )-valued, when we neefdto be an
extended metric.

IV. Every monotone set multifunction is null-
monotone.

V. Every monotone multimeasure is a multisub-
measure.

VI. For any multivalued set functiop : C —
Po(X), we consider the set functign: P(T) — R,
calledthevariation of 11, defined for everyd € P(T)

by:

fi(A) = sup{> _ |u(B:)|; B; C A, Bi € C,
i=1

ViG{1,...,n},BiﬂBj:@,W7éj}.

For everyA € C, we havelu(A)| < u(A). So,if
(A) = 0, thenu(A) = {0}. If & is null-monotone,
thenzi(A) = 0 if and only if u(A) = {0}, for every
A € C. If pis a multisubmeasure, thénis finitely
additive (Gauvrilut [7]).

Suppos€l’ € C andp is a multisubmeasure, so
that7 is countablyadditive andi(7') > 0. Thenwe

can generate a system of upper and lower probabilities

(with applications in statistical inference - see Demp-
ster [3]) in the following way:

LetA={E C X|u YE),ut'(E) € C}, where
foreveryF C X,

pHE) = {t € Tlu({t}) N B # 0}

andu™H(E) = {t € T|u({t}) C E}. For everyE ¢
A, we definethe upper probabilityof F to be

o BN (E))

P = a(T)
andthelower probability of F to be
_ A(ptN(E))

P ="

We remark thatP*, P, : A — [0,1] and P.(E) <
P*(E), for everyE € A.
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One may regargi(~'(E)) asthelargest possi-
ble amount of probability from the measyrehatcan
betransferred to outcomes € E andz(ut!(E)) as
the minimal amount of probability that can be trans-
ferred to outcomes € F.

Remark 2.5. Definitions 2.3 generalize those of
Definition 2.1 in two directions.

I. Letv : C — R, beaset function angl. : C —
Ps(Ry) definedby u(A) = {v(A)}, foreveryA e C.
Then the following statements hold:

() w is null-monotone (null-additive, null-null-
additive, autocontinuous from above respectively) if
and only if the same is.

(i) v is a multimeasure if and only if is finitely
additive.

(iii) w is monotone if and only it is constant,
v(A) = a € [0,+o0], for every A € C. In this case,
u(A) = {a}, for everyA € C. So, the monotonicity
becomes interesting in set-valued case, when the set
multifunction is not single-valued.

(iv) If u is uniformly autocontinuous, thenm is
uniformly autocontinuous too. Indeed, let> 0.
Sincey is uniformly autocontinuous, there ége) =
0 > 0 such that

VAeC,VBeC, |u(B)]|

<
= h(n(AU B), u(A)) <e

(1)
Let A € CandB € C so thatv(B) = |u(B)| < o.
From (1), it followsh(u(AUB), u(A)) = |v(AUB)—
v(A)| < e, which impliesv(AU B) < v(A) + €. So

v is uniformly autocontinuous.

The converse is not valid. For example, Tet=
{a,b},C = P(T), v(T) = Lv({a}) = 0,({b}) =
v(0) =2andu(A) = {v(A)}, for everyA € C.

We prove that is uniformly autocontinuous: for
everye >0, leté =1 > 0. Thenv(B) < § = B =
{a}. We now haver(A U B) < v(A) + ¢, for every
A € C. Sov is uniformly autocontinuous.

But x is not uniformly autocontinuous. Indeed,
there exist& = 1 such that for every > 0, there
existA = {b} andB = {a} with |u(B)| =0 < 4, so
thath(u(AU B),u(A)) =1 =-e.

(v) If v is monotone and uniformly autocon-
tinuous, theny is also uniformly autocontinuous.
This results from the following equalityh(u(A U
B), u(4)) = [(AUB) —v(4)| = v(AUB) — v(A),
forevery A, B € C, sincev is monotone.

Il. Let v : C — R, beaset function and. :
C — P¢(Ry) definedby p(A) = [0,v(A)], for every
A € C. Then the following statements hold:

() © is monotone (null-monotone, autocontinu-
ous from above, null-additive, null-null-additive re-
spectively) if and only if the same is
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(i) p is a multisubmeasure (a multimeasure re-
spectively) if and only ifv is a submeasure (finitely
additive respectively).

(i) If w is uniformly autocontinuous, thenm is
also uniformly autocontinuous. (One reasons like in
I-(iv) from above). To see that the converse is not
valid, we consider defined like in I-(iv) andu(A) =
[0,v(A)], for everyA € C. Thus,v is uniformly auto-
continuous, buf: is not uniformly autocontinuous.

(iv) If v is monotone and uniformly autocontinu-
ous, thenu is uniformly autocontinuous. (The proof
follows like in I-(v) from above).

Theorem 2.6.Lety : C — Py(X) be a set multi-
function. Then the following statements hold:

I. If p is a multisubmeasure, thgnis uniformly
autocontinuous.

Il. If p is a multisubmeasure, then is null-
additive.

. If wis uniformly autocontinuous, thenis au-
tocontinuous from above and null-null-additive.

