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1 Introduction

We denote by Mr×s(C) the space of com-
plex matrices having r rows and s columns,
and in the case which r = s we write Mr(C).

We consider the set M of triples of matri-
ces (E,A, B) representing families of general-
ized linear time invariant systems in the form
Eẋ(t) = Ax(t)+Bu(t), with E, A ∈ Mp×n(C),
B ∈ Mn×m(C), (n,m, p > 0) and an equiva-
lence relation, which generalizes the block sim-
ilarity equivalence between pairs of matrices
representing standard systems ẋ(t) = Ax(t)+
Bu(t), with E,A ∈ Mn(C), B ∈ Mn×m(C),
(n,m,> 0) .

The concept of structural stability, in
the qualitative theory of dynamical sys-
tems (structurally stable elements being those
whose behavior does not change when apply-
ing small perturbations) has been widely stud-
ied by several authors in control theory (see
[9], [10], [13] for example). The stability not

only is studied for standard and singular sys-
tems, but for switched linear systems, for ex-
ample Brás in [2], studies the diagonal stabil-
ity of switched linear systems.

In this paper we will consider the concept
of structural stability as appearing in [15]: a
structurally stable element is an element hav-
ing a neighborhood contained in its equiva-
lence class that is to say a small perturba-
tion of it gives rise to an element equivalent to
it. The characterization of structurally stable
triples of matrices can be deduced after view-
ing the equivalence relation considered as the
equivalence relation defined by the action of
a Lie group acting on the differentiable mani-
fold of triples of matrices, giving rise to orbits
which are also differentiable manifolds. Then,
the Arnold’s techniques of versal deformations
[1], provide a special parametrization of ma-
trix spaces, which can be effectively applied
to perturbation an structural stability analy-
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sis. This technique was used by the author in
[7], to study perturbations and bifurcation di-
agrams for regularisable singular systems. In
this paper we generalize this result to all sin-
gular systems, therefore, the main results are
Theorem 4, which describes the orthogonal
miniversal deformation of a triple of matrices,
and Theorem 5, which gives the desired char-
acterization of the structurally stable triples
of matrices.

Different useful and interesting equiva-
lence relations between singular systems have
been defined. We deal with the equivalence
relation preserving the controllability charac-
ter of a system. Remember that a system
(E,A, B) ∈ M is controllable (see [4]), if and
only if, matrices E and A are square matrices,

{
rank

(
E B

)
= n

rank
(
sE −A B

)
= n; for all s ∈ C

Notice that, the first condition implies
that, there exists a matrix U ∈ Mm×n(C) such
that the matrix E+BU has full rank, and the
second condition implies that, there exists a
matrix V ∈ Mm×n(C) such that the matrix
A + BV has full rank. Therefore the equiv-
alence considered in this paper will be under
feedback and derivative feedback.

The structure of the paper is as follows.
In section 2 we present some notations

used in the paper. In Section 3, we recall
the equivalence relation between triples, we
present a canonical reduced form as well a
complete system of structural invariants. In
section 4, we see the equivalence relation de-
fined as induced by the action of a Lie group,
in order to prove that the equivalence classes
are regular submanifolds and to obtain a de-
scription of their tangent spaces. Section 5,
contains a explicit description of the miniver-
sal deformation. Section 6, is devoted to
main Theorem. First, we recall the defini-
tion of structural stability and we characterize
it as any miniversal deformation being zero-
dimensional, that is, as the nonexistence of
nontrivial solutions of the system appearing
in Theorem 4. Thus, the conditions in Theo-
rem 5, are obtained.

2 Notations

In this paper we will use the following no-
tations.
- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its re-
duced form N = diag(N1, . . . , N`), Ni =(

0 Ini−1

0 0

)
∈ Mni(C),

- J denotes the Jordan matrix J =
diag(J1, . . . , Jt), Ji = diag(Ji1 , . . . , Jis), Jij =
λiI + N ,
- L = diag = (L1, . . . , Lq), Lj =

(
Inj 0

) ∈
Mnj×(nj+1)(C),
- R = diag(R1, . . . , Rp), Rnj =

(
0 Inj

) ∈
Mnj×(nj+1)(C).
- A∗ denotes adjoint matrix of matrix A, that
is, the complex conjugate of the transpose of
A, (A∗ = A

t).

