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Abstract: - In this paper, we consider Internet models, which respond to a congestion signal from the network
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1 Introduction

Congestion control mechanisms and active queue
management schemes (AQM) for the Internet have
been extensively studied since the work of Kelly et
all [5].

In [10], the Hopf bifurcation has been studied for the
model of an Internet network with r (r >1) link and

single which can be formulated as:

X (1) = k(v = af (x;(t — 7)) -

source,

- . (1)
—bY x; - f(x(t—1)), i=1l..r

=

J#1
where x,(r) is the sending rate of the source i at
time ¢, k is a positive gain parameter, 7 is the sum
of forward and return delays, v is a target (set —
point), a,b are positive real parameters and the
congestion indication function f(x) is increasing,

nonnegative, which characterizes the congestion.
The discretizing model of (1) has been analyzed in
[9], and the value of k, for which the Neimark-
Sacker bifurcation takes place, has been determined.
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The dynamic model with a single link and » sources
can be described by:

x.i (1) = k;x; (¢ _Ti)(i_bixi(t)p(t)]

X; ()
(2)

p(t) = kr+1p(t)[

r
x(t—1;)— c} i=1,..,r

l

1

where, x;(r) is the rate at which the source i
transmits data at the time ¢, a; and b, are positive
real numbers, p(t) is the loss probability function,
7; is round-tripe delay for source i, ¢ is the
capacity, k;, k are gain parameters. The discretized
model of (2) has been analyzed in [11].

By employing the dynamic delayed feedback
control, we can consider the controlled congestion
control system with communication delay as
follows:
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1—-2x,()
2

X (1) = x, (t — 7){ - ayx, (1)x, (I)J

3)

X () = Z—sz ), (t = 7) — a3 )+ x5 (1)
3

x'3 t)=ay (xl @) —x,(t - z’))+ asx;(t)

where a5 >0 is the washaut filter time constant,
which guarantees the stability of controller, a4 >0
is the feedback gain parameter. This model was
analized in [4].

The models (1), (2), and (3) lead to dynamic models
described by stochastic delay differential equations,
by randomizing one of the parameters. Thus, in
section 2 we will consider stochastic delay
differential equations, obtained through the
randomization of parameter a in the case of the
model (1), respectively, of parameters
i=1,..,r, in the case of the model (2), and the

parameters a;,a,,d,,ds,in the case of the model (3).

a[s c,

For certain functions which describe the stochastic
delay differential equations (SDDE), the existence
and uniqueness of the solution is justified. In section
3, we describe the algorithm which approximates the
solution of the equations for the stochastic system
with =2 links and a source with a single link and
r =2 source, respectively. In section 3 we describe
the algorithm numeric for these cases. In section 4,
we associate the determinist models (1),(2),(3),
hybrid system, by adding a term that comprizes an
Ito integral.

For certain parameter values, we carry out numerical
simulation with the Maplel3 software for the
simulation of Wiener and Liu processes.

2 SDDE Models for Internet networks
Let (Q,F,Pr) be a complete probability space with

a filtration (F,) satisfying the usual conditions; that
is the filtration (F)),s, is right -continuous and each

(F,), where t=0contains all Pr-null sets in F . For

general theory we refer to [12]. With E(x) = I S{ca’x

we say for 1< p<oo that xe L’ = L7 (Q,F,Pr)if
1

E(|x|p) <o and we define ||x||p :(E|x|P)p . Here,

E denotes the expectation.

Let w(t)=(w1(t),...,w,(t))T be a r- dimensional
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Wiener process given on the filtered probability
space (Q,F,Pr).

The stochastic delay differential equation (SDDE)
with one fixed lag, (0<T <) is given by:

dx ; (t) = f,(x(2), x(t —=7))dt +
+ g, (x(t), x(t —7))dw ,(t), te [0,T]
x;()y=¥,(t),i=1..r , te[-7,0]

“

where x,;(t)=x,;(t,w),we Q, ¥,(r) is F, -
measurable with values in C([-7,0], R) so that
E(¥|")<e and f;:R"xXR" >R,

g R"XR" >R, x;,(t)=x;(t,w), weQ,i=1,..,r.
The system (4) can then formulated equivalently as:

x; (1) =x;(0) + I fi(x(s), x(s —7))ds +
0

i &)
+ [ g1 (x(s) x(s =2 )dw (5), i=1,,
0

for te[0,7] and with x;(t)=Y¥;(), for te[-7,0].
The second integral in (5) is a stochastic integral
which can be interpreted according to Ito’s integral.

and
the

For the functions f;, .7
Y, :[-7,0] > R,

following set of conditions [11]:

8> i=1,...

i=1,...,r, we consider

1. The functions f; and g; are continuous;

2. The functions f; and g; satisfy a uniform
Lipschitz condition;

3. The functions ¥; is Holder - continuous with
exponent ¢;;

4. The functions f; and g; satisfy a linear growth
condition;

5. The partial derivatives of f;(®,¥) exist and are

uniformly bounded.