IV. If 1 is autocontinuous from above, thenis
null-monotone and null-null-additive.

V. If i is null-additive, then is null-null-additive
and null-monotone.

VI. Suppose: : C — Pr(X). If 1 is autocontinu-
ous from above, then is null-additive.

These relationships are synthetized in the follow-
ing schema:

msm n-mon
uac= — — — — — > n-add
i ~
~N
~N
N ~N
n-n-add ac-ab

” — - > 7 means the hypothesig.™ C — P;"
msm=multisubmeasure
n-mon=null-monotone

uac=uniformly autocontinuous
n-add=null-additive
n-n-add=null-null-additive
ac-ab=autocontinuous from above

Proof. I. Let A € C, ¢ > 0 andB € C such that
|u(B)| < e. Sincep is monotone, it resultg(A4) C
(A U B) which impliese(u(A), u(AU B)) = 0.

Sinceu(AU B) C u(A) + u(B), it follows:

e((AUB), (A)) < h(u(A)+n(B), p(4)) < [n(B)| < <.

So,h(u(A U B), u(A)) < e, which proves thaf is
uniformly autocontinuous.
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Il. Let A, B € C, so thatu(B) = {0}. Sincep
is monotone, we have(A) C u(A U B). Sincep
is a multisubmeasure, we hau€A U B) C u(A) +
w(B) = u(A). Sou(AU B) = p(A), which proves
thaty is null-additive.

ll. First, we prove thay is autocontinuous from
above. Letd € C and(B,,) C C, so thatju(B,)| —
0. Sincep is uniformly autocontinuous, for eveey>
0, there isi(e) = 6 > 0, so that for everyd € C and
everyB € C, with |u(B)| < §, we have

(2) h(p(AU B), u(A)) <e.

Since |u(By)| — 0, there isny € N, such that
|u(By)| < o, for everyn € N, n > ng. From
(2) it follows h(u(A U By),u(A)) < e, for every
naturaln > ng, which implies thatnh_»H;o h(pu(A U

By,),u(A)) = 0. Sou is autocontinuous from above.
We now prove that: is null-null-additive. LetA, B €

C, such thatu(A) = u(B) = {0}. So, |u(B)| =
0 < ¢ and, sinceu is uniformly autocontinuous, it re-
sults|u(A U B)| < ¢, for everye > 0. This implies
u(AU B) = {0}. Sou is null-null-additive.

IV. First, we prove thaj is null-monotone. Let
A,B € C, sothatA C B andu(B) = {0}. Let
B,, = B, for everyn € N. So|u(B,)| — 0. Since
w is autocontinuous from above, we obt§ir{A)| =
h(p(A U By), u(A)) — 0. This implies|u(A)| =
0 and so,u(A) = {0}, which shows thaj: is null-
monotone. We now show thatis null-null-additive.
Let A, B € C, such thatu(A) = p(B) = {0} and
let B, = B, for everyn € N. Then|u(B,)| —
0. Sincey is autocontinuous from above, we have
nILIEo h(1(AU By,), u(A)) = 0. This implies|u(A U

B)| =0,sou(AU B) = {0} and thusu is null-null-
additive.

V. It results straightforward from definitions.

VI. Let A, B € C so thatu(B) = {0}. We con-
sider B, = B, for everyn € N, so|u(B,)| — 0.
By the autocontinuity from above, it follows(u(A U
B),u(A)) = 0. Sincep is Pr(X)-valued, it results
uw(A U B) = u(A), which proves thaf: is null-
additive. O

In the following examples we observe that the

converses of the statements of Theorem 2.6 are not

valid.

Examples 2.7

l.LetT = N,C = P(N)andu : C — P¢(R)
defined for everyAd € C by u(A) = {0} if Ais fi-
nite andu(A) = [1,00), if A is countable. Them
is uniformly autocontinuous and it is not a multisub-
measure.

Il. Let T = {a,b},C = P(T)andy : C —
Py (R) defined byu(T) = [0,2], u({a}) = u({b}) =
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[0, 4] and (@) = {0}. Theny is null-additive, but it
is not a multisubmeasure.

Ill. Let T" = [0,1], C the Borelo-algebra onT,
A : C — R the Lebesgue measure apd: C —
Ps(Ry) definedby 1(A) = {v(A)}, wherev(A)
tg(FA(A)), for everyA € C.

According to Example 4-[17]y is autocontinu-
ous from above. From Remark 2.5-1-(i), it results that
u is autocontinuous from above.

According to Example 4-[17}, is not uniformly
autocontinuous. Now, from Remark 2.5-1-(iv), it fol-
lows thaty is not uniformly autocontinuous.

IV. Let T = {a,b},C = P(T) andp : C —
Ps(R) defined byu(T) = [0,2], u({b}) = [0,1] and
u({a}) = (@) = {0}. Theny is null-monotone and
null-null-additive, but it is not a multisubmeasure, not
null-additive and, sincg is P-valued, not uniformly
autocontinuous and not autocontinuous from above.

V.LetT = {a,b},C = P(T) andp : C —
Ps(R) defined byu(4) = {1,2}if A = T and
u(A) = {0} otherwise. Then is null-monotone, but
1 is not null-null-additive and not null-additive.