In the sequel we identify triples of ma-
trices (E, A, B) with rectangular matrices(
E A B

)
in order to use matrix expressions.

3 Equivalence relation

A manner to understand the properties of
the system is treating it by purely algebraic
techniques. The main aspect of this approach
is defining an equivalence relation preserving
these properties.

The standard transformations in state
and input spaces x(t) = Px1(t), u(t) =
Ru1(t) premultiplication by an invertible ma-
trix QEẋ(t) = QAx(t)+Qu(t), as well as feed-
back u(t) = u1(t)−V x(t) and derivative feed-
back u(t) = u1(t) − Uẋ(t), realized over gen-
eralized systems relate them in the following
manner, two systems are related when one can
be obtained from the other by means of one,
or more, of the transformations considered.
In fact, this transformations define an equiv-
alence relation in the corresponding space of
triples of matrices in the following manner.

Definition 1 Let (Ei, Ai, Bi), i = 1, 2
be two triples in M. Then, (E1, A1, B1) is
equivalent to (E2, A2, B2) if and only if there
exist invertible matrices Q ∈ Gl(p;C), P ∈
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Gl(n;C), R ∈ Gl(m; C), and matrices U, V ∈
Mm×n(C), such that

(
E2 A2 B2

)
=

Q
(
E1 A1 B1

)



P 0 0
0 P 0
U V R


 .

(1)

It is easy to check that this relation is an
equivalence relation.

Let (E,A, B) ∈ M be a triple of ma-
trices, we can associate the following pencil
λ

(
E B 0

)
+

(
A 0 B

)
.

Proposition 1 Two triples of matrices in
M are equivalent with respect the equivalence
relation considered, if and only if the associate
pencils are strictly equivalent.

Having defined an equivalence relation,
the standard procedure then is to look for a
canonical form, that is to say to look for a
quadruple of matrices which is equivalent to a
given quadruple and which has a simple form
from which we can directly read off the proper-
ties and invariants of the corresponding singu-
lar system. In this case we have the following
Theorem.

Theorem 1 ([8]) Let (E, A,B) be a
triple. Then, it is equivalent to







E1

SE

0 0


 ,




A1

SA

0 0


 ,




B1 0
0 0
0 B2





 ,

(2)
where (E1, A1, B1) is a regular triple in its
Kronecker reduced form (see [5]), concretely

(E1, A1, B1) =





I1

I2

N2


 ,




N1

J
I3


 ,




B1

0
0







The triple (I1, N1, B1), is a controllable sys-
tem in its Kronecker reduced form, (I2, J, 0)
corresponds to the finite zeros of the triple
and J in its Jordan reduced form, (N2, I3, 0)
corresponds to the infinite zeros of the triple

and N2 in its Jordan reduced form. The triple
(SE , SA, 0) is the strictly singular part of the
system in its Kronecker reduced form:((

L1

Lt
2

)
,

(
R1

Rt
2

)
,

(
0
0

))

Remark 1 Not all parts necessarily ap-
pear in the canonical reduced form.

A complete system of invariants to obtain
the canonical reduced form can be fond in [8].

Definition 2 For each triple (E, A,B) ∈
M, we define the collection of the discrete
numbers in the following manner
1- r1 = (r0

1, r
1
1, . . . , r

`
1, . . .), where

0) r0
1 = rk B

`) r`
1 = rk




E 0 . . . 0 B 0
A E 0 B

0 A
. . .

. . .
. . .

. . .

E B 0
A 0 B




∈ M(`+1)p×(`n+(`+1)m)(C)
2- r2 = (r1

2, . . . , r
`
2, . . .), where

1) r1
2 = rank

(
E A B

) ∈ Mp×(2n+m)(C)

`) r`
2 = rk




E A 0 B
0 E A 0 B

. . .
. . .

. . .

E A 0 B




∈ M`n×`(n+m)(C)
3) r3 = (r1

3, . . . , r
`
3, . . .), where

rj
3 = rk




E B Cn 0
M 0 Cn−1 0
0 0 Cn−2 0

. . .

