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Abstract: - In this paper, we consider Internet models, which respond to a congestion signal from the network 

described by a stochastic and hybrid differential equation. We consider Internet networks with one source and r 

access links, as well as with r sources and one access link. We analyze the conditions for the existence of a 

solution and the algorithms needed to determine the solution. We carry out numerical simulations for certain 

parameter values. 
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1 Introduction 
Congestion control mechanisms and active queue 

management schemes (AQM) for the Internet have 

been extensively studied since the work of Kelly et 

all [5].  

In [10], the Hopf bifurcation has been studied for the 

model of an Internet network with )1( >rr  link and 

single source, which can be formulated as: 
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where )(txi  is the sending rate of the source i  at 

time t , k  is a positive gain parameter, τ  is the sum 

of forward and return delays, v  is a target (set –

point), ba,  are positive real parameters and the 

congestion indication function )(xf  is increasing, 

nonnegative, which characterizes the congestion. 

The discretizing model of (1) has been analyzed in 

[9], and the value of k , for which the Neimark-

Sacker bifurcation takes place, has been determined. 

 

 

The dynamic model with a single link and r sources 

can be described by: 
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where, )(txi  is the rate at which the source i  

transmits data at the time t , ia  and ib  are positive 

real numbers, )(tp  is the loss probability function, 

iτ  is round-tripe delay for source i , c  is the 

capacity, kki ,  are gain parameters. The discretized 

model of (2) has been analyzed in [11]. 

 

By employing the dynamic delayed feedback 

control, we can consider the controlled congestion 

control system with communication delay as 

follows:  
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where 05 >a  is the washaut filter time constant, 

which guarantees the stability of controller, 04 >a  

is the feedback gain parameter. This model was 

analized in [4]. 

The models (1), (2), and (3) lead to dynamic models 

described by stochastic delay differential equations, 

by randomizing one of the parameters. Thus, in 

section 2 we will consider stochastic delay 

differential equations, obtained through the 

randomization of parameter a  in the case of the 

model (1), respectively, of parameters ,, cai  

,,...,1 ri =  in the case of the model (2), and the 

parameters ,,,, 5421 aaaa in the case of the model (3). 

 

For certain functions which describe the stochastic 

delay differential equations (SDDE), the existence 

and uniqueness of the solution is justified. In section 

3, we describe the algorithm which approximates the 

solution of the equations for the stochastic system 

with 2=r  links and a source with a single link and 

2=r  source, respectively. In section 3 we describe 

the algorithm numeric for these cases. In section 4, 

we associate the determinist models (1),(2),(3), 

hybrid system, by adding a term that comprizes an 

Ito integral.  

For certain parameter values, we carry out numerical 

simulation with the Maple13 software for the 

simulation of Wiener and Liu processes. 

 

 

2 SDDE Models for Internet networks 
Let Pr),,( FΩ  be a complete probability space with 

a filtration )( tF  satisfying the usual conditions; that 

is the filtration 0)( ≥ttF  is right -continuous and each 

)( tF , where 0≥t contains all Pr -null sets in F . For 

general theory we refer to [12]. With ∫Ω= xdxxE )(  

we say for ∞≤≤ p1  that Pr),,( FLLx pp Ω=∈ if 

∞<)(
p

xE  and we define pp

p
xEx

1

)(= . Here, 

E denotes the expectation. 

Let T
r twtwtw ))(),...,(()( 1=  be a r - dimensional 

Wiener process given on the filtered probability 

space Pr),,( FΩ . 

The stochastic delay differential equation (SDDE) 

with one fixed lag, )0( ∞<< T  is given by:  
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where Ω∈= ωω),,()( txtx ii , )(tiΨ is 
0t

F - 

measurable with values in )],0,([ RC τ−  so that 

∞<Ψ )(
2

E  and RRRf
rr

i →×: , 

RRRg
rr

i →×: , ),,()( ωtxtx ii = Ω∈ω , ri ,...,1= . 