VI. Let T' = {a,b},C = P(T) andp : C —
P¢(R) defined byu(A) = {1,2} if A= {a}orA =
{b}, (@) = {3} andu({a,b}) = {0}. Thenu is
null-null-additive, but not null-monotone.

Vil. Let T' = [0,4+00),C = P(T) andp : C —
Ps(R) defined byu(0) = {0}, n(A) = Aif cardd =
1, u(A) = [0,6(A)] if Ais bounded with card > 2
andu(A) = [0, 00) if A is not bounded. Here, cadd
is the cardinal ofd andd(A) = sup{||t — s||;t,s €
A} is the diameter ofd. Theny is null-additive, but
not autocontinuous from above. Indeed, there exist
A = {1} andB,, = [0, ], for everyn € N*, such
that|u(Bn)| = 5, — 0, but h(u(A U By), u(4)) =
h(]0,1],{1}) =1 -» 0.

Remark 2.8. Let i : C — Py(X) be a set mul-
tifunction and the set functioju| : ¢ — R, defined
by |u|(A) = |u(A)|, for everyA € C. Then the fol-
lowing statements hold:

I. v is null-monotone (null-null-additive respec-
tively) if and only if the same i$u.

II. If x is monotone, theryu| is also monotone.
The converse is not true. Indeed, et= {a,b}, C =
P(T) andp : C — Py(R) defined byu(T") = {1},
u({a}) = p({b}) = [0,1] andu (D) = {0}. We have
lw(A) = 1if A # 0 and|u(@)| = 0. Then|u| is
monotone, but: is not monotone.

. If w is null-additive, therju| is null-additive.
The converse is not valid. Indeed, Bt= {a, b}, C =
P(T)andp : C — Pr(R) defined byu(T) = [0,1],
p(fa}) = {1} andu({b}) = p(@) = {0}. We have
|u(A)| =1if A=TorA = {a} and|u(A)| = 0 if
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A = {b} or A = (. Then|u| is null-additive, butu is
not null-additive.

IV. If uis autocontinuous from above, thar is
autocontinuous from above and this results from the
inequality:

|I1(AUB)|~|u(A)| < h(1(AUB), u(A)),¥A, B € C.

The converse is not true. Indeed, Bt = [0, 1],
C = P(T)andp : C — Ps(R) defined byu(d) =
n({0}) = {0}, u(A) = Aif A = [0,2], n € N*,
p(A) = [0,1]if A = [0,2] U{1}, n € N* and
w(A) = {1} otherwise. Thenu(A)| =0if A =0
or A = {0}, |u(4)] = 2if A= [0,1], n € N*and
|(A)| = 1 otherwise.

Let us prove that|u| is autocontinuous from
above. Consideld € C and (B,) C C so that
|u(Br)| — 0. Then we may suppose, without any
loss of generality, thaB,, € {0, {0}, [0, 1]}, for ev-
eryn € N*. Itfollows |u(A U B,,)| — |©(A)|, which
proves thatu| is autocontinuous from above.

We now show thaj: is not autocontinuous from
above. Indeed, there exigt= {1} andB,, = [0, 1],
for everyn € N*, such thaiu(B,)| = £ — 0 and
h(u(AU Byp), u(A)) = h([0,1],{1}) =1 - 0. Sou
is not autocontinuous from above.

V. If w is uniformly autocontinuous, then the same
is |u| and this results like in IV. The converse is not
valid. Indeed, we considet as in IV. Sinceyp is
not autocontinuous from above, according to Theorem
2.6-lll, it results thatu is not uniformly autocontinu-
ous. We prove thafu| is uniformly autocontinuous.
Lete > 0andd = . Also, let B € C, so that
[u(B)| < 6 = e. Then|u(AU B)| < |u(A)| + ¢,
for every A € C, which proves thafu| is uniformly
autocontinuous.

1
n

Definition 2.9. (Gauvrilut [7-10]) A set multifunc-
tion i : C — Pp(X) is said to be:

(i) exhaustivef 7}13)10 |(Ay)| = 0, for every pair-
wise disjoint sequence of setd,, ) ,en< C C.

(i) order continuous (shortly, o-continuou}
nh—{go lu(An)| = 0, for every sequence of sets

(An)nen+ C C, such thatd,, \ 0.

(i) increasing convergentf u(|J Ay)
n=1

lim p(A,) with respect td, for every increasing se-
quence of set$A,),en+ C C, such thatd,, ~ A,
whered = |J A, €C.

n=1

(iv) decreasing convergenif p,(ﬁ =

n=1

lim p(A,,) with respect toh, for every decreasing
n—oo

Ap)
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sequencef sets(A4,),en+ C C, such thatd,, \, A,
whered = () A, € C.

n=1
(v) fuzzyif p(0) = {0} andu is monotone, in-
creasing convergent and decreasing convergent.

Remark 2.10. (Gavrilut [7-10])) . If . : C —
P¢(X) is exhaustive and increasing convergent, then
1 IS 0-continuous.