E B C2 0
M 0 C1 B




with M = −λ0E + A, Ci=
{

M if i = j
0 if i 6= j

, for

j = 1, 2, . . ..
4) r4 = (r1

4, . . . , r
`
4, . . .), where

rj
4 = rk




A B . . . 0 0 Cn 0
E 0

. . .
A B C1 0
E 0 C0 B




where Ci =
{

E i = j,
0 i 6= j

, for j = 1, 2, . . ..

And the set of continuous invariants in the
following manner:
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σ(E, A,B) =
{λ0 ∈ C | rk (λ0E −A B) < rk (λE −A B)}.

Proposition 2 In the set M of singu-
lar systems, the ri numbers as well all λ0 ∈
σ(E, A,B), are invariant under the equiva-
lence relation considered.

Proposition 3 In the set M of sin-
gular systems, the ri numbers as well all
λ0 ∈ σ(E,A, B), constitutes a complete sys-
tem of invariants characterizing the equiva-
lence classes of triples under equivalence re-
lation considered.

Remark 2 Controllable blocks in con-
trollable part of the system are obtained join-
ing one block L of size one with one among of
the blocks L of biggest size in the correspond-
ing associate pencil λ

(
E B 0

)
+

(
A 0 B

)
,

(see [8]).

4 Lie group action

Equivalence relation given in definition (1)
may be seen as induced by the action of
the Lie group G = {(Q,P, R, U, V ) | Q ∈
Gl(p;C), P ∈ Gl(n; C), R ∈ Gl(m; C), U, V ∈
Mm×n(C)}. Using short notations g =
(Q,P,R, U, V ) ∈ G and x = (E, A,B) ∈ M,
we define multiplication in G, action of the
group G, and equivalence condition (1) as fol-
lows

g1g2 =

(Q2Q1, P1P2, R1R2, U1P2 + R1U2, V1P2 + R1V2),

g ◦ x = Q
(
E1 A1 B1

)



P 0 0
0 P 0
U V R


 ,

x2 = g ◦ x1.
(3)

Multiplication in the group corresponds to
successive equivalence transformations: g2 ◦
(g1 ◦ x) = (g1g2) ◦ x. Unit element of G has
the form e = (Ip, In, Im, 0, 0), where Ip, In and
Im are the identity matrices.

Let us fix a triple x0 = (E0, A0, B0) ∈ M
and define the mapping

αx0(g) = g ◦ x0. (4)

The equivalence class of the triple x0 under
equivalence relation considered coincides with
the equivalence class of the triple with respect
to the action of G; that is, the equivalence
class is the range of the function αx0 and it is
called the orbit of x0 and denoted by

O(x0) = Imαx0 = {g ◦ x0 | g ∈ G}. (5)

The stabilizer of x0 under the G-action is a
null-space of the function αx0 − x0. We de-
note it by

S(x0)=Ker (αx0 − x0)={g ∈ G | g ◦ x0 = x0}.
(6)

The mapping αx0 is differentiable, and O(x0)
and S(x0) are smooth submanifolds of M and
G respectively.

Let us use the notation TeG for a tan-
gent space to the manifold G at the unit
element e. Since G is an open subset of
Mn(C)×Mm(C)×Mm×n(C)×Mm×n(C), we
have

TeG=Mp(C)×Mn(C)×Mm(C)× (Mm×n(C))2

and, since M is a linear space,

Tx0M = M.

The Euclidean scalar products in the spaces
M and TeG considered in this paper are de-
fined as follows

〈x1, x2〉1 = tr(E1E
∗
2 ) + tr(A1A

∗
2) + tr(B1B

∗
2),

where xi = (Ei, Ai, Bi) ∈M,

〈y1, y2〉2=
tr(Q1Q

∗
2) + tr(P1P

∗
2 ) + tr(R1R

∗
2)+

tr(U1U
∗
2 ) + tr(V1V

∗
2 ),

where yi = (Qi, Pi, Ri, Ui, Vi) ∈ TeG,
(7)

Let dαx0 : TeG −→ M be the differential
of αx0 at the unit element e. Using expressions
(3) and (4), we find,
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dαx0(y) = (X, Y, Z) ∈M, , with
X = E0P + QE0 + B0U,
Y = A0P + QA0 + B0V,
Z = B0R + QB0)
y = (Q, P, R,U, V ) ∈ TeG.

