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Abstract: - The collocation method for solving the Hartree-Fock equations of the self-consistent field in large 
atomic and molecular systems is analyzed and a method for improving its performances by supplementary 
analytical and numerical quadrature is proposed. We used monomial and Chbyshev type trial functions and the 
collocation points were equidistant or Chebyshev polynomial roots. The singularities have been avoided by a 
function change and analytical expressions have been obtained for the most part of the integrated terms in the 
matrix elements, except the Hartree-Fock potential which is treated separately in a similar way. This a-priori 
analytical treatment ensures a greater speed and a lower condition number of the matrix necessary for the 
expansion’s coefficient calculus, with an important effect on the overall precision and speed. Some numerical 
results are presented and compared with well-known types of orbitals, demonstrating the performance 
increasing in terms of precision and computing effort. 
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1 Introduction 
Numerically solving the Hartree-Fockk (HF) 
equations for many atoms systems is a very 
computing-demanding task, as a large number of 
differential equations (up to several thousands) have 
to be iteratively dealt until the self consistency is 
achieved. These types of calculations are very 
important in quantum chemistry, science of 
materials, molecular biology, etc. That is why a 
great interest is shown for developing high 
performance methods for integrating the differential 
equations of the self consistent field, and any 
improvement of the performances by using new 
techniques are very important in applying the ab-
initio methods for larger atomic systems, taking into 
account the limited power of the available 
computers.  

It is known that for each electron of each atom, 
the wave function satisfy the Schrödinger equation 
with a special potential that have a coulombian part 

due to the nucleus N
ZV
r

= −  and an electron 

interaction part given by the Hartree-Fock potential 
HFV  (which generally neglects the correlations 

effects). 
21 ( ) ( ) ( )

2 N i HF i i iV V ε⎡ ⎤− ∇ + Ψ + Ψ = Ψ⎢ ⎥⎣ ⎦
r r

Taking into account that each electron 
interacts repulsively with all the others the Hartree 
term may be written as:  

       

2
( )( ') ' '

' '
j

H
j j

V dρ Ψ
= =

− −∑ ∑∫ ∫
rr r r

r r r r
d  (2) 

where we replaced as usual the electric charge 
density ( )ρ r  with the square of the modulus of 
the wavefunction. 

Also, considering the total wave 
function as a Slater determinant and introducing 
the antisymmetrisation of the wave function, an 
exchange term is necessary due to the Pauli 
principle applied to the fermions 

         
( ') ( ')

'
'i j

j i
E s s

j
V dδ

∗Ψ Ψ
= −

−∑ ∫
r r

r
r r

 (3) 

We notice that only the interactions 
between electrons with different spins  
have to be added to the total exchange potential, 
and its sign is inverse to the Hartree term.  

,i js s

Thus, the classical Hartree-Fock equations 
(HF)  for a one-electron wave function ( )iΨ r may 
be written as [1]: r  (1)   
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s s i i i

j

Z d
r

dδ ε
∗

Ψ⎡ ⎤− ∇ + Ψ + Ψ⎢ ⎥ −⎣ ⎦

Ψ Ψ
− Ψ

−

∑∫

∑ ∫

r
r r

r r

r r
r r

r r

'

( )

i

= Ψ

r

r

 (4) 

Another important term is due to the 
correlation effect of the electrons kinematics and it 
may be included in various ways in the framework 
of the Density Functional Theory (DFT) [2]. These 
approaches reveal some rather sophisticated 
potentials and exchange-correlation terms. Thus, the 
exchange term may have several forms, as:  exact 
HF exchange, Slater local exchange functional 
Becke[3], Perdew-Wang[4,5,6], Vosko-Wilk-Nusair 
(VWN)[7], Zunger[8], Lee-Yang-Parr[9]. 