Il. SupposeC is ao-ring andy : C — Py(X) is
monotone and o-continuous. Thens exhaustive.

lll. Supposey : C — Py(X) is uniformly au-
tocontinuous, withu (@) = {0}. Then the following
statements hold:

(i) If u is o-continuous, thep is increasing con-
vergent.

(i) p is o-continuous if and only if, is decreasing
convergent.

(i) If p is monotone, then is o-continuous if
and only if it is fuzzy.

IV. If v : C — R4 is a set function ands :

C — P¢(R) is defined byu(A) = [0,v(A)], for every

A € C, theny is exhaustive (o-continuous, increas-
ing convergent, decreasing convergent, fuzzy respec-
tively) if and only if the same i

V. If C is finite, then any set multifunction, with
(@) = {0} is exhaustive, o-continuous, increasing
convergent and decreasing convergent.

3 Atoms and pseudo-atoms

In this section, we present some properties of atoms
and pseudo-atoms for different types of set multifunc-
tions.

Definition 3.1. Let u : C — Py(X) be a set
multifunction, with(0) = {0}.

(i) Aset A € C is said to be aratom of y if
u(A) 2 {0} and for everyB € C, with B C A, we
havep(B) = {0} or u(A\B) = {0}.

(i) A set A € C is called apseudo-atonof 4 if
u(A) 2 {0} and for everyB € C, with B C A, we
havey(B) = {0} or u(B) = u(A).

(i) w is said to benon-atomic (non-pseudo-
atomic respectively) if it has no atoms (no pseudo-
atoms respectively).

(iv) 1 hasthe Darboux propertyf for every A €
C, with u(A) 2 {0} and everyp € (0,1), there is
B eCsothatB C Aandu(B) =p u(A).

Remark 3.2. Let i : C — Py(X) be a set multi-
function, withu(0) = {0}.

I. If u is monotone, them is non-atomic (non-
pseudo-atomic respectively) if for every € C, with
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1(A) 2 {0}, thereisB € CsothatB C A, u(B) 2
{0} andu(A\B) 2 {0} (u(A) 2 u(B) respectively).

II. If w is null-monotone, the € C is an atom
of i if and only if A is an atom ofz.

. If x is null-additive, then every atom of is
a pseudo-atom qif (as we shall see in Examples 3.5-
I, the converse is not valid). Consequently, any non-
pseudo-atomic monotone null-additive set multifunc-
tion is non-atomic.

Definition 3.3. Let u1, 2 : C — Po(X) be set
multifunctions. One says that is absolutely contin-
uous with respect tg, (denoted by, < o) if for
everyA € C, pu2(A) = {0} = p1(A) = {0}

Remark 3.4.

I. Let u1,u2 : C — Po(X) be monotone set
multifunctions so thafu;(0) = p2(0) = {0} and
p1 < pg. Let A € C, with u1(A) 2 {0}. If Ais
an atom ofus, thenA is an atom ofi; too.

Il. Supposeu, pus : C — Py(X) are monotone
set multifunctions so that(0) = ua2(0) = {0},
p1 < pg andpg(A) 2 {0}, for every A € C\{0}.
If 411 is non-atomic, thems is also non-atomic.

Example 3.5.1. LetT = {a,b,c},C = P(T) and
p: C — Pg(R) defined byu(A) = [0,1] if A # 0
andu(A) = {0} if A = 0. Theny is null-additive,
A = {a,b} is a pseudo-atom of, but not an atom of
M.

Il. Let T = 2N = {0,2,4,..
foreveryA € C:

n(A) = {

wherelA = {£| z € A}. pis amultisubmeasure.

If A € C, withcardA=1andA # {0} or A €
C,A =1{0,2n}, n € N*, thenA is an atom ofu (and
a pseudo-atom gf too, according to Remark 3.2-llI
and Theorem 2.6-11). By cartlwe mean the cardinal
of A.

If A e C,withcardd > 2 andthere exisi,b € A
such thata # b andab # 0, thenA is not a pseudo-
atom ofy (and not an atom qgf, according to Remark
3.2-11).

. Let C = P(N) andyu : C — Pf(R) defined
for everyA € C by

{0},
{0} U [na, +00),

3. C

= P(T) and
{o}, if A=0
TAU{0}, ifA#£0

if Ais finite
if A is infinite and

1(A)

n4 = min A.

Theny is monotone and non-pseudo-atomic.
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Remark 3.6. Let i : C — Py(X) be a set multi-
function, with () = {0}.

I.If A € Cisapseudo-atomofandB € C, B C
A such thai(B) 2 {0}, thenB is a pseudo-atom of
pandu(B) = pu(A).

Il. Supposeu is null-monotone ang () = {0}.
If A e Cisanatomof.andB € C, B C A such that
w(B) 2 {0}, thenB is an atom ofu andu(A\B) =
{0}.

Theorem 3.7.Suppose: : C — Py(X) is mono-
tone, so thap (@) = {0} and A, B € C are pseudo-
atoms ofi.. Then the following statements hold:

I u(A) # u(B) = (AN B) = {0}.