(8)

The adjoint linear mapping dα∗x0
: M−→

TeG is defined by the relation

〈dαx0(y), z〉1 = 〈y, dα∗x0
(z)〉2, y ∈ TeG, z ∈M.

(9)

The mappings dαx0 and dα∗x0
provide

a simple description of the tangent spaces
Tx0O(x0), TeS(x0) and their normal comple-
ments (Tx0O(x0))⊥, (TeS(x0))⊥.

Theorem 2 The tangent spaces to the
orbit and stabilizer of the triple of matrices x0

and the corresponding normal complementary
subspaces with respect to M and TeG can be
found in the following form

i) Tx0O(x0) = Im dαx0 ⊂M,

ii) (Tx0O(x0))⊥ = Ker dα∗x0
⊂M,

iii) TeS(x0) = Ker dαx0 ⊂ TeG,

iv) (TeS(x0))⊥ = Im dα∗x0
⊂ TeG.

Proof.
Assertions i and iii follow from (8). Then

assertions ii and iv follow from properties of
the adjoint function dα∗x0

(see [6] for example).
¤

Corollary 1 The mappings dαx0

and dα∗x0
define one-to-one correspon-

dences between the subspaces Tx0O(x0) and
(TeS(x0))⊥.

Proposition 4 Let x0 = (E, A, B) ∈ M
be a triple of matrices. Then,

Tx0O(x0) =
{(QE + EP + BU,QA + AP + BV, QB + BR) |

∀(Q,P,R, U, V ) ∈ G}.
(Tx0O(x0))⊥ =
{(X, Y, Z) | EX∗ + AY ∗ + BZ∗ = 0,
X∗E + Y ∗A = 0, X∗B = 0, Y ∗B = 0, Z∗B = 0}.

5 Miniversal deformation

Let U0 be a neighborhood of the origin of
C`. A deformation x(γ) of x0 is a smooth
mapping

x : U0 −→M
such that x(0) = x0. The vector γ =
(γ1, . . . , γ`) ∈ U0 is called the parameter vec-
tor. The deformation x(γ) is also called the
family of triple of matrices. The deformation
x(γ) of x0 is called versal if any deformation
z(ξ) of x0, where ξ = (ξ1, . . . , ξk) ∈ U ′0 ⊂ Ck

is the parameter vector, can be represented in
some neighborhood of the origin in the follow-
ing form

z(ξ) = g(ξ) ◦ x(φ(ξ)), ξ ∈ U ′′0 ⊂ U ′0, (10)

where φ : U ′′0 −→ F ` and g : U ′′0 −→ G are dif-
ferentiable mappings such that φ(0) = 0 and
g(0) = e. The versal deformation with mini-
mal possible number of parameters ` is called
miniversal.

The following result, proved by Arnold [1]
for Gl(n;C) acting on Mn×n(C), provides the
relation between the versal deformation of x0

and the local structure of the orbit and stabi-
lizer of x0.

Theorem 3 i) A deformation x(γ) of x0

is versal if and only if it is transversal to the
orbit O(x0) at x0.
ii) Minimal number of parameters of a versal
deformation is equal to the codimension of the
orbit of x0 in M, ` = codimO(x0).
iii) If x(γ) is a miniversal deformation and
values of the mapping g(ξ) are restricted to
belong to a smooth submanifold R ⊂ G, which
is transversal to S(x0) at e and has the mini-
mal dimension dimR = codimS(x0), then the
mappings φ(ξ) and g(ξ) in representation (17)
are uniquely determined by z(ξ).

Let us denote by {t1, . . . , td}, d =
dimTx0O(x0), a basis of the tangent
space Tx0O(x0); by {n1, . . . , n`}, ` =
codim Tx0O(x0), a basis the normal com-
plement (Tx0O(x0))⊥; by {c1, . . . , c`} a ba-
sis of an arbitrary complementary subspace
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(Tx0O(x0))c to Tx0O(x0); and by {r1, . . . , rd}
a basis of (TeS(x0))⊥. By Corollary (2.1.1),
if we have the basis {t1, . . . , td}, then the
basis {r1, . . . , rd} can be chosen in the form
{dα∗x0

(t1), . . . , dα∗x0
(td)}, and vice versa, if

the basis {r1, . . . , rd} is known, then we
can choose the basis {t1, . . . , td} in the form
{dαx0(r1), . . . , dαx0(rd)}.