Concerning the numerical methods, t
algorithms and the mathematics used in the
calculations, there are many popular techniques that 
may be considered, each of them with their 
advantages and disadvantages [10]. Here the 
possibilities are also diversified, as the form of the 
self consistent equations may be purely differential 
or integro-differential, due to the exchange and 
correlation terms. Some methods, as the Multi-
configurational self-consistent field, are even more 
computer expensive as they use linear combinations 
of Slater determinants to approximate the 
wavefunction [12] or the two electrons integrals  
calculations using Lebedev and Gauss-Legendre 
Angular Quadrature Schemes combined with Linear 
Scaling Methods [13]. 

he 
se                            

         The differential form is often treated by the 
Numerov's fifth order method, which is robust and 
accurate but is not self starting and require some 
initial iterations, as many other point by point 
methods of high order. A notable exception should 
be the forth order Runge-Kutta method but it is not 
well suited for boundary conditions equations as the 
HF ones. Some shooting method must accompany 
the point by point methods and, although this 
provides the eigenvalue of the equation (which 
sometimes is the main goal), it implies an iterating 
process that leads to a huge amount of computing 
effort. Furthermore, it must be used both for the 
wave function equation and for Poisson equation for 
finding the Hartree-Fock potential generated by the 
charge density.  

An important step for improving the 
numerical methods' efficiency was made y 
Roothaan [9] who transferred the calculations to 
linear algebra in the form of a generalized 
eigenvalue problem, using non orthogonal basis set.    
Thus, other methods became eligible as Galerkin, 

Fourier Transform Coulomb Method [13], 
collocation [14], finite difference [15],[16], finite 
element [17] etc. 

b

 
 
2 Using the collocation method for 
solving the HF equations 
The main goal of the numerical methods for such 
problems is to achieve a satisfactory precision with 
a minimum computing effort, as their solving is 
time critical in most situations. In this paper we 
study the performances of some spectral methods 
and suggest some new ways to improve them.  

The radial part of each wave function in a many-
body system is the solution of a second order linear 
differential equation  

( ) ( ),y x s x x U= ⊂ ∈L    (5) 
with boundary conditions (usually two point). 
                   ( ) 0,u y y U= ∈∂B    (6) 
       The weighted residuals methods use a test 
function  for the minimization of the residual ( )v x

                             : ( ) ( )R u x s x= −L    (7) 
produced by a trial function  

                    (8) 
0

( ) ( ) ( )
n

i i
i

u x c x y xϕ
=

= ≈∑
where  the basis set { ( )}i xϕ  is usually chosen as 
Chebyshev polynomials, Legendre polynomials, 
trigonometric functions, etc. 

Among these methods, a popular one for 
such two point boundary problem is the collocation 
method, which uses test functions of the form 

( ) ( )jv x x x jδ= − , where jx  are the  collocation 
points chosen equidistantly or as the roots of 
Legendre or Chebyshev polynomials. Thus, 
performing the inner product with the test function, 
the equation X(5)X becomes 

m

            
0

( ) ( ), 0 1
n

i j i j
i

x c s x j nϕ
=

= ≤ ≤ −∑L  (9) 

leading to a  linear equations system for the 
unknowns : 

m
ic

                 
0

, 0 1
n

ki i k
i

b c s k m
=

= ≤ ≤ −∑   (10) 

It may be written in a matrix form by 
separating the free terms as: 

                               Φ⋅ =C F    (11) 
        The advantage is that, as usually met within the 
spectral methods, the evanescence property occurs, 
which exponentially decreases the truncation errors 
as the number of terms in the expansion X(8)X of the 

WSEAS TRANSACTIONS on MATHEMATICS Sever Spanulescu, Mircea Moldovan

ISSN: 1109-2769 12 Issue 1, Volume 8, January 2009



trial function. On the other hand, the main 
disadvantage of the method is the  matrix 
condition number which increases rapidly with  
and may produce important round-off errors. 

Φ
n

Some proper choices and some additional 
techniques have to be considered for a good 
compromise between these aspects. 
 
 
3 Additional ways for improving the 
performances of collocation method 
The equidistant collocation point is not always a 
good choice, as it could emphasize the Runge 
phenomenon: increased truncation errors towards the 
boundaries and even loss  of convergence.  

