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Abstract: - The high transcendental functions that occur in the relativistic expressions of the amplitudes of the 
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functions and transform their imaginary part in terms of Gauss hypergeometric functions. If the physical 
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in the imaginary part, some transcendental functions may be reduced to elementary functions. The numerical 
results obtained using the presented methods were compared with other’s authors results, displaying a very 
good agreement. 
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1 Introduction 
 
It is known that high transcendental functions as 
Lauricella FD Appell F1 and Gauss 
hypergeometric functions 2F1 systematically arise 
in the expressions of the scattering amplitudes of 
both inelastic and elastic two photon atomic 
processes. Moreover, the imaginary part of the 
elastic forward scattering amplitude gives (via the 
optical theorem) the cross sections of photoeffect 
and pair-production with the electron created in a 
bound state, so that a good knowledge of 
analytical properties of the Appell functions 
allows to get simple expressions for these one 
photon processes. 

Some time ago it was proved that in any 
two photon atomic process some important 
retardation and relativistic kinematics terms are 
alike and cancel each other [1],[2]. That extended 
the validity of the nonrelativistic limit for 
Compton, Rayleigh and photoeffect K-shell cross 
sections up to unexpected large photon energies 
for the whole spectrum. 

For energies above 400 keV spin effects 
become important and spin terms must be 
considered in order to obtain accurate results. The 
bound electron states must be described with 
Dirac spinors. The expressions of the amplitudes 
become very computing demanding and a large 
number of higher transcendental functions have 

to be handled [3],[4]. 
In this paper we show that in the case of 

elastic scattering in a full relativistic approach the 
same high transcendental Appell functions as in 
the nonrelativistic approximation but their 
parameters obey relativistic kinematics. This 
implies obtaining new analytical recursion 
relations for the Appell's functions involved in 
the amplitude expressions. That allows to keep 
the minimum number of distinct Appell’s 
functions. 

 
2 Brief presentation of the transition 
amplitudes for two photon elastic 
processes 
 
The Rayleigh amplitude is given by the sum of 
the contributions of two Feynmann diagrams: 
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In the eqs. (2) and  (3) the incoming photon has 
the energy ω , momentum  and polarization 

vector  while the outgoing photon has the 

momentum  and polarization vector  while 

 is the relativistic coulomb Green 
function given by Hostler [4] and Hostler and 
Pratt [5] 
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with α  the Sommerfeld constant, α  and β  
Dirac matrices, Z the atomic number,  0E mγ= , 

the ground state energy, ( 1/22 21 Zγ α= − )
1 0E iω εΩ = + + , 2 0E iω εΩ = − −  and  
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where the first two terms are due to Hostler [5] 
and the other two representing the second 
iteration are given by us. 
 The main term  is the ( )0 2 1, ;G r r Ω
solution of a Schrődinger-type equation 
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with the parameters 
2 2X m= −Ω , Re ; 0X >

Z
X

ατ Ω
=          (7) 

and X i X= −  above the threshold. The 
parameters X and τ given by eq. (7) obey 
relativistic kinematics. 
 We want to point out that the particular 
Green function  due to Martin and 
Glauber [6] has a simple and extremely useful 
form, 
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where  is the Whittaker function. (,1/ 2 2W Xτ

 In order to evaluate the scattering 
amplitudes we write the ground state Dirac spinor 

putting in evidence the "rest frame" spinor μχ  in 
momentum representation [7]: 
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as well as in coordinate representation: 
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Taking into account that ( )2u rμ
+ is a Dirac spinor, 

from eqs. (2), (4) and (5) we get 
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 The function  which 
occurs in the eq. (11) has the same expression as 
the nonrelativistic coulombian Green functions 
due to Schwinger [8] but its parameters 

(0 2 1, ,G p p Ω)

τ and X 
are given by. eq. (7). 
 That means that the amplitude (11) obeys 
the relativistic kinematics. 
For a filled K shell the Rayleigh matrix element 
per electron is expressed in terms of only two 
invariant amplitudes, 