 

The system (4) can then formulated equivalently as: 
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for ],0[ Tt ∈  and with )()( ttx ii Ψ= , for ]0,[ τ−∈t . 

The second integral in (5) is a stochastic integral 

which can be interpreted according to Ito’s integral.  

 

For the functions if , ig , ri ,...,1= , and 

Ri →−Ψ ]0,[: τ , ri ,...,1= , we consider the 

following set of conditions [11]: 

 

1. The functions if  and ig  are continuous; 

2. The functions if  and ig  satisfy a uniform 

Lipschitz condition; 

3. The functions iΨ  is Holder - continuous with 

exponent  iϕ ; 

4. The functions if  and ig  satisfy a linear growth 

condition; 

5.  The partial derivatives of ),( ΨΦif  exist and are 

uniformly bounded. 

 

Proposition 1 [12]. Assume that the functions if  

and ig  satisfy the above assumptions 1-3. Then, 

there exists a unique strong solution of equation (4). 

 

The stochastic model for an Internet network with 

)1( >rr  link and single source described by SDDE 

is given by:  
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The stochastic model for the Internet network with a 

single link and r  sources can be described by:  
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The stochastic model for Internet associated to (3)  

can described by: 
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If functions f , g  and iΨ , ri ,...,1= , satisfy 

conditions 1-5, then SDDE given (6), (7) 

respectively (8) has a unique solution.  

 

 

 

 

3 Numerical simulation for the SDDE 

equations (6), (7) and (8) 

The problem of solving an SDDE is reduced to one 

of solving a sequence of systems of SDDE of 

increasing dimension on successive intervals 

)]1(,[ +nn . Using the Euler method of first order 

from [1], [12], [13] for (6), we obtain:  
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where ]]hmald[0,random[nor)( =hG .  

 

Using results from [1], [12], [13] we have that the 

algorithms given by (9) is convergent.  

 

For 2=r , 2.01 =k , 18=a , 2=b , 100=v , 

,5.01 =α  ,5.02 =α  ,3=m  ,1300=n  
1300

1
=h , 

x

x
xf

320
)(

2

−
= , with Maple 13, we obtain in Fig. 1, 

the orbit  ))(,( 1 kxk , in Fig. 2 the orbit  ))(,( 2 kxk  

and in Fig. 3 the orbit  ))(),(( 21 kxkx . 

 

 

 
Fig.1 The orbit ))(,( 1 kxk  
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Fig.2 The orbit ))(,( 2 kxk  

 

 
Fig.3 The orbit ))(),(( 21 kxkx  

 

 

Using the Euler method of first order for (7) we 

obtain: 
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For 2=r , 1000=k , 
1000

1
=h , ,3=m 11 =k , 22 =k , 

005.03 =k , 65=c , 
3

2
1 =a , 9.02 =a , 5.01 =b , 

5.02 =b , ,2.01 =α  ,2.02 =α ,4.03 =α  ,
1

)(
x

xg = with 

Maple 13, we obtain the orbits: in Fig. 4, the orbit  

))(,( 1 kxk , in Fig. 5 the orbit ))(,( 2 kxk , in Fig. 6 the 

orbit ))(,( kpk , in Fig. 7 the orbit ))(),(( 21 kxkx , in 

Fig. 8 the orbit ))(),(( 1 kpkx  and in Fig. 9 the orbit  

))(),(( 2 kpkx . 

 

 

 
Fig.4 The orbit ))(,( 1 kxk  

 

 

 
Fig.5 The orbit ))(,( 2 kxk  

 

 

 

Fig.6 The orbit ))(,( kpk  
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Fig.7 The orbit ))(),(( 21 kxkx  

 

 

Fig.8 The orbit ))(),(( 1 kpkx  

 

 

Fig.9 The orbit ))(),(( 2 kpkx  

 

Using the Euler method of first order for (8) we 

obtain: 
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For 11 =a , 
2

1
2 =a , 2.03 =a , 5.04 =a , 2.05 =a , 

,5.01 =α  ,62 =α  ,4.03 =α  ,4=m  1300=k , 

1300

1
=h , with Maple 13, we obtain the orbits:  

In Fig.10 the orbit ))(,( 1 kxk , in Fig.11 the orbit 

))(,( 2 kxk ,  in Fig.12 the orbit ))(,( 3 kxk ,  in Fig.13 

the orbit ))(),(( 21 kxkx , in Fig.14 the orbit 

))(),(( 31 kxkx  and in Fig.15 the orbit  ))(),(( 32 kxkx . 