Il. Suppose: is null-null-additive. Ifu(ANB) =
{0}, then A\ B and B\ A are pseudo-atoms of and

u(A\B) = u(A), u(B\A) = u(B).

Proof. I) Supposeu(A N B) 2 {0}. According
to Remark 3.6-1, we have(AN B) = u(A) = u(B),
which is false.

II. Let us prove thaj(A\B) 2 {0}. Suppose on
the contrary that.(A\B) = {0}. Sincey is null-null-
additive, we havei(A) = u((A\B)U (AN B)) =
{0}, which is false. Sou(A\B) 2 {0} and from
Remark 3.6-l, it results thatl\ B is a pseudo-atom
of p andu(A\B) = p(A). Analogously,B\A is a
pseudo-atom of, andu(B\A) = u(B). O

Theorem 3.8.Suppose: : C — Py(X) is mono-
tone and null-null-additive, so that()) = {0} and
A, B € C are pseudo-atoms qi. Then there exist
pairwise disjoint setd/;, E», B3 € C,with AU B =
E1UEyU E3, such that, for every € {1, 2,3}, either
E; is a pseudo-atom of, or p(E;) = {0}.

Proof. Let By = ANB, Ey = A\B, E3 = B\ A.
We have the following cases:

(i) w(E1) = {0}. According to Theorem 3.7-
Il, E; and E5 are pseudo-atoms of and u(Es2) =
1(A), p(E3) = p(B).

(i) p(E1) 2 {0}, u(Ez) 2 {0}, u(Es) 2 {0}.
By Remark 3.6-1,F; is a pseudo-atom of. and
w(Er) = u(A) = wu(B). Analogously,Fy and E5
are pseudo-atoms of

(i) p(Er) 2 {0}, u(Ez) = {0}, u(Es) 2 {0}.
From Remark 3.6-1, it results that, is a pseudo-atom
of wandu(Er) = u(A) = n(B). Analogously,Es is
a pseudo-atom qgf andu(E3) = u(B).

The last two cases are similar to (iii).

(iv) pu(E1) 2 {0}, u(E2) 2 {0}, p(E3) = {0}

(V) u(Er) 2 {0}, p(E2) = p(E3) ={0}. O

Remark 3.9. By induction, the same result of
Theorem 3.8 can be obtained for every finite fam-
ily {A;}, of pseudo-atoms qgf. Consequently, we
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canwrite J A; = (U Bj) U E, where{B;}7" |, E
i=1 j=1

are pairwise disjoint sets df, such that{ B;}'.; are

pseudo-atoms qf andu(E) = {0}.

Theorem 3.10. Suppos€ is a o-ring and p :
C — Ps(X) is fuzzy, null-null-additive and exhaus-
tive. Then there exists a sequenés, ),cn- Of pair-
wise disjoint pseudo-atoms pfsatisfying the condi-
tions:

() |n(Bn)| = [u(Bnt1)|, Vn € N¥,

(i) lim |p(B,)| =0,

(i) Y& > 0,3Ing €
‘:U'(Ugozno Bk)‘ <Eé.

N*, such that

Proof. Let A,, = {E € C|E is a pseudo-atom of
pandL < |u(E)| < L5}, for everym € N*. Then
A, contains at most finite pairwise disjoint sets. Sup-
pose, on the contrary, there are infinite pairwise dis-
joint sets(Ey, )nen+ C Apm. So, we haveu(E,)| >
%, for everyn € N*. Sincep is exhaustive, it fol-
lows nlingo |n(Ey)| = 0, which is false. Hence, there

exist at most finite pairwise disjoint pseudo-atoms in
A, for everym € N* and denote all of them by
{Bn}5° ;. Now, (i) is evidently satisfied. Sinde3,,)
are pairwise disjoint ang. is exhaustive, it results
(i). We remark that(| |J Br =

n=1k=n

0. If we denote

A, = | By, for everyn € N¥, then we have
k=n

A, \, 0. Sincep is o-continuous (according to Re-

mark 2.10-l), it follows lim |u(A,)| = 0. Conse-

quently, for everye > 0, there existy € N*, such
that |u(An,)| < e, thatis|u( U Bi)| < e, which

k=ng

proves (iii). O

In the end of this section, we establish the follow-
ing result which will be useful in section 4.

Proposition 3.11 Suppose&, C, are two rings
so thatC; C Cs and(;y is dense irC, with respect to
a monotone null-additive set multifunctign: Co —
P¢(X) (that is, for everye > 0 and everyA € C,,
there isB € C; sothatB C A and|u(A\B)| < ¢),
with u(@) = {0}. If u is non-atomic (non-pseudo-
atomic respectively) o6s, theny is also non-atomic
(non-pseudo-atomic respectively) 6n

Proof. Suppose that, on the contrary, there is an
atom (pseudo-atom respectively) € C; for p e, .
Then p(A) 2 {0} and for everyB € C; with
B C A we haveu(B) = {0} or u(A\B) = {0}
(u(A) = u(B) respectively).
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Becaused € Ca,u(A) 2 {0} and p is non-
atomic (non-pseudo-atomic respectively)@n there
is By € Cy so thatBy C A, u(By) 2 {0} and
u(A\Bo) 2 {0} (u(A) 2 u(Bo) respectively). Then
|1(Bo)| > 0 and, since’; is dense inCy, for eg =
‘,U,(B()) , C By and
[1(Bo\Co)| < eo-

Now, becaus&€’y € C; andCy C A, by the as-
sumption made we get(Cy) = {0} or u(A\Cyp) =
{0} (u(A) = u(Cop) respectively).