A better choose is sometimes in the roots of 
the Chebyshev polynomials which avoid the Runge 
phenomenon, and may be simply calculated: 

(2 1)cos , 0...
2 2 2j

B A j B Ax j
n

nπ− + +
= − + = (12)  

where  and A B  are the limits of the domain of the 
independent variable x . 

For choosing the basis set we notice that the 
goal is the minimization of computing time, and our 
suggestion is to analytically perform as much 
calculations as possible. The equation X(9)X assumes 
the availability of the first and the second derivative 
of the basis set functions. Of course, they may be 
obtained numerically, but this increases both the 
computing time and the overall errors.  

That is why it should be proper to choose 
basis set functions with analytically known 
derivatives, and to expand equation X(9)X analytically 
before performing the numerical calculations. 
         We also propose, where it is possible, a 
quadrature of both terms, as it is known that 
numerical quadrature is a very fast and precise 
method (Gauss-Legendre for example).  By 
integrating the terms of the series expansion of the 
trial functions, the resulting coefficients are lower if 
the following condition is satisfied: 

                                   B n<    (13) 
Consequently, the linear system’s matrix condition 
number tends to decrease, so that the round-off 
errors decrease also. Our results presented in the 
next section show an obvious increase in precision 
and speed.  
         In the following we present the results 
obtained with monomial functions and Chebyshev 
functions, because they have simple formulae both 
for differentiation and integration.  

3.1 Use of monomial functions with 
quadrature 
The trial function may be expanded in monomial 
functions as: 

                                             (14) 
0

( )
n

i
i

i
u x c x

=

=∑
Separating the first two coefficients and imposing 
the two point boundary conditions: 
                           ( ) , ( )iy A y y B y f= =              (15) 
we may write: 

                                    (16) 0 1
2

( )
n

i
i

i
u x c xc c x

=

= + +∑

                                            (17) 0
1

n
i

f i
i

c y c B
=

= −∑

                      1
2

i in
f i

i
i

y y B Ac c
B A B= A
− −

= −
− −∑          (18) 

There is the possibility of forming directly 
the system X(11)X, but our numerical results prove that 
better results are obtained if an integration 
(analytical if possible) of the two members of the 
equations  is made at this point.   

For a constant coefficients linear second 
order equation 
              1 2 3''( ) '( ) ( ) ( )a y x a y x a y x f x+ + =      (19) 
the matrix in equation X(11)X will have the elements: 

      

1 1
1 1

2 3

0 3

2 2
3

1 2

( ) ( )
1

( )

( )
( )

2
2,3,..., ; 0,1,... 1

i i
ji i i i

ji i j j

j j

j
j j

x A
ai x A a x A a

i
a x A

a x A
a x A

i n j n

+ +
− − −

Φ = − + − +
+

Φ = −

−
Φ = − +

= = −

      (20) 

                0( )
jx

j
A

F f x dx 1j j= −Φ −Φ∫              (21) 

By solving the system X(11)X for 
, 2,3,...,ic i n= ,  calculating  from eq. X(18)X and 
 from eq. X(17)X, the solution is given by eq. X(16)X. 

1c

0c
If the coefficients are not constant, the 

analytical treatment of the matrix elements, if 
possible, provides a greater speed to the overall 
process, as our results show in the next section.  

Thus, if the coefficients are functions of the 
independent variable: 
       1 2 3( ) ''( ) ( ) '( ) ( ) ( ) ( )a x y x a x y x a x y x f x+ + =  (22) 
one should try to express the matrix elements in the 
following form: 
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2 1
1 2

3

0 3 2

1 3

( ) ( 1) ( )

( )

( ) ( )

( )

2,3,..., ; 0,1,... 1

i i
i i

ji j j j j

i i
i i
j j

f i
j j f j

f i
j j j

A Bb x i i x b x ix
A B

A Bb x x B x
A B

y y
b x y b x

B A
y y

b x x
B A

i n j n

− −⎛ ⎞−
Φ = + + −⎜ ⎟−⎝ ⎠

⎛ ⎞−
+ − −⎜ ⎟−⎝ ⎠

−
Φ = −

−
−

Φ =
−

= = −

  (23) 

                             (24) 0( )
jx

j
A

F f x dx= −Φ −∫ 1j jΦ

where the coefficients ,  and  
should be obtained by integrating by parts the 
corresponding terms in the expansion of the 
equation X(22)X. 

