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1 Introduction

In supervised learning, an unknown input-output
mapping has to be learned on the basis of a sample
of input-output data [1]. The problem of approx-
imating a function on the basis of a data sample

z
△
= {(xi, yi) ∈ X × R, i = 1, . . . , m} is often ill-

posed [2, 3]. Regularization [4] can be used to
cope with this drawback.

Among regularization techniques, weight de-
cay (see, e.g., [5]) is a learning technique that pe-
nalizes large values of the parameters (weights)
of the model to be learned. For linear regression
problems, the performance of weight decay was
theoretically investigated in [5], where the case of
linearization of a nonlinear model was considered,
too. As to nonlinear models, a theoretical motiva-
tion of the generalization performance of certain
neural networks trained through weight decay was
given in [6], where the case of binary classification
problems was studied using tools from Statistical
Learning Theory.

In this paper, we study the optimization prob-
lems associated with the weight-decay and other
learning techniques. Each problem is formu-
lated as the minimization of a regularized em-
pirical error functional over a suitable hypothesis
space. Then, we compare the solution provided
to the learning problem by weight-decay regular-

ization with the solution given by the classical
Tikhonov’s regularization and a mixed regulariza-
tion technique (i.e., weight decay combined with
Tikhonov’s regularization). When one uses hy-
pothesis spaces spanned by kernel functions im-
plemented by computational units widely used
in connectionistic models, the solution to the
Tikhonov-regularized learning problem has the
form of a linear combination of the m-tuple of
the kernel functions, parameterized by the input
data vector x = (x1, . . . , xm). The coefficients of
the linear combination can be obtained by solv-
ing a suitable linear system of equations, and this
property can be exploited to develop learning al-
gorithms. In order to simplify the analysis and
emphasize the relationships between weight de-
cay and Tikhonov’s regularization, also for the
weight-decay learning problem and the mixed
weight-decay/Tikhonov one we consider admissi-
ble solutions belonging to linear combinations of
kernel functions parameterized by the input data
vectors. For these problems one can show [7] that
the optimal solutions are obtained by solving sys-
tems of linear equations, too.

For large data sets, the use of a number of
computational units equal to the number m of
data may lead to very complex models and so may
be computationally unfeasible. Moreover, practi-
cal applications of linear algorithms using m com-
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putational units are limited by the rate of conver-
gence of iterative methods solving the systems of
linear equations associated with the regulariza-
tion schemes, as such rates depend on the size
of the condition number of the matrices involved
therein. For some methods, the computational
requirements of solving such systems grow poly-
nomially with the size m of the data sample (e.g.,
for the Gaussian elimination and m large enough,
they grow at a rate m3 [8, p. 175]). For some
data and kernels, keeping the condition number
of these matrices small requires a large value of
the regularization parameter γ > 0, which may
cause poor fit to the empirical data.

Motivated by these drawbacks, we also in-
vestigate the accuracy of suboptimal solutions to
weight-decay learning and to the mixed weight-
decay/Tikhonov learning, over hypothesis sets
corresponding to models with less computational
units than the size of the data sample. We de-
rive upper bounds on the rates of approximation
of the optimal solutions, for sequences of subop-
timal solutions achievable by minimization over
hypothesis sets formed by linear combinations of
at most n < m kernel functions with parameters
drawn from the data set. The upper bounds im-
prove the ones given in [7] for the same regular-
ized learning problems and are of the form 1/n
(instead of 1/

√
n, as in [7]), times a term that

depends on the size m of the data sample, prop-
erties of the vector y = (y1, . . . , ym) of output
data, properties of the kernel, and the regulariza-
tion parameter γ.

The final part of the paper discusses some re-
lationships between sparseness and generalization
and algorithms that can be used to find sparse
suboptimal solutions to regularized learning prob-
lems.