Proposition 1 [12]. Assume that the functions f;
and g; satisfy the above assumptions 1-3. Then,
there exists a unique strong solution of equation (4).

The stochastic model for an Internet network with
r(r >1) link and single source described by SDDE

is given by:
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30 =5,0)+ [ k(v —af (x,(s =) -

=D x;(s =) f(x;(s —7))ds —
=l
- (©6)
~ [ @ f (i (s = o) (5),
te[0,T], i=1,...,r

x;(t)=Y;@), te[-7,0]

The stochastic model for the Internet network with a
single link and r sources can be described by:

3 (0) = %00+ [k (s = 0@ (x, (5) -
—Db;p(s)x;(s))ds +
+ [ arkia (s = 08 Oy (0w, (5),

7
te[0,T], i=1,.,r ™

p(t)=p0)+ k,HJ‘Otp(s)(z x;(s—7)— chs -

i=1
t
Kyt [ @ PAWE)

51 = W), gl =~ re[-7.0].
X,

1

The stochastic model for Internet associated to (3)
can described by:

I—=x,(s)
szl (s)

x @) =x(0)+ J.; x(s— T)( —ayx;(8)x, (s)jds —

-0 I(; X (58 = 7)x; ()X (8)dw (),

X () =x,(0)+ I;% X ()X (s —7) —a3) +x3(5))ds +
3

®)
+ o L6 =D a5,

350 = 2500+ [! (4 (1 (5) =3, (5= 7))~ s (5))ds -
— a5 ! xy (5.

If functionsf, g and ¥, i=Ll..r, satisfy

conditions 1-5, then SDDE given (6), (7)
respectively (8) has a unique solution.
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3 Numerical simulation for the SDDE
equations (6), (7) and (8)

The problem of solving an SDDE is reduced to one
of solving a sequence of systems of SDDE of
increasing dimension on successive intervals
[n,(n+1)]. Using the Euler method of first order

from [1], [12], [13] for (6), we obtain:
% (k+1)=x; (k) +hkg (v—af (ox;(k —m))—

—b x;(k—m) f (x; (k—m)) 0 £ (05, (k—m)G(h). (9)
B
k,meN, he 01), & >0, i=1...r
where G(h) = random[normald[O,\/H 1].

Using results from [1], [12], [13] we have that the
algorithms given by (9) is convergent.

For r=2, k=02, a=18, b=2, v=100,
061 = 05, (12 =0.5, m= 3, n :1300, h =L N
1300
2
fx)= , with Maple 13, we obtain in Fig. 1,
20-3x

the orbit (k,x;(k)), in Fig. 2 the orbit (k,x,(k))
and in Fig. 3 the orbit (x;(k), x,(k)) .

524

T T T — T T
200 400 600 200 1,000 1,200

Fig.1 The orbit (k,x;(k))
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Fig.3 The orbit (x;(k),x,(k))

Using the Euler method of first order for (7) we
obtain:

X (k+D) =x; (k) +hkx; (k—m) @, g5, (k) b, pk) (k) +
+kiopx; (k—m)g(05 (K)G(h), i=L,...r

i
p(k+1)=p(k)+h/9+1p(k)(2)9(k—m)—cj— (10)
=
—kr+10(,+1p(k)G(h).
For r=2, k=1000, h=;, m=3,k =1, k, =2,
1000
k3 =0.005, c¢=65, aq =§, a,=09, b =0.5,

b2 =0.5 , =0.2, Oy =0.2, O =0.4, g()C) =l,Wlth
X
Maple 13, we obtain the orbits: in Fig. 4, the orbit
(k,x(k)), in Fig. 5 the orbit (k,x,(k)), in Fig. 6 the
orbit (k, p(k)), in Fig. 7 the orbit(x(k),x,(k)), in
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Fig. 8 the orbit (x;(k), p(k)) and in Fig. 9 the orbit

(xp(k), p(k)) .
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Fig.4 The orbit (k, x;(k))
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Fig.5 The orbit (k,x,(k))
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Fig.6 The orbit (k, p(k))
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Fig.9 The orbit (x,(k), p(k))
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Using the Euler method of first order for (8) we
obtain:

Xy (k+1) = x; (k) +hx (k— m)[1 —2]7 &) —ayx;(k)x3 (k)J —
m-x(k)
—oqx; (k—m)x; (k)x3 (k)G (h),

xz(k+1)=x2(k)+n{zzxz(k)(xl(k—m)—a3)+x3(k)J+ (11)
3

+%x2(k)(x1(k—m)—a3)G(h),

X3 (k+1) = x3 (k) + h(ay (x; (k) —x; (k —m))—asx; (k) —
—5x3()G(h).