I If u(Co) = {0}, then, by the null-additivity of
1 |1(Bo)| = |1((Bo\Co) U Co)| = [u(Bo\Co)| <
|(Bo)l, which is false.

I If uw(A\Cy) = {0} (respectively,u(A)
1(Cp)), then, in both cases, by the null-additivity of
w, W(A) = u(Co) 2 u(Bo), which is false because
Co € By, sou(Co) S p(Bo).

Consequently, x is non-atomic (non-pseudo-
atomic respectively) od; . O

4 Extension theorem by preserv-
ing non-atomicity (non-pseudo-
atomicity respectively)

In this section,X is a Banach space and: C —
Py (X) is an exhaustive set multifunction. In Gavrilug
and Croitoru [13] the following result is established:

Lemma 4.1. For everye > 0 and everyA C T,
there existds € C suchthat’ C Aand|u(B\K)| <
e, foreveryB € C,with K C B C A.

Using Lemma 4.1, we obtain the following results
which improve those of [13].

Theorem 4.2 Lety : C — Py(X) be an exhaus-
tive multisubmeasure. Thenextends (ie..*(A)
u(A), for every A € C) to an exhaustive mono-
tone set multifunctiop* : P(T) — Ppp(X). If p
is non-atomic (non-pseudo-atomic respectively), then
the same ig/*.

Proof. According to [13], it only remains to es-
tablish the non-pseudo-atomicity part. Supppsis
non-pseudo-atomic and, on the contrary, there is a
pseudo-atormi, for p*. Thenp*(Ap) 2 {0} and for
everyB C T, with B C Ay, we havey*(B) = {0}
or u*(Ap) = p*(B). Becauser*(A4p) 2 {0}, by the
definition of u*, there exist&’y € C so thatCy C Ay
andu(Co) 2 {0}.

Sincew is non-pseudo-atomic, thereliy € C so
that Dy C Cy, ,U,(Do) 2 {0} andu(C’o) 2 M(DQ).
For Do, 1" (Do) = {0} or u*(Ag) = p*(Do).
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If 11*(Do) = {0}, thenuu(Dy) = u*(Dy) = {0},
which is false.

If 1" (Ao) = p*(Do), thenu*(Do) = p(Do) &
w(Co) = p*(Co) C p*(Ag) = p*(Dyo), a contradic-
tion. So,u* is non—pseudo-atomic. O

From now on, suppose, moreover, tias an al-
gebra of subsets af.

ConsiderC, = {A C T; for everye > 0,
there existK, D € C such thatXk € A C D and
|u(B)| < e, for everyB € C, with B C D\K}. We
immediately observe that, because of the monotonic-
ity of u, we also have€,, = {A C T'; for everye > 0,
there existK, D € C such thatXk’ € A C D and
(D\K)| < }.

One can easily check th&tC C, andC, is an
algebra. Also( is dense inC, with respect tou*.
Indeed, for every > 0 and everyA € C,, there exist
B,D € CsothatB C A C D and|u(D\B)| < e.
Then|u*(A\B)| < |ii*(D\B)| = |u(D\B)| < .

Theorem 4.3 Lety : C — Ppy(X) be an ex-
haustive multisubmeasure. ifis non-atomic (non-
pseudo-atomic respectively), then the samajicsM

and it uniquely extends.

Proof. According to [13] and also the same as
in the proof of Theorem 4.2, we get th@cu is non-
atomic (non-pseudo-atomic respectively).

We now prove that the extensiqgit is unique.
Suppose, on the contrary, there is another set multi-
functiomp C. — Pps(X) having the properties of
M/c , which extends;u Let A € C, be arbitrarily.

By the definition ofC,, there areK, D € C so that
K C AC Dand|u(D\K)| < . Then for every
e > 0, we have:

+

( “(D),¢(A)) = e(u(D), p(A)) <
<e(u(D), u(K)) + e(u(K), p(A4)) =
e(u(D), u(K)) <
< [W(D\K)| <,

henceu*(A) C p(A). On the other hand,

e(p(A), 1™ (A4))
< e(p(A),¢(D)) + e(p(D), 1 (A)) =
= e(p(D), 1" (A4)) = e(u(D), p*(A)) <
<e(u(D), u(K)) + e(u(K), u*(A) <
< |u(D\K)| + e(u*(K), p*(A)) =
[n(D\K)| < e

and the conclusion follows.
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Corollary 4.4 Letpu : C — Ppy(X) be an
exhaustive multisubmeasure. Thgris non-atomic
(non-pseudo-atomic respectively) 6nf and only if

“7@ is non-atomic (non-pseudo-atomic respectively).