1( )jb x 2 ( )jb x 3( )jb x

For the self consistent field equations, that 
use a model requiring variable coefficients, the 
analytical integration is not possible when the 
Hartree-Fock potential is not known analytically. 
However, we will present a way to adapt the method 
to this specific kind of equations in the next section. 

 
 

3.2  Use of Chebyshev polynomials with 
quadrature  
The trial function may be expanded in Chebyshev 
polynomials of the first kind as: ( )iT x

                                      (25) 
0

( ) ( )
n

i i
i

u x c T x
=

=∑

                             (26) 0 1
2

( ) ( )
n

i i
i

u x c xc c T x
=

= + +∑

                                          (27) 0
1

( )
n

f i i
i

c y c T B
=

= −∑

           1
2

( ) ( )n
f i i i

i
i

y y T B T Ac c
B A B A=

− −
= −

− −∑          (28) 

        For linear differential equation with constant 
coefficients as X(19)X, one may integrate (analytically 
or numerically) ( )f x  and the matrix elements are: 

        

1 1 2

1 1
3

0 3

3
1 2 2

( ) ( ) ( ) ( )

( ) ( )
2( 1)
( )

( )( )
2

2,3,..., ; 0,1,... 1

ji i i j i i j i

i j i

j j

j j

a i U x U A a T x T A

T x T A
a

i
a x A

a x Aa x A a

i n j n

− −

− −

⎡ ⎤ ⎡Φ = − + −⎣ ⎦ ⎣
−

+
−

Φ = −

+⎡ ⎤Φ = − + +⎢ ⎥⎣ ⎦
= = −

⎤⎦

1j j

 (29) 

0( )
jx

j
A

F f x dx= −Φ −Φ∫  (30) 

where are the Chebyshev polynomials of the 
second kind.  

( )iU x

 If the coefficients are not constant, one 
could either perform a supplementary analytical  
quadrature for every term and use adapted formulae 
or use a numerical method for the quadrature.   
 
 
4 Adapting the Hartree Fock 
equations for using the collocation 
method with quadrature 
It is known that for spherically-symmetric potentials 
like those generated by the central forces of the 
Coulomb field in the atoms the wave function may 
be written as a product of a radial function and a 
spherical harmonic one 
                 ( , , ) ( ) ( , )m

nr R r Yθ ϕΨ = θ ϕ   (31) 
where  is the principal quantum number and 

 is the orbital quantum number. 
n

We are interested in the eigenvalues of the 
energy, depending only on the radial part of the 
wave function through the principal quantum 
number. 

As a result of this factorisation, the 3D 
Schrodinger equation may be reduced to a one-
dimensional differential equation (the radial 
equation) 

2 2
2

2

( 1) ( ) ( )
2 2

( )

n

n n

d dr V r
m dr dr mr

E R r

⎡ ⎤+⎛ ⎞− + +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

=

R r
 (32) 

where  is the eigenvalue for the energy (the 
orbital energy). 

nE

By a change of function as 
                              ( ) ( )nu r rR r≡                                     (33) 

the equation X(32)X takes a convenient form  

        

2 2 2

2 2

( 1) ( ) ( )
2 2

( )n

d V r u r
m dr mr

E u r

⎡ ⎤+
− + +⎢ ⎥
⎣ ⎦
=

       (34) 

By denoting x r≡  and using the natural 
atomic units ( 4m e 1πε= = = = ) the radial part 
of the Hamiltonian for the electron in the central 
field in hydrogenoid atom is 

            
2

2

1 (
2 2

d ZH
dx x x

+
= − − + 2

1)
                   (35) 

where Z is the atomic number. 