( )M Ω  and , so that the matrix element 
may be written 
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with 1 1 /kν ω= , 2 2 /kν ω=  andθ  is the 

scattering angle, ( ) 1 2cos .θ ν ν=  
 
3 Minimizing the number of high 
transcendental functions involved in 
the imaginary part of the two 
photon elastic amplitudes 
 
By inspecting the expressions of the invariant 
amplitudes in the momentum space [3] [4], we 
may group several integrals with the same b 
parameter so that we may put in evidence the 
following types of integrals introduced by the 
integral representation of the Green function 

 that may be expressed in terms of 
Appell functions: 
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All these expressions present specific 
relationships between the parameters, being very 
convenient for their analytically properties. 

Indeed, we are able to proof that the second 
integral may be written in the following form: 
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where 1s x x= +  which depends both of the 
photon energy and scattering angle θ  and 

, which depends only on the energy. ( )1/ 2
1 2u x x=

It reveals a recurrence relationship 
allowing to obtain the Appell functions of the 
second type in terms of two Appell functions of 
the first type, with [ ]1 2 Reb b b a= = =  and 

1c a= + . 
This makes possible to minimize the 

number of Appell functions to be handled in the 
integrand. Thus, there are three Appell functions 
for the first type integral, and four for the second. 
Using the recurrence relationships we may 
eliminate the last four of these Appell functions. 

Moreover, we may use them in 
connection with another specific relationship for 
this kind of Appell functions so that we could 
obtain directly the imaginary part of the 
amplitude (necessary for photoeffect and pair 
production cross sections) in terms of Gauss 
hypergeometric functions: 
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where 
( ) ( )0 0, ( ), 0 ( )x y xx y e e eτ χ τ χ τ χε = = y                 (18) 

( )

( )

( )

1
1 2 2

2 2 2
1

1 0

1
1 2 2

2 2 2
1

1arctan
2

22

1/ 2

0 2 2

1arctan
2

22

0

2 1 1

X xZ
m Z mZ x

x

X xZ
m Z m

x

Z x x

e e

if x x
e Z m

e e
if x x

τ α
ω απ γ ατ

ω ω

τ χ

τ α
ω απ γ ατ

ω ω

γ ω
α

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥

− − +− ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥+⎢ ⎥−
⎢ ⎥

− + + +⎢ ⎥⎣ ⎦

⎧
⎪
⎪
⎪
⎪ ⎛ ⎞⎪ < = − −⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪
⎪
⎪
⎪

≥⎩

 

             (19) 

( ) ( )
2

2
2 2 2 2 2

22 0

1arctan
2

2

X xZ m mZ Z x xxe e e
τ α

π ω γ α αττ χ ω ω

⎡ ⎤
⎢ ⎥+
⎢ ⎥
⎢ ⎥+ + +− ⎢ ⎥⎣ ⎦=

                          (20) 
 

It may be shown that 
( )
( )

( ) ( )
( ) ( )

2 2* * *
2

2 2 2

,
,

D x y D x D y
u

D x y D x D y
= =

2

0 0

, ;

;

1 , 1 21

D x y D x D y

D x X D y X

x y

  

with 
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 22 2 2 2λ ω μ

λ λ μ λ

=

= + + = + +

= + = +

ω

           
and the argument of the Gauss hypergeometric 

function is 
1 1
2 2

sv v
u

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

 This overall minimization of the number 
of transcendental functions is very important for 
implementing the expressions of the amplitude in 
a standard programming environment (C or 
Fortran). For the same purpose, we were able to 
further express all the hypergeometric functions 
that occur in terms of elementary functions using 
the following relationships 
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Also, the contribution of the integral in the 
coordinate space to the second iteration to the 
main term of the amplitude may be expressed in 
terms of two integrals that lead to Gauss 
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Fig. 1 The real part of the integrand of Appell 
function in the case of forward Rayleigh 
scattering for , 1 2 2b b= = 1a i τ= − . The first 
graphics corresponds to the variables values 