For a1=1, a) = N 0320.2, 0420.5, 0520.2,

N | =

=05 =6 a;=04, m=4, k=1300,

h= L , with Maple 13, we obtain the orbits:
1300

In Fig.10 the orbit (k,x(k)), in Fig.11 the orbit
(k,xy(k)), in Fig.12 the orbit (k,x3(k)), in Fig.13
the orbit(x (k),x,(k)), in Fig.14 the orbit
(x(k),x3(k)) and in Fig.15 the orbit (x,(k),x3(k)) .
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Fig.10 The orbit (k, x,(k))
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Fig.11 The orbit (k,x,(k))
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Fig.15 The orbit (x,(k),x3(k))

4 Hybrid differential equations
associated for the SDDE equations (1),
(2) and (3)

Randomness in a basic type of objective uncertainly
and probability theory is a branch of mathematics for
studying the behavior of random phenomena. The
concept of fuzzy set was initiated by Zadeh [14] via
the membership function in 1965. In order to
measure a fuzzy event, Liu B. [6] introduced the
concept of credibility measure. The credibility theory
was founded as a branch of mathematics for studying
the behavior of fuzzy phenomena. Fuzziness and
randomness are two basic types of uncertainty. In
many cases, fuzziness and  randomness
simultaneously appear in a system.
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Let ® be a nonempty set, and let P be the power of
O (i.e. all subsets of ® ). Each element in P is called
an event. In order to present an axiomatic definition
of credibility, we accept the following four axioms:
1.Cr(®)=1;

2.Cr{A}< Cr{B}, whenever A< B

3.cr{iA}+ Cr{A" }= 1, for any Ae P;

4 CF{U A,} =supCr{4;}, for any events {4} with

supCr{A.}<0.5.

The set function Cris called a credibility measure
and (®,P,Cr) is a credibility space. A fuzzy variable
is a function from the credibility space (G), P, Cr) to
the set of real numbers. If a fuzzy variable & is

defined as a function on a credibility space, then we
may get its membership function via:

U(x)=Q2Cr{¢ = xp Al, xe R. (12)

Suppose that (®,P, Cr) is a credibility space and
(Q.F ,Pr) is a probability space. The product
(@,P,Cr)x(Q,F,Pr) is called a chance apace. A

hybrid variable is a measurable function, from a
chance space (G), P, Cr)x(Q,F ,Pr) to the set of real

numbers, i.e., for any Borel set B of real numbers,
the set {(6,w)e OxQ1£(6, w)e B} is an event.

Let T be an index set and let (G),P,Cr) be a

credibility space. A fuzzy process is a function from
T><(®,P, Cr) to the set of real numbers. A fuzzy

process is aC, is said to be a C process if:

ii) C, has stationary and independent increments;
iii) every increment C,.,—C; is a normally

distributed fuzzy variable with expected value et

and variance 0>, whose membership function is:

Let C process be standard if ¢, =0 and o =1. The
C process plays the role of Brownian motion.

7T(x—et)

J6or

L(x,1) = 2(1 + exp( (13)

Let T be an index set, and (G),P,Cr)x(Q,F,Pr) a
chance space. A hybrid process is a measurable
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function from 7'x(®,P,Cr)x(Q,F,Pr) to the set of

real numbers, i.e., for each te T and any Borel set
B of real numbers, the set
{(H,w)e OxXQIX(t,0,w)e B} is an event.

Suppose w; is a standard Brownian motion, C, is a
standard C process, and f,g,h are some given
functions. Then:

dx(t) = f (@, x(2))dt + g(t, x(2))dw(t) + h(t, x())dC, (14)

is called a hybrid differential equation. A solution is
a hybrid process x(¢) that satisfies (14) identically in

t.

Hybrid differential equation associated to (1) is:

dy =k (v—af(x5(t—1)-bY x(—1)f (5 —0)dt+
j=1
i

+05(x%; —x,)dw(O) +BxdG(), i=1..r
x(0) =), te[-70, & >0, B0}, i=1..r

(15)

where x,is the solution of equation v =af (x).
The numerical simulation of (15) is given by:
X (k+1) =x (k) +hk(v—af(x(k—m)—

b x;(k=—m)f Cs;(k—m)+

A
J#

+6 (% (k) —x, )G+ Lk z;), (16)
k.me N, he Ql), ¢ >0, Bl0l, 7 >0, i=l.r

G(h) = random[normald[0,/h 1],

1
ﬂz.
Lik,z) =2 1+exp| —=i || |
(k,z;) (+exp{h ’_6OSi(k)B

k—1
Si(k) =" x;(j)-

j=0

(7)

For r=2,
al =05,

a=18, b=2,

pi=1i=12,
2

X
L = With Mapl
1500 /9= 50 3, With Maple

13, we obtain in Fig. 16, the orbit

v=100,

m=3,

k=02,
az = 05,

n=1500, h= !