WSEAS TRANSACTIONS on MATHEMATICS Sever Spanulescu, Mircea Moldovan

ISSN: 1109-2769 14 Issue 1, Volume 8, January 2009



Here, the second term is due to the 
attraction of the nucleus, while the third is due 
to the centrifugal force. 

Thus, taking into account the supplementary 
interaction potentials in a real atomic system, the 
HF equations may be written as 

     

2

2 2

1 (( ) ( ) ( )
2 2

( ) ( )HF n

d Zu x u x u x
dx x x

V u x E u x

+
− − +

+ =

1)
          (36) 

where  is the radial part of the wave 
function modified according to eq. X(33)X and 

( )u x

HFV  is the HF potential describing the electron 
interaction with the other electrons. 
 The Hartree potential seen by an electron i  
is given by X(2)X 

                            
( ')

( ) '
'

j
HiV d

ρ
=

−∫
r

r
r r

r

r

                        (37) 

and is the solution of the Poisson equation 
                                             (38) 2 ( ) ( )Hi jV ρ∇ = −r

By expressing the Laplacean in 
spherical coordinates, taking its radial part and 
integrating the left member of eq. X(38)X over the 
solid angle we obtain 

               2
2

1 ( ) 4 ( )Hi j
d dx V x x

x dx dx
πρ⎡ ⎤ = −⎢ ⎥⎣ ⎦

     (39) 

Again, introducing a new function 
                                               (40) ( ) ( )Hi HiU x xV x=
we obtain the radial part of the Poisson equation 
in a more convenient form 

                     
2 2

2 ( ) 4 ( )Hi j
d U x x x
dx

π= − Ψ          (41) 

 In a similar way we may treat the Fock 
part of the electron-electron interaction and thus 
we obtain the exchange potential of an electron 

 due to another opposite spin electron i j  as 

          
2

*
2 ( ) 4 ( ) ( ),Fi i j

d U x x x x j i
dx

π= − Ψ Ψ ≠   (42) 

 We may now construct the complete HF 
potential using the solutions of the eqs. X(41)X 
and X(42)X, according to eq. X(4)X 
            (43) ( ) ( ) ( )

i jHFi Hi s s Fi
j i j i

V x xU x xU xδ
≠ ≠

= −∑ ∑
 Hence, the calculations will be made 
using eqs. X(36)X, X(41)X,X(42)X and X(43)X. There are 
three types of second order differential 
equations with boundary conditions that we try 

to calculate using the collocation method. 
However, one may see that it is not possible to 
directly integrate eq. X(36)X, since it contains a 
singular point (the origin). The radial part of the 
wave function must be zero in origin (the 
electron should not be localized exactly in the 
nucleus), but if we try to limit its domain to a 
very small but non-zero value, ε , the result will 
strongly depend on this value. 
 To avoid the singularity in origin we 
have to make a new change of function that will 
transform adequately the second and the third 
term of the eq. X(36)X. Consequently, we propose 
the following form 
                                                    (44) 2( ) ( )u x x f x=

Introducing the new function in eq. X(36)X 
we finally obtain 

2
2

2

2 2

1 ( ) 2 '( ) ( ) ( )
2
( 1) ( ) ( ) ( ) ( )

2 HF n

dx f x xf x f x Z x f x
dx

f x V x x f x E x f x

− − − −

+
+ + =

 (45) 

 
4.1.    The matrix elements for the collocation 
with quadrature of HF equations  
As one may see, all the terms in eq. X(45)X may 
be analytically integrated if the unknown 
function ( )f x  is written as a polynomial 
function according to eq. X(8)X. 
 Thus, we first have to calculate the 
Hartree-Fock potential. We will express it also 
as a monomial expansion and use the 
collocation method with quadrature for solving 
the Poisson eqs. X(41)X and X(42)X.  