Proof. The "if part” follows by Theorem 4.3 and
the "only if part’ follows by Proposition 3.11, sinc@
is dense irC,,. O

5 Regular non-atomic (non-pseudo
atomic respectively) set multifunc-
tions

In this section, we establish some results concern-

ing non-atomicity and non-pseudo-atomicity for null-

additive regular set multifunctions defined on the

Baire (Borel respectively)-ring By (B respectively)

of a Hausdorff locally compact space and taking val-

ues inPy(X).

From now on, letl’ be a Hausdorff locally com-
pact space( a ring of subsets of’, 5, the Baired-
ring generated by thé&'s-compact subsets &f (that

is, compact sets which are countable intersections of

open sets) and the Borel§-ring generated by the
compact subsets af.

Definition 5.1. (Gavrilut [11]) I. Lety : C —
P#(X) be a monotone set multifunction, with{()) =
{0}

I. AsetA € Cis said to be (with respect {0):

(i) R - regular if for every e > 0, there exist a
compact setX C A, K € C and an open se&b >
A, D € C suchthae(u(D), u(K)) < e.

(ii) R; - regularif for everye > 0, there is a com-
pact set’ C A, K € C such thate(u(A), u(K)) <
e.

(iii) R, -regularif for everye > 0, there exists an
open setD D A, D € C such thate(u(D), p(A4)) <
£;

Il. 1 is said to beR - regular (R; - regular, R, -
regular respectively) if everyA € Cis R - regular (R
- regular,R, - regular respectively)

Theorem 5.2 Supposg: : B — P¢(X) is mono-
tone, null-additive and:(0)) = {0}. Let A € B with
u(A) 2 {0}. Then the following statements hold:

I. If A is an atom ofy, then there is a compact
setKy € BsothatKy C Aandu(A\Ky) = {0}.

Il. Ais an atom ofy if and only if

(3) dla € A so thatu(A\{a}) = {0}.
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lll. u is non-atomic if and only if: is diffused,
that is

(4) w({t}) = {0}, foreveryt € T.

Proof. I. Let A € B be an atom of: andK 4 =
{K C A; K is acompact set and(A\K) = {0}} C
B.

First, we prove that everf € K4 is an atom
of u. Indeed, ifK € K4, then, by the null-additivity
of u, we haveu(A) = p((A\K) U K) = pu(K) 2
{0}. Also, for everyB € B, with B C K, since
K C AandA is an atom ofu, we getu(B) = {0} or
p(A\B) = {0}.

If u(A\B) = {0}, then{0} C u(K\B) C
n(A\B) = {0}, sopu(K\B) = {0}.

ConsequentlyK € K 4 is an atom ofu.

We now prove thaty N Ky € K4, for every
K, Ky € K4. Indeed, ifKq, Ky € K4, thenK; N
K is a compact set of" and u(A\ (K1 N K3)) =
p((A\K1) U (A\K)) = {0}.

We prove tha‘g{ QK:AK’ denoted by, is a non-

void set. Suppose that, on the contrdty, = (). There
areKi, Ko, ..., K, € K4 S0 that?ﬁ)lKi = (), hence
1=

u(ﬁlm) = {0}. But ,’fﬁ’lm € K4, which implies
“(ﬁKi) 2 {0}, a contradiction.

Now, we prove thak(y € K 4. Obviously,Kj is a
compact set. Let b& € K4. Thenu(A\K) = {0}.

If K = Ky, thenKy € K4.

If K # Koy, thenKo & K.

Becauseu(A\Ko) = u((A\K) U (K\Ko)) =
w(K\Kp), it remains to prove thai( K\ Ky) = {0}.
Suppose, on the contrary, thati'\ Ky) 2 {0}. Con-
siderB € B, with B C K\Ky,. ThenB C K
and, sincekK is an atom ofy, thenpu(B) = {0}
or u(K\B) = {0}. If w(K\B) = {0}, then
w((K\Ko)\B) = {0}. So, K\ K is an atom ofy.
Becaused is an atom ofw andu (K \ Ky) 2 {0}, then
u(A\(K\Ko)) = {0}.

ConsequentiyiC4 = {B C A; Bis acompact set
andu(A\B) = {0} } andKs\ g, = {C € K\Ko; C
is a compact set and((K\ Ko)\C) = {0} }.

Let beC € Kg\g,- Thenu((K\Ko)\C) =
{0} and, sinceu(A\(K\Kp)) = {0}, we get that
u(A\C) = {0}, which impliesC € K4. Therefore,
Ky C C, butC C K\Kj, a contradiction. Conse-
quently,:(K\ Ko) = {0}.

So, if A € Bis an atom ofu, there is a compact
setKy € B sothatKy C A andu(A\Ky) = {0}.

Il. The"if part”. Let A € B be an atom of:.. We
show that the sek’y from the proof of | is a singleton
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{a}. Supposepn the contrary, that there existb €
A, witha # bandKy 2 {a,b}.