(k,x(k)), in
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Fig.17 the orbit (k,x,(k)) and in Fig.18 the orbit

(x (k), x5 (k)) .
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Fig.16 The orbit (k,x,(k))
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Fig.17 The orbit (k,x,(k))
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Fig.18 The orbit (x;(k),x,(k))

The hybrid differential equation associated to (2) is:
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ai —bD.X:
dx =k;x;(t— r}(w bix; () p(t))dt+
+(x; (1) —x,)dw )+ Bx;0)dC (@), i=1,..r
dp=kr+1p(t){ix,- (t—r)—chH (18)
il

& (P()—p,)awt)+ 3., pt)dCt)

Cxi >0’ ar+l >0’ ﬁi’ ﬁr+le{091}’ i=1,..1’
where (x;,, p,)is the equilibrium point of the (2).

The numerical simulation of (17) is given by:

5D =0 Hhks (-2 o )+
x;(k)

+0 (k) —x, )N +Ax 0Lk z), i=L...v
PkAD=pk)+hk, p) O X (k) —O)+05y (Hk)—p, )3+ (19)
A

+L.uPROL & Z,41)

kmeN, he@l), g >0, A<{al, >0 i=1.r

where G(h), L(k,z;) are given by (17).

For r=2, n=1500, th, alzg, a, =0.9,
1500 3

b=0.5, b,=0.5, c=65, k=1, k, =1, k3 =0.005,

a1=0.5, a2=03, a3=04, ﬁi=1’ i=1,2,

71=05, z,=0.3, 2z3=0.4, with Maple 13, we
obtain in Fig.19 the orbit (k,x;(k)), in Fig.20 the
orbit (k,x,(k)) and in Fig.21 the orbit (k, p(k)).

s
e J°
100 ‘f '-‘
.
{ i
20 i 3
!
i ]
60 i
i
| i
40 4 ; i
wnd
I \'N.L.
0 {mv

T T T T T T T
200 400 600 200 1,000 1200 1,400

Fig.19 The orbit (k,x,(k))
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Fig.20 The orbit (k,x,(k))
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Fig.21 The orbit (k, p(k))

The hybrid differential equation associated to (3) is:

dx, = x, (t—r)(l_zxz ® —ayx,()x, (t)]dt+

T°x (1)
+ay(x; (1) — x,,)dwy (1) + By x; (H)dC (1),
dx, = (a_z X (D)X, (F—T) —az) + x5 (t)Jdt + (20)
as
+ &, (x5 (1) = X, )dW, (1) + o x5, (1)dC5 (1),
dX3 = (a4 (xl (t) - xl (t - T)) - a5x3 (t))dt +
+ a5 (x3(t) — x3,)dws () + SByx3(1)dC5 (2).

where x,, x,,, x3, are the equilibrium points (3)
coordinates.

The numerical simulation of (20) is given by:
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—
xl(k+1):x1(k)+h)q(k—m)[ m;):())

—ax (k)x, (k)]+
+04(x; (k) =, ) G +Bx, () Lk, ),
xQ(k+1)=x2(k)+h%x2(k)(x1(k—m)—a3)+x3(k))+ Q1)
3

+05(% (k) =X, )G + By () LUK, 25),
X3 (k+1)=0x;3 (k) +Hay (x; (k) —x (k—m))—asxy (k) )+
+04(5(k) —x3, )G + By (k) Lk, 73).

FOI‘, al=l, a2:0.5, a3:O.2, (14:0.5, a5=O.5,

a=2, ay=3, oz=4, z=2, z,=8, z3=5,

1
=1,i=12,3, m=4, h=——
hi=li 1000
Maple 13, we obtain in Fig. 22 the orbit (k,x;(k)),
in Fig.23 the orbit (k,x,(k)) and in Fig.24 the orbit
(x; (k), x,(k)) -

, n=1000, with
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Fig.22 The orbit (k,x;(k))
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Fig.23 The orbit (k,x,(k))
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5 Conclusion

This paper has introduced SDDE for dynamic
stochastic and hybrid models of Internet Networks.
The paper has shown that these equations belong to
the category of equations that accept a unique
solution.

We have described a numerical algorithm in order to
determine the approximate solution. The solutions
have been visualized with the help of a program in
Maple 13, using the Box-Muller method for the
simulation of Wiener and Liu processes. A similar
study will be conducted for cases in which other
confidences will be randomized and fuzziness. Also,
we will analyze the stability similarly to what is
analyzed in [7]. The models from this paper can be
extended considering the fractional integral [3], [14].
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