  (46) 
0

m
k

Hi k
k

U d
=

= ∑ x

x  (47) 
0

m
k

Fi k
k

U g
=

= ∑
As in any self-consistent method, we 

start with an approximate wave function, for 
example the hydrogenoid type and solving the 
corresponding linear systems similar with eq. 
X(11)X we obtain the coefficients and , 
hence a first iterated HF potential. 

kd kg

The matrix elements for these two 
equations will be, according to eqs. X(20)X and 
X(21)X the following 
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                               (48) 

1 1

0

1

( )

0

0

2,3,..., ; 0,1,... 1

i i
ji j

j

j

i x A

i n j

− −Φ = −

Φ =

Φ =

= = n −

                   2
04 ( )

jx

jH
A

F x xπ= − Ψ∫ dx

)x dx

               (49)          

                          (50) 

               

*
0 04 ( ) (

jx

jF
A

F x xπ= − Ψ Ψ∫
where eq. X(49)X stands for the Hartree term and 
eq. X(50)X stands for the Fock term. 
 Constructing the two potentials 
according to eqs. X(46)X and X(47)X we may obtain 
the complete HF potential seen by the electron 

,  by using the eq. X(43)X. i

        1

0 0 0

( )
i j

N m m
k

HFi k s s k j
j k k
j i

V x d g xδ +

= = =
≠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (51) 

where  is the total number of electrons in the 
system. 

N

 Now, using the form X(51)X for the HF 
potential we may find the matrix elements for 
solving the HF equations X(45)X 
 

(

( ) ( )

 Equation X(11)X will give the coefficients 
of the wavefunction and it will be constructed 

according to eq. X(14)X.  
ic

 The process have to be completed for all 
the  electrons in the atomic system in this 
iteration and then the wave functions will be 
used in the next iteration for finding the new HF 
potential. Also, using these wave functions new 
values of the orbital energy  of each electron 
will be obtained. Afterwards the iterative 
process will be repeated until the self 
consistency is achieved (the changes of the 
eigenvalues become smaller than an imposed 
quantity). 

N

niE

 
 
4.2. Verifying the transformed radial                 
equation in some known cases 
If we consider the case of hydrogenoid atoms, 
the HF potential is zero and the wave functions 
are analytically known in terms of second kind 
confluent hypergeometric functions  
(Kummer function) and generalized Laguerre 
polynomials. In this case we may verify that the 
equation X(45)X leads to the known results.  

( , , )U a b z

)

( )

( )

( ) ( )

3 3

0 0 0

2 2 1 1

2

3 3
0

0 0 0

2 2

1
0 0

( 1) 1 3 1
2 2 2

i j

i j

i j

N m m
k i k i

ji k s s k j
j k k
j i

i i i i
ni j j

i i
j

N m m
k k

j k s s k j
j k k
j i

ni j j

m m

j k s s k
k k

d g x A

E x A Z x A

i i x A

d g x A

E x A Z x A

d g

δ

δ

δ

+ + + +

= = =
≠

+ + + +

+ +

= = =
≠

= =

⎛ ⎞Φ = − −⎜ ⎟
⎝ ⎠

− − − −

+⎡ ⎤+ − − − −⎢ ⎥⎣ ⎦
⎛ ⎞Φ = − −⎜ ⎟
⎝ ⎠

− − − −

⎛
Φ = −⎜

⎝

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ (

( ) ( )

Indeed, we solved analytically this 
equation and obtained the general solution 

 

ln 2 1
1 1

ln

2

1 2( )

1 21,2 2,

x x
n

n

x x
n

xf x e L C
x n

xe U n C
x n

− + +
− −

− +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

 (53) 

The two constants involved may be 
obtained from physical considerations. Thus, 
the wave function must be zero in origin and at 
infinity and its square integral over the positive 
real axis (the total localization probability) must 
be equal to 1 (the normalization condition) 
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However, taking into account the 
relationship between the confluent 
hypergeometric function and the generalized 
Laguerre polynomial 
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n
+
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a single constant must be calculated from the 
normalization condition. 
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We may calculate this constant using a well known 
relationship for the generalized Laguerre 
polynomials 
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0
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!

a x a
n

n ax e L x dx n a
n

∞
+ − +⎡ ⎤ = +⎣ ⎦∫ +  (56) 

In figures 1-4 we plotted the radial part 
of the wave function of a hydrogenoid atom 
obtained by numerically solving eq. X(36)X using 
the described collocation method with 
quadrature. It is obvious that the shape is 
correct and the numerical results will be 
compared in the next section with those 
generated by the analytical formula X(53)X, for 
error analysis. 
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Fig. 1. The radial part of the wavefunction for 
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Fig. 2. The radial part of the wavefunction for 
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Fig. 3. The radial part of the wavefunction for 

3, 1n = =  and 0HFV = . 
 