Corollary 2 The deformation

x(γ) = x0 +
∑̀

i=1

ciγi (11)

is a miniversal deformation. The functions
φ(ξ) and g(ξ) in the versal deformation re-
duction (16) are uniquely determined, if the
mapping g(ξ) is taken in the form

g(ξ) = e +
d∑

j=1

rjµj(ξ), (12)

where µj(ξ) are smooth functions in C such
that µj(0) = 0, j = 1, . . . , d.

If we take ci = ni, i = 1, . . . , `, in (18),
then the corresponding miniversal deforma-
tion is called orthogonal.

5.1 Explicit miniversal deformation

Solving the system defining (Tx0O)⊥ we
deduce and explicit miniversal deformation.
For that we partition the system in six in-
dependent subsystems, corresponding to the
partition of the triple in the following manner







E1

SE

0 0


 ,




A1

SA

0 0


 ,




B1 0
0 0
0 B2





 ,

(E1, A1, B1) being the regular subsystem,
(SE , SA) the completely singular part, and

the matrices X∗ =
(

X1 X2 X5

X3 X4 X6

)
, Y ∗ =

(
Y1 Y2 Y5

Y3 Y4 Y6

)
, Z∗ =

(
Z1 Z2 Z5

Z3 Z4 Z6

)
corre-

sponding to the partition of the triple.

E1X1 + A1Y1 + B1Z1 = 0
X1E1 + Y1A1 = 0

X1B1 = 0
Y1B1 = 0
Z1B1 = 0





(I)

E1X2 + A1Y2 + B1Z2 = 0
X2SE + Y2SA = 0

}
(II)

SEX3 + SAY3 = 0
X3E1 + Y3A1 = 0

X3B1 = 0
Y3B1 = 0





(III)

SEX4 + SAY4 = 0
X4SE + Y4SA = 0

}
(IV)

E1X5 + A1Y5 + B1Z5 = 0
X5B2 = 0
Y5B2 = 0
Z5B2 = 0





(V)

SEX6 + SAY6 + B2Z6 = 0
X6B2 = 0
Y6B2 = 0
Z6B2 = 0





(VI)

Theorem 4 Let (E, A,B) ∈ M be a
triple in its canonical reduced form. A explicit
miniversal deformation is given as follows.

The system (I) correspond to the miniver-
sal deformation of the regularizable subsystem
solved in [5] and system (IV) correspond to the
miniversal deformation of a pencil containing
only the singular part solved in [14].

Now, we solve systems II and III.
With respect system II, partitioning it fol-

lowing blocks in matrices:

E1=
(

I1
I2

N2

)
, A1=

( N1
J

I3

)
, B1=

(
B1
0
0

)
,

SE =
(

L1

Lt
2

)
, SA =

(
R1

Rt
2

)
,

and

X2=

(
X2

1 X2
2

X3
3 X2

4

X2
5 X2

6

)
, Y2=

(
Y 2
1 Y 2

2

Y 2
3 Y 2

4

Y 2
5 Y 2

6

)
, Z2=( Z2

1 Z2
2 ) ,
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and each subsystem partitioned into blocks
corresponding to the partition of the matri-
ces N , J , L, Lt into blocks of the same type,
we obtain the following subsystems:

X2
1i + N1Y

2
1i + B1Z

2
1i = 0

X2
1iL1 + Y 2

1iR1 = 0

}
i)

X2
2i + N1Y

2
2i + B1Z

2
2i = 0

X2
2iL

t
1 + Y 2

2iR
t
1 = 0

}
ii)

X2
3i + JY 2

3i = 0
X2

3iL1 + Y 2
3iR1 = 0

}
iii)

X2
4i + JY 2

4i = 0
X2

4iL
t
1 + Y 2

4iR
t
1 = 0

}
iv)

N2X
2
5i + Y 2

5i = 0
X2

5iL1 + Y 2
5iR1 = 0

}
v)

N2X
2
6i + Y 2

6i = 0
X2

6iL
t
1 + Y 2

6iR
t
1 = 0

}
vi)

where matrices L1i, R1i ∈ Mq1i×(q1i+1)(C),
N1i ∈ Mp1i(C), J = aI + N ∈ M`i(C).