 

 

 

 
Fig.10 The orbit ))(,( 1 kxk  
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Fig.11 The orbit ))(,( 2 kxk  

 

 

Fig.12 The orbit ))(,( 3 kxk   

 

 

Fig.13 The orbit ))(),(( 21 kxkx  

 

 

Fig.14 The orbit ))(),(( 31 kxkx  

 

 

Fig.15 The orbit ))(),(( 32 kxkx  

 

 

4 Hybrid differential equations 

associated for the SDDE equations (1), 

(2) and (3) 

Randomness in a basic type of objective uncertainly 

and probability theory is a branch of mathematics for 

studying the behavior of random phenomena. The 

concept of fuzzy set was initiated by Zadeh [14] via 

the membership function in 1965. In order to 

measure a fuzzy event, Liu B. [6] introduced the 

concept of credibility measure. The credibility theory 

was founded as a branch of mathematics for studying 

the behavior of fuzzy phenomena.  Fuzziness and 

randomness are two basic types of uncertainty. In 

many cases, fuzziness and randomness 

simultaneously appear in a system. 
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Let Θ  be a nonempty set, and let Ρ  be the power of 

Θ (i.e. all subsets of Θ ). Each element in Ρ  is called 

an event. In order to present an axiomatic definition 

of credibility, we accept the following four axioms: 

1. 1)( =ΘCr ; 

2. { } { }BCrACr ≤ , whenever BA < ; 

3. { } { } 1=+ cACrACr , for any Ρ∈A ;  

4. { }i
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{ } 5.0sup <i
i

ACr . 

The set function Cr is called a credibility measure 

and ( )Cr,,ΡΘ  is a credibility space. A fuzzy variable 

is a function from the credibility space ( )Cr,,ΡΘ  to 

the set of real numbers. If a fuzzy variable ξ  is 

defined as a function on a credibility space, then we 

may get its membership function via: 

{ } .,1)2()( RxxCrx ∈∧== ξµ              (12) 

 Suppose that ( )Cr,,ΡΘ  is a credibility space and 

( )Pr,, FΩ  is a probability space. The product 

( ) ( )Pr,,,, FCr Ω×ΡΘ  is called a chance apace. A 

hybrid variable is a measurable function, from a 

chance space ( ) ( )Pr,,,, FCr Ω×ΡΘ  to the set of real 

numbers, i.e., for any Borel set B of real numbers, 

the set ( ){ }B∈Ω×Θ∈ ),(|, ωθξωθ  is an event. 

Let T be an index set and let ( )Cr,,ΡΘ  be a 

credibility space. A fuzzy process is a function from 

( )CrT ,,ΡΘ×  to the set of real numbers. A fuzzy 

process is a eC is said to be a C  process if: 

i) 00 =C ; 

ii) tC  has stationary and independent increments; 

iii) every increment sts CC −+  is a normally 

distributed fuzzy variable with expected value te1  

and variance 22
tσ , whose membership function is: 
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Let C  process be standard if 01 =e  and 1=σ . The 

C  process plays the role of Brownian motion.  

Let T be an index set, and ( ) ( )Pr,,,, FCr Ω×ΡΘ  a 

chance space. A hybrid process is a measurable 

function from ( ) ( )Pr,,,, FCrT Ω×ΡΘ×  to the set of 

real numbers, i.e., for each Tt ∈  and any Borel set 

B  of real numbers, the set 

( ){ }BtX ∈Ω×Θ∈ ),,(|, ωθωθ  is an event. 