0 20 40 60 80 100
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

 
Fig. 4. The radial part of the wavefunction for 

5, 2n = =  and 0HFV = . 
   
5   Numerical results 
        For testing the proposed methods, we 
integrated numerically the radial part of the wave 
function equation in a Hartree-Fock model for inner 
atomic shells. We choose a domain from the nucleus 
uptill  6 for the K shell and 10 Bohr radiuses for the 
L shell. 

In figure 5 we present the errors dependence 
on the number of independent functions in the 
expansion X(8)X. Monomial basis set are presented, 
without supplementary quadrature (upper curves) 
and with quadrature (lower curves). By using the 
Chebyshev expansion similar results are obtained in 
most cases, but sometimes increased errors may be 
noticed due to the repeated recurrences used for 
generating the higher degree polynomials.  

Both the standard procedure and the 
supplementary quadrature method display a clear 
evanescence for [10,20]n∈ . For larger n  values, 
one may observe the influence of the increasing 
matrix condition number, so that the round-off 
errors exceed the decrease of the truncation errors. 

The most important aspect revealed is that 
the errors obtained in the supplementary quadrature 
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are about 10 times lower than without it for the 
same . n
 

 
Fig. 5. The errors in evaluating the solution of the 
radial part of the wave function for a Hartree-Fock 
equation with 10 Bohr radiuses by collocation 
method with quadrature (boxes) and without 
quadrature (triangles) 
 

An even better situation is visible in figure 
6, for the K-shell electrons, where the domain may 
be restricted to only 6 Bohr radiuses.  

We notice that for a given error of 510−  the 
number of independent function may be decreased 
from 18 to 10 if the preliminary quadrature is 
performed. Since the computational effort decreases 
as , it will have a great impact for large 
calculations implying hundreds of atoms. Also, more 
than 5 digits are gained in precision for .  

2
2 1( / )n n

19n =
   

 
 Fig. 6. The errors in evaluating the solution of the 
radial part of the wave function for a Hartree-Fock 
equation with 6 Bohr radiuses by collocation method 
with quadrature (boxes) and without quadrature 
(triangles) 
   
 We also tested the method for finding 
the screening of the 2s shell electrons. Using the 
described Hartree Fock method we calculated the 
effective atomic number of some elements 
considering the screening of the other electrons.  

One may calculate the scattering amplitude 1( )P Ω  
for the X and gamma-ray on the 2s electrons using 
the analytical formulae with relativistic kinematics 
corrections as in [18]. Further, using the imaginary 
part of the forward scattering amplitude, the optical 
theorem gives the total cross sections for 
photoelectric effect 

         2
0 1

4 Im ( )ph
m r P θ 0

πσ
α ω == Ω              (57) 

We used the analytic formula obtained 
in [18] for these calculations 
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 (58) 

 
where a number of parameters depend on the 
effective atomic number effZ  mainly through the 

parameter ( )1/ 22 21 effZγ α= − . 

 The cross sections obtained with the 
formula X(58)X and our screening model based on 
the described Hartree-Fock method, were 
compared with other calculations in the 
literature [19]. In Table 1 and Table 2 we 
present these comparisons for low and medium 
atomic number elements. One may notice a 
very good concordance, proving the correctness 
of our Hartre-Fock calculations for these cases. 
However, for greater atomic numbers and 
energies, the errors seem to increase. These 
results are rather questionable because the 
scattering model described in [18] is not fully 
relativistic and the total photoeffect cross 
sections formula X(58)X may not be very accurate. 
Some more complex model for gamma-ray 
scattering on the 2s shell electrons, including 
the spin effects in a full relativistic treatment, is 
needed for higher atomic numbers and higher 
energies regime, but such formulae are not yet 
available in the literature.  
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Table 1. A comparison between the total 
photoeffect cross sections for a 2s electron given by 
Scofield in [18], SBScB, and the results with the 
effective atomic number obtained by our Hartree 
Fock calculations in the case of Ag. 
 