Systems iii), v) have zero solution.
The solutions of systems i) are:
X2

1i = 0, Z2
1i = 0 and Y 2

1i = 0 if p1i ≥ q1i+1
and

Y 2
1i =




y1 y2 ... yr 0 ... ... 0

0 y1

. . . yr

. . . 0

...
...

. . . . . .
...

0 0 y1 ... yr 0 ... 0




Z2
ii = ( 0 0 0 y1 ... yr 0 ... 0 )

with r = q1i − p1i.
The solutions of systems ii) are:

X2
2i = −

(
y2 y3 ... yq
y3 y4 ... yq+1

... ...
yq yq+1 ... zq

)

Y 2
2i =

(
y1 y2 ... yq+1
y2 y3 ... yq+2

... ...
yp yp+1 ... yp+q

)

Z2
2i = ( yp+1 yp+2 ... zq )

The solutions of systems iv) are

Y 2
4i=




y1 ay1+y2 a3y1+3a2y2+3ay3+y4 ...
y2 ay2+y3 a3y2+3a2y3+3ay4+y5 ...

...
yp−1 ayp−1+yp a3yp−1+3a2yp ...

yp ayp a3yp ... aq−1yp




and X2
4i = −JY 2

4i (a is the eigenvalue of the
block J .

The solutions of systems vi) are

X2
6i =




0 ... 0 xp xp−1 ... x1

. . . . . .
...

xp xp−1

0 ... 0 0 ... 0 xp


 ,

Y 2
6i =




0 ... 0 0 −xp ... −x2

. . . . . .
...−xp

0 ... 0 0 ... 0 0


 ,

if p2i ≤ q2i and

X2
6i =




xp−q+1 ... xp

...
...

x1 ... xq

. . .
...

0 ... x1


 ,

Y 2
6i =




xp−q ... xp−1

...
...

x1 ... xq

. . .
...

0 ... x1
0 ... 0


 ,

otherwise.
With respect system III, as in the case of

systems II, partitioning it following blocks in
matrices:

E1=
(

I1
I2

N2

)
, A1=

( N1
J

I3

)
, B1=

(
B1
0
0

)
,

SE =
(

L1

Lt
2

)
, SA =

(
R1

Rt
2

)
,

and
X3=

(
X3

1 X3
2 X3

3

X3
4 X3

5 X3
6

)
, Y3=

(
Y 3
1 Y 3

2 Y 3
3

Y 3
4 Y 3

5 Y 3
6

)
,

and each subsystem partitioned into blocks
corresponding to the partition of the matri-
ces N , J , L, Lt into blocks of the same type,
we obtain the following subsystems:

L1iX
3
1i + R1iY

3
1i = 0

X3
1i + Y 3

1 N1i = 0
X3

1iB1 = 0
Y 3

1iB1 = 0





i)

L1iX
3
2i + R1iY

3
2i = 0

X3
2i + Y 3

1 Ji = 0

}
ii)
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L1iX
3
3i + R1iY

3
3i = 0

X3
2iN2i + Y 3

1i = 0

}
iii)

Lt
2iX

3
4i + Rt

2iY
3
4i = 0

X3
3i + Y 3

4 N1i = 0
X3

4iB1 = 0
Y 3

4iB1 = 0





iv)

Lt
2iX

3
5i + Rt

3iY
3
5i = 0

X3
5i + Y 3

5iJi = 0

}
v)

Lt
2iX

3
6i + Rt

2iY
3
6i = 0

X3
6iN2i + Y 3

6i = 0

}
vi)

where matrices L1i, R1i ∈ Mq1i×(q1i+1)(C),
N1i ∈ Mp1i(C), J = aI + N ∈ M`i

(C).
The solution of systems i) are:
X3

1i = 0 and Y 3
1i = 0 if p1i ≤ q1i + 1 and

Y 3
1i =




y1 y2 ... yr 0 ... ... 0

0 y1

. . . yr

. . . 0

...
...

. . . . . .
...