[ ]1Re 0.1x = , [ ]2Re 1x = , and the second one is 

for [ ]1Re 14x = , [ ]1Re 10x =  
 

We have performed analytically the 
integrals ( )R Ω and and we have 
obtained the result: 
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and ( )2 1 , , ;F a b c z  is the Gauss hypergeometric 
function (GHF). 
 We point out that all GHF involved in the 
right side of the eq. 28 present simple 

relationships among the parameters  and 1b a− =
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where ( )zψ is the logarithmic derivative of 

( )zΓ function. 
 
4 Analytical treatment of the real 
part of the amplitude 
The following relationship may be used for 
expressing the Appell functions in terms of HGF 
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 We will try to reduce the appearing HGF to a 
form that is more convenient in order to take 
advantage of the relationship 

2 1(1, ;2 ; ) 1 ( )F uτ τ α− − = +          (33) 
 This allows us to eliminate the terms in a 
higher order of Zα  from the expressions of the 
amplitudes, taking  in consideration the small value of 
Sommerfeld constant, 1/137α ≈ . 
 We may write the following recurrence 
relationships between the HGF that occur in the 
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expressions of amplitude 
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 As the physical conditions prove, most of 
the terms with 1p ≥  have a higher order in Zα  
than the rest of the terms in the real part of the 
expression of the scattering amplitude. 
 Using the relationships (33) and (34), for 

 it follows 0p =
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 The term 
2 *

22
D D

D
− 2

 has no contribution 

to the real part of the amplitude when multiplied 
by 1, but it does contribute when multiplied with  
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+ +
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 Thus, the relationship (31) becomes: 
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 Taking into account the relationship (33) 
it follows that if we are interested in obtaining the 
real part of the amplitude up till 4( )Zα , the sum 
in (37) may be truncated at the first term as the 
others are in 5( )Zα . 
 Indeed, from the physical parameter of 
the process one may see that 

22 *2 2 2

4 4 4

2 4(

( )

D D D X

Z x

2)ω λμ

α

+ + = + +

+
      (38) 

which reveals the higher order of the rest of the 
terms in equation (37) 
 
 
5 Numerical results  
 
We applied all these calculations for obtaining 
the full relativistic expressions of forward 
Rayleigh scattering amplitudes in the order 

( )4Zα  for the real part and in the order 

( )7Zα in the imaginary part.  
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The recurrence relationships (15), (16) 
allow the minimization of the number of 
necessary Appell functions, while the 
relationships (17) and (22-24) allow in some 
cases to express them in terms of less 
transcendental functions. 

 

 
Fig. 2 The real part of the integrand of Appell 
function in the case of forward Rayleigh 
scattering for  1 2 2,b b= = 1a τ= −  and 

[ ]1Re 94,x = [ ]2Re 105x =  (upper figure) .  The 
same integrand focused on the first 
”pathological” region  (lower figure). 
  

This opportunity has a great impact on 
the overall computing effort in the final 
numerical calculations, as the higher 
transcendental functions are very difficult to 
estimate due to the almost ”pathological” nature 
of the integrand in many cases, especially in the 
vicinity of the physical thresholds [7].  

From figure 1 one may see that the 
integrand of the Appell function has a well 
behaved aspect for low values of the real part of 
the variables and become more and more 
pathological for larger values, which occur 
especially in the high photon energy regime. 
Also, the parameter τ  tends to infinity at the 
physical threshold energies. This aspect make 
very difficult the use of standard boxed 
quadrature programs, as the region with 
significant values of the integrand is very narrow. 
In the general case of Appell functions with 

different values of the variables there are two 
poles that abruptly amplify the oscillating 
numerator (as its exponent is complex above the 
threshold). 