EBIB(keV)  SBScB(barn)         ZBeffB           SBphB(barn)     
Err(%) 
 
     6.   14691.5             39.8773   15589            5.75 
     8.     8814.57           41.7671    8990.2          1.95 
   10.     5760.28           42.9468    5710.6         -0.87 
   15.     2461.33           44.3031    2374.4         -3.66 
   20.     1268.24           44.7207      226.1         -3.43 
   25.46   704.423         44.8551      687.93       -2.39 
   25.67   690.175         44.8576      674.72       -2.29 
   30.       466.224         44.8888      459.64        -1.43 
   40.       221.713         44.9047      221.87         0.07 
   50.       122.832         44.9062      124.02         0.95 
   60.         75.2459       44.9064        76.342       1.43 
   80.        34.3411        44.9064        34.939       1.71 
  100.       18.5579        44.9064        18.838       1.48 
  150.         6.02086      44.9064          6.0271     0.10 
  200.         2.71391      44.9064          2.6738    -1.5 
  300.         0.898171    44.9064          0.8637    -3.99 
  400.         0.419161    44.9064          0.3986    -5.15 
  500.         0.236388    44.9064          0.2247    -5.19 
  600.         0.150196    44.9064          0.1437    -4.47 
  800.         0.075702    44.9064          0.07434  -1.82 
1000.         0.045777    44.9064          0.04639   1.32 
1500.         0.019648    44.9064          0.02144   8.3  6 
 
 
 
Table 2. A comparison between the total 
photoeffect cross sections for a 2s electron given by 
Scofield in [18], SBScB, and the results with the 
effective atomic number obtained by our Hartree 
Fock calculations in the case of Ca. 
 
EBIB(keV)  SBScB(barn)         ZBeffB           SBphB(barn)     
Err(%) 
 
 1.      73684.            14.9542   74392             0.95 
 1.5    33268.4          15.6313   34651             3.99 
 2.      18597.3          16.1473   19222             3.24 
 3.       7887.76         16.8401     7897.7          0.12 
 4.       4130.69         17.2425     4044.2         -2.13 
 4.01  4104.51          17.2459     4017.8         -2.15 
 4.04  4029.59          17.2554     3942.2         -2.21 
 5.      2433.89          17.4762     2358.1         -3.21 
 6.      1550.35          17.612       1498.1         -3.48 
 8.        736.227        17.7366       715.76       -2.85 
10.       403.283        17.7786       396.33       -1.75 
15.       129.698        17.7986       130.51        0.62 

20.         56.6368      17.7999         57.806      2.02 
30.         17.1783      17.8               17.74        3.16 
40.           7.26553    17.8                 7.5134    3.29 
50.           3.70564    17.8                 3.8193    2.97 
 
 
 
6  Conclusions 
Performing a preliminary analytical quadrature in 
the collocation method for solving the Hartre Fock 
differential equations has a useful effect on the speed 
and precision. The numerical results demonstrate a 
possible speed increase up to 10 times over the 
conventional procedure. 

The price paid is sometimes the 
supplementary numerical quadrature (when the right 
side of the differential equation can not be integrated 
analytically) but it is not computing expensive if a 
Gauss-Legendre method is used. 

We want to point out that the presented 
method has a higher speed even if  the same number 
of collocation points is used. Indeed, one may take 
advantage of a number of terms in the equations that 
may be reused when implementing the algorithm, 
especially if analytical expressions for the results of 
the integrals may be obtained. Also, due to the 
evanescence property of the method, extrapolation 
of the results may significantly improve the 
precision, if needed. 
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