Suppose tw  is a standard Brownian motion, tC  is a 

standard C  process, and hgf ,,  are some given 

functions. Then:  
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is called a hybrid differential equation. A solution is 

a hybrid process )(tx  that satisfies (14) identically in 
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Hybrid differential equation associated to (1) is:  

{ } ritttx

ritdCxtdwxx

dttxftxbtxafvkdx

iiii

iiiieii

r

ij
j

iiii

,...1,1,0,0],0,[),()(

,...1),()()(

)))(()())(((
1

1

=∈>−∈Ψ=

=+−+

+−−−−−= ∑
≠
=

βατ

βα

τττ

 (15) 

where ex is the solution of equation )(xafv = .  

The numerical simulation of (15) is given by: 
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For 2=r , 2.01 =k , 18=a , 2=b , 100=v , 

,5.01 =α  ,5.02 =α  2,1,1 == iiβ ,  ,3=m  

,1500=n  
1500

1
=h , 

x

x
xf

320
)(

2

−
= , with Maple 

13, we obtain in Fig. 16, the orbit  ))(,( 1 kxk , in 
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Fig.17 the orbit  ))(,( 2 kxk  and in Fig.18 the orbit  

))(),(( 21 kxkx . 

 

 
Fig.16 The orbit ))(,( 1 kxk  

 

 

 
Fig.17 The orbit ))(,( 2 kxk  

 

 

 
Fig.18 The orbit ))(),(( 21 kxkx  

 

The hybrid differential equation associated to (2) is:  
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where ),( eie px is the equilibrium point of the (2). 

The numerical simulation of (17) is given by: 
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where )(hG , ),( izkL  are given by (17). 

 

For 2=r , ,1500=n  
1500

1
=h , 

3

2
1 =a , 9.02 =a , 

5.01=b , 5.02=b , 65=c , 11 =k , 12 =k , 005.03 =k ,  

,5.01 =α  ,3.02 =α  ,4.03 =α  2,1,1 == iiβ , 

,5.01 =z  ,3.02 =z  ,4.03 =z  with Maple 13, we 

obtain in Fig.19 the orbit  ))(,( 1 kxk , in Fig.20 the 

orbit  ))(,( 2 kxk  and in Fig.21 the orbit  ))(,( kpk . 

 
Fig.19 The orbit ))(,( 1 kxk  
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Fig.20 The orbit ))(,( 2 kxk  

 

 

 
Fig.21 The orbit ))(,( kpk  

The hybrid differential equation associated to (3) is:  
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   (20)          

where eee xxx 321 ,,   are the equilibrium points (3) 

coordinates.  

The numerical simulation of (20) is given by: 
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   (21)        

 

For, 11 =a , 5.02 =a , 2.03 =a , 5.04 =a , 5.05 =a , 

21=α , 32=α , 43 =α , 21 =z , 82 =z , 53 =z ,    

2,1,1 == iiβ ,3,  ,4=m  
1000

1
=h , ,1000=n  with 

Maple 13, we obtain in Fig. 22  the orbit  ))(,( 1 kxk , 

in Fig.23 the orbit  ))(,( 2 kxk  and in Fig.24 the orbit  

))(),(( 21 kxkx . 

 

 
Fig.22 The orbit ))(,( 1 kxk  

 

 
Fig.23 The orbit ))(,( 2 kxk  
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Fig.24 The orbit ))(),(( 21 kxkx  

 

 

5 Conclusion   
This paper has introduced SDDE for dynamic 

stochastic and hybrid models of Internet Networks. 

The paper has shown that these equations belong to 

the category of equations that accept a unique 

solution. 

We have described a numerical algorithm in order to 

determine the approximate solution. The solutions 

have been visualized with the help of a program in 

Maple 13, using the Box-Muller method for the 

simulation of Wiener and Liu processes. A similar 

study will be conducted for cases in which other 

confidences will be randomized and fuzziness.  Also, 

we will analyze the stability similarly to what is 

analyzed in [7].  The models from this paper can be 

extended considering the fractional integral [3], [14].  
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