The solution for managing the quadrature 
in these cases is to notice that only two narrow 

vicinities of 
1

1
x

and 
1

1
x

 have to be considered 

and, as it is shown in figure 2, a standard 
quadrature may be very accurate in these regions, 
without a huge computational effort.  

The validity of this technique was 
checked by including it in the calculation of the 
photoeffect cross sections in the high energy 
regime and by comparing our results with other 
published ones. The photoeffect cross sections 
were obtained via the optical theorem from the 
imaginary part of the forward Rayleigh scattering 
amplitude: 

[ ]2
04 Imph

m r Aπσ
α ω

=                                   (31) 

 The comparison of our numerical results 
for the photoeffect cross sections up to several 
MeV with similar results of Scofield [9] and 
Kissell et al [10] showed a very good agreement, 
within 3% even for heavy elements at photon 
energies where the relativistic effects are 
important. 
 In figures 3-6 we present the numerical 
results obtained with the above relationships in 
the nonrelativistic limit [2] for the angular 
distribution of the Rayleigh scattering of X rays 
on the K-shell various elements, for incoming 
photon energy under the threshold. One may 
notice that the forward scattering is lower than 
the back scattering if the threshold energy is 
much greater than the photon energies (figures 3 
and 4). Also a reversed situation occurs when the 
photon energy is closer to the target’s threshold 
energy (figure 6). 
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Fig. 3 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
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 electrons for Z=92 at 50 keV 
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Fig. 4 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
 electrons for Z=82 at 50 keV 
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Fig. 5 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
 electrons for Z=70 at 50 keV  
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Fig. 6 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
 electrons for Z=70 at 50 keV 
 
 We also present in Table 1 and Table 2 
the numerical values of the angular distribution of 
the Rayleigh scattering cross section and the real 
parts of the perpendicular and parallel 
components of the amplitude for the K-shell 
electrons of medium atomic number elements. It 
is obvious that for lower photon energy and not 
too high atomic number the angular distribution 
tends to be symmetric, since the retardation, 
multipole and spin effects become negligible. 
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Fig. 7 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
 electrons for Z=47 at 20 keV 
 
 
Table 1.  Angular distribution of the Rayleigh 
scattering cross section and the real parts of the 
perpendicular and parallel components of the 
amplitude for the K-shell electrons of Ag at 25 
keV. 
 
Angle       S (barn)       Re[Aperp]     Re[Apar] 
(deg)  
 
  0     35.7547    2.12208    2.12208 
 10.    35.2257    2.12208    2.09044 
 20.    33.7008    2.12211    1.99642 
 30.    31.359     2.12215    1.84273 
 40.    28.4762    2.1222     1.63379 
 50.    25.3932    2.12227    1.37563 
 60.    22.4767    2.12236    1.0758 
 70.    20.0761    2.12246    0.743099 
 80.    18.4817    2.12258    0.387398 
 90.    17.8895    2.12271    0.0193509 
100.    18.3764    2.12284    -0.349909 
110.    19.8888    2.12298    -0.709101 
120.    22.248     2.12312    -1.04715 
130.    25.1703    2.12325    -1.35355 
140.    28.3007    2.12336    -1.61868 
150.    31.2564    2.12346    -1.83419 
160.    33.6741    2.12353    -1.99323 
170.    35.2557    2.12357    -2.09074 
180.    35.8056    2.12359    -2.12359 
 

 
 If the photon energy is above the 
threshold energy, the relativistic effects become 
important especially for high Z elements. In 
figure 8 and figure 9 one may notice that the 
angular distribution is far from the symmetry 
predicted by older models, some of them with a 
very limited applicability [11-14]. In figure 9 the 
numerical results of Kissell et al [10] are also 
represented (with error bars) and a very good 
concordance may be observed even in the 
gamma-ray regime and high atomic number 
elements. 
 