Since T is a Hausdorff locally compact space,
there exists an open neighbourhobdof a so that
b ¢ V. Obviously, Ky = (Ko\V) U (KoNnV) and
Ko\V, Ky NV arenonvoid, compact subsets of.

We prove thatko\V € K4 or KgNV € Ka.
Indeed,if Ko\V ¢ KaandKoNV ¢ Ka, then
p(A\(Ko\V)) 2 {0} andi(A\(Ko N V)) 2 {0}.
Since A is anatom of i, thenu(Ky\V) = {0} and
u(KoN'V) = {0}. Thenu(Ky) = {0} and since
i(A\Ko) = {0}, we have{0} ¢ u(A) = {0},a con-
tradiction. Consequently,\V € Kaor KoNV €
K 4. Becausd(y C K, foreveryK € K 4, we getthat
Ko C Ko\V or Ky C Ko NV, whichis impossible.
So,3a € A so thatu(A\{a}) = {0}.

For the uniqueness: suppose, on the contrary, that

there area,b € A, with a # b, p(A\{a}) = {0}
and u(A\{b}) = {0}. Then{0} C pu({a}) <
w(A\{b}) = {0}, sou({a}) = {0} and this implies
u(A) = {0}, which is a contradiction.

The "only if part”. ConsiderA € B, with
u(A) 2 {0} having the property (3) and l&® € B,
with B C A. If a ¢ B, thenB C A\{a}. Be-
causeu(A\{a}) = {0}, thenu(B) = {0}. If a € B,
thenA\B C A\{a}, henceu(A\B) = {0}. Conse-
quently, A is an atom of.

Ill. The "only if part”. Suppose that, on the
contrary, there is an atomy € C of u. By Il,
dla € Ap so thatu(Ao\{a}) = {0}. On the other
hand,u({a}) = {0}, sou(Ag) = {0}, a contradic-
tion. Consequently, is non-atomic.

The "if part” . Suppose that, on the contrary, there
isty € T so thatu({tp}) 2 {0}. Becauseu is non-
atomic, there is a seB € B such thatB C {t¢},

w(B) 2 {0} andu({to}\B) 2 {0}. Consequently,
B =0 or B = {ty}, which is false. O

Remark 5.3
I. If C = By (or B), then the condition

(5) vteT,JA, eCs.t.te A andu(A;) = {0}
implies the condition

(6) VB € C, with u(B) 2 {0},Vt € T,
JA; € Cs.t.t € Ay ande(u(B), u(A:)) > 0.
II.If C = B, then (5) is equivalent to (4).

Theorem 54. LetC = By (or By andp : C —
P;(X) monotone, null-null-additive, withu(0) =
{0}. If wis R-regular and if it has the propert{6),
then it is non-pseudo-atomidf, moreover,y is null-
additive, theru is also nhon-atomic.
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Proof. Supose that, on the contrary, there is a
pseudo-atonB € C of p.

Because: is R-regular then, according to [10],
it is R;-regular Consequently, there is a compact set
K € CsothatK C B andh(u(B), u(K)) < |u(B)|-

We observe that(K') 2 {0}. Indeed, ifu(K) =
{0}, then|u(B)| < |u(B)|, which is false

According to (6), for every € K, there exists
A; € Csothatt € A; ande(u(B), (A¢)) > 0.

Becauseu is R-regular then, by [10], it isR,-
regular Then, for everyt € K, for A; there is an
open setD; € C so that4; C D; and

e(u(Dy), (Ar)) < h(p(Dy), u(Ar)) <
<e(u(B), u(Ar)).-
Sincet € A; andA; C Dy, thenK C tUKDt'
€
Consequently, there existgs € N* so thatK C
.EleDti, with ¢; € K, for everyi = 1, p.

since{0} ¢ u(K) = u( 0 (D, 1K), by the

null-null-additivity of ;. one can easily check there is
s =1, p suchthatu(D;, N K) 2 {0}. Consequently,

{0} S u(Dy, NK) € pu(K) € u(B).

Obviously, we also have(D;,) 2 {0}.

SinceB is a pseudo-atom ¢f, u(B) 2 {0} and
1(Dy,) 2 {0}, thenpu(B) = p(B N Dy,).

On the other hand, becausg:(D;,), u(A+,)) <
e(u(B), ju(A,)), then

e(u(B N Dy,), u(At,)) <
< e(u(B N Dy,), 1(Dy,)) + e(pu(Dy, ), 1(At,))
e(u(Dr,), 1(At,)) < e(u(B), u(As,))-

But u(B) = p(D:, N B), a contradiction. Soy is
non-pseudo-atomic, as claimed. If, moreoveris
null-additive, then, by Remark 3.2-Ill, it is also non-
atomic. O

Concluding remarks.

In this paper, we have presented the relation-
ships among different types of set multifunctions
(such as: multisubmeasures, uniformly autocontinu-
ous, autocontinuous from above, null-additive, null-
null-additive) and some of their properties regarding
atoms, pseudo-atoms, non-atomicity, non-pseudo-ato-
micity and extensions by preserving non-atomicity
(non-pseudo-atomicity respectively).
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