0 0 y1 ... yr 0 ... 0




with r = p1i − q1i.
The solution of systems ii) are

Y 3
2i =




y1 y2 ... y`i
ay1 y1+ay2 ... y`i−1+ay`i

a2y1 2ay1+a2y2

...
aqiy1




(yij = yi−1 j−1 + ayi−1 j).
The solution of systems iii) are

X3
3i =




0 . . . x1 . . . xpi−q1+1
... ...

... ...
...

x1 . . . xqi+1 . . . xpi


 ,

if pi ≤ qi,

X3
3i =




0 . . . 0
...

...
0 . . . 0
0 . . . x1
... ...

...
x1 . . . xpi




, if pi < qi.

The solution for systems iv), v) and vi) is
X = Y = 0.

Analogously, we solve systems (V) and
(VI).

Corollary 3 The codimension of a triple
(E, A, B) ∈ M, is the number of parameters
appearing in the miniversal deformation.

6 Structural stability

As application of miniversal deformations
we are going to analyze the structural stabil-
ity of the triples. First of all we will recall the
definition of structural stability, according to
that appearing in the paper by Willems (see
[15]).

Let X be a topological space and consider
an equivalence relation defined on it.

Definition 3 An element x ∈ X is struc-
turally stable if and only if there exists an open
neighbourhood U ⊂ X of x such that all the el-
ements in it are equivalent to x.

Applying this result a our particular setup
we have the following Proposition.

Proposition 4 A triple (E, A,B) ∈M is
structurally stable if and only if the miniversal
deformation of the triple is zero.

As a consequence we have the following
Theorem.

Theorem 5 A triple (E, A, B) ∈ M is
structurally stable

1. for m ≥ n, p or n ≥ m > p, if and only
if rankB = p.

2. for n = p−m there are not stable triples.

3. for n > p − m, if and only if there
are m blocks L1, ` − s blocks L`1 and
s L`1+1 where n = (p − m)c + `, and
p−m = ``1 + s

4. for n < p−m, if and only if there are m
blocks L1, ` − s blocks Lt

`1
and s Lt

`1+1

where p−m = nc + `, and n = ``1 + s
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5. for n = p, m > 0, if and only if there
are not continuous invariants, nor in-
finite zeroes, and row minimal indices,
rankB = r = min {p,m}, there are r
column minimal indices of order 1, and
r column minimal indices equals or dif-
fering in only one unity.

Proof.
A system is structurally stable if and only

if, the miniversal deformation is zero, so the
system defining Tx0O⊥ has only the zero so-
lution. So, it suffices to analyze when all the
systems (I), (II), (III), (IV), (V), (VI) have
only the zero solution.

¤

Examples

1. Let (E,A, B) be a triple in M with
E = I2, A = N ∈ M2(C) and B = et

2.
In this case we have that n = p >
m and there are two blocks L1 verify-
ing condition 5 in theorem 4, (notice
that the associate pencil is equivalent

to λ

(
1 0 0 0
0 0 1 0

)
+

(
0 1 0 0
0 0 0 1

)
). So

the triple is structurally stable.

2. Let (E,A, B) be a triple in M with
E = I2, A = ( 0 0

0 1 ) and B = et
2. In

this case we have that n = p > m
and there is one block L1, and contin-
uous invariant λ = 1, it does not ver-
ify condition 5 in theorem 4, (notice
that the associate pencil is equivalent

to λ

(
1 0 0 0
0 1 0 0

)
+

(
1 0 0 0
0 0 1 0

)
). So

the triple is not structurally stable.

7 Conclusion

The knowledge of a canonical reduced
form, permit us to deduce explicit miniver-
sal deformations for triples of matrices under
feedback and derivative feedback equivalence.
Then the structural stability of triples of ma-
trices can be easily analyzed.
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¯ I. Garćıa-Planas, V. Sergeichuk,

Generic Families of matrix pencils and
their bifurcation diagrams. Linear Alge-
bra and its Applications 332-334, pp.
165-179, (2001).

[15] J. C. Willems. Topological Classification
and Structural Stability of Linear Sys-
tems. Journal of Differential Equations
35, pp. 306-318, (1980).

WSEAS TRANSACTIONS on MATHEMATICS M. Isabel Garcia-Planas

ISSN: 1109-2769 644 ssue 11, Volume 8, November 2009