Table 2.  Angular distribution of the Rayleigh 
scattering cross section and the real parts of the 
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perpendicular and parallel components of the 
amplitude for the K-shell electrons of Zn at 10 
keV. 
 
Angle       S (barn)       Re[Aperp]     Re[Apar] 
(deg)  
 
  0     38.661     2.20664    2.20664 
 10.    38.0826    2.20664    2.17337 
 20.    36.4164    2.20666    2.07454 
 30.    33.8612    2.20669    1.9131 
 40.    30.7224    2.20674    1.69385 
 50.    27.3754    2.20679    1.42331 
 60.    24.2218    2.20685    1.10957 
 70.    21.6408    2.20692    0.762037 
 80.    19.9442    2.207      0.391169 
 90.    19.3384    2.20707    0.0081668 
100.    19.8989    2.20716    -0.375356 
110.    21.5605    2.20723    -0.747722 
120.    24.1245    2.20731    -1.09755 
130.    27.2821    2.20738    -1.4141 
140.    30.6513    2.20744    -1.68764 
150.    33.8236    2.20749    -1.90971 
160.    36.4134    2.20752    -2.07344 
170.    38.1053    2.20755    -2.17376 
180.    38.6932    2.20756    -2.20756 
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Fig. 8 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
 electrons for Z=82 at 160 keV 
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Fig. 9 The angular distribution of the Rayleigh 
 scattering cross section of K-shell 
 electrons for Z=82 at 200 keV 
 A complete set of numerical results 
for the Rayleigh scattering in the gamma –ray 

regime for K-shell electrons of lead is 
presented in table 3. Both the imaginary and 
the real parts of the perpendicular and 
parallel  components of the amplitude show a 
very good agreement with other data 
presented in literature, proving the validity of 
our mathematical and physical  model. 
 
 
Table 3.  Angular distribution of the Rayleigh 
scattering cross section and the real and imaginar  
parts of the perpendicular and parallel 
components of the amplitude for the K-shell 
electrons of Pb at 200 keV. 
 
Angle  S(barn)  Re[Aperp]   Im[Aperp]  Re[Apar]  Im[Apar] 
(deg)  
 
 0    8.614   0.995  -0.306   0.995    -0.306 
10    8.395   0.990  -0.305   0.975    -0.297 
20    7.781   0.975  -0.300   0.919    -0.270 
30    6.881   0.952  -0.293   0.829    -0.228 
40    5.840   0.922  -0.283   0.712    -0.177 
50    4.805   0.887  -0.271   0.577    -0.121 
60    3.890   0.849  -0.259   0.432    -0.066 
70    3.166   0.809  -0.246   0.284    -0.014 
80    2.655   0.770  -0.233   0.140    0.030 
90    2.344   0.732  -0.221   0.005    0.067 
100   2.200   0.697  -0.210  -0.116    0.097 
110   2.178   0.666  -0.200  -0.224    0.120 
120   2.236   0.638  -0.191  -0.316    0.136 
130   2.337   0.614  -0.183  -0.393    0.148 
140   2.451   0.595  -0.177  -0.455    0.156 
150   2.559   0.580  -0.172  -0.502    0.161 
160   2.644   0.569  -0.168  -0.535    0.164 
170   2.699   0.563  -0.166  -0.554    0.165 
180   2.718   0.560  -0.166  -0.560    0.166 
 
 
 

6 Conclusions 
The high transcendental functions that occur in 
the relativistic expressions of the two-photon 
atomic processes may be reduced to less 
computer demanding functions using several 
recurrence relationships and identities. The 
specificity of the involved functions parameters 
has been exploited and both the imaginary and 
the real part of these functions have been 
analytically treated. This allows to minimize the 
number and complexity of the transcendental 
functions needed for amplitude calculation in 

4( )Zα  for the real part and 7( )Zα  in the 
imaginary part. The numerical results obtained 
using the presented procedure show a very good 
agreement with other results in the literature. 
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