2 Notations and definitions

The hypothesis spaces where we set the learning
problems are Reproducing Kernel Hilbert Spaces
(RKHS). These can be characterized in terms of
kernels [9, 10]. A positive-semidefinite (psd) ker-
nel is a symmetric function K : X ×X → R such
that for all positive integers m, all (w1, . . . , wm) ∈
R

m, and all (u1, . . . , um) ∈ Xm,

m
∑

i,j=1

wi wj K(ui, uj) ≥ 0 . (1)

In other words, for every m and every x =
(x1, . . . , xm) ∈ Xm, the Gram matrix of the kernel

K with respect to x, denoted by K[x] and defined
as K[x]i,j := K(xi, xj) , is positive-semidefinite.
If, for all positive integers m, all (w1, . . . , wm) ∈
R

m, and all (u1, . . . , um) ∈ Xm with no repeated
entries ui, the equality in (1) holds only for w1 =
. . . = wm = 0, then K is called positive-definite
(pd) kernel. Every psd kernel K : X × X → R

generates an RKHS HK(X). Indeed, HK(X) can
be defined as the completion of the linear span
of the set {Ku : u ∈ X} with the inner product

〈Ku, Kv〉
△
= K(u, v). In the following, we denote

by ‖ · ‖K the norm on the RKHS HK(X).

In this paper we consider pd kernels K; to
fix ideas, one can think of the widely-used Gaus-

sian kernel K(u, v) = e−ρ‖u−v‖2

2 on R
d × R

d,
where ρ > 0. The corresponding RKHS contains
all functions obtainable by Gaussian radial-basis
function networks with a fixed “width”, equal to
ρ. One reason for choosing RKHSs as hypothesis
spaces is that the norms ‖ · ‖K on RKHSs defined
by a large variety of kernels K play the role of
measures of various types of oscillations of func-
tions in those spaces. Thus, the choice of suitable
RKHSs as hypothesis spaces allows one to impose
a condition on oscillations of admissible solutions
to the learning problem. See, e.g., [11] for details.

For a subset G of a linear space and a positive

integer n, we denote by spanG
△
=
{
∑k

j=1 wjgj :

wj ∈ R, gj ∈ G, k ∈ N
}

and spann G
△
=

{

∑n
j=1 wjgj : wj ∈ R, gj ∈ G

}

the sets of all lin-

ear combinations of elements of G and of all linear
combinations of n-tuples of elements of G, resp.

We let GK
△
= {Kx : x ∈ X} and, for an in-

put data sample x, GKx

△
= {Kx1

, . . . , Kxm} . So,
spann GK and spann GKx

are the sets of all in-
put/output functions of a computational model
with one hidden layer of n computational units
implementing functions from GK and GKx

, resp.
In contrast to linear approximation [12], which
is also called fixed-basis approximation (as the
approximating functions belong to a linear sub-
space generated by the first n elements of a set
of functions with a fixed linear ordering), this ap-
proximation scheme is sometimes called variable-
basis approximation [13] or approximation from a
dictionary [14]. This models, e.g., radial-basis-
function (RBF) networks and one-hidden layer
perceptrons [15].

Given a linear space H, a set M ⊆ H,
and a functional Φ : M → R, following stan-
dard notation from optimization theory we de-
note by (M, Φ) the problem of minimizing Φ
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over M . Every fo ∈ M such that Φ(fo) =
minf∈M Φ(f) is called an (optimal) solution or
a minimum point of the problem (M, Φ). We
denote by argmin(M, Φ) the set of solutions of

(M,Φ), i.e., argmin(M, Φ)
△
= {fo ∈ M : Φ(fo) =

minf∈M Φ(f)} . For ε > 0, argminε(M,Φ) is
the set of ε-near minimum points of (M, Φ),

i.e., argminε(M,Φ)
△
= {fo

ε ∈ M : Φ(fo
ε ) ≤

inff∈M Φ(f) + ε}.
Given a normed linear space (H, ‖ · ‖H), let

M ⊆ H and Φ : M → R be a functional. If
Φ is continuous and f ∈ M , then the function
ωf : [0, +∞) → [0, +∞) defined as

ωf (t) = sup {|Φ(f) − Φ(g)| : g ∈ M, ‖f − g‖X ≤ t}

is called the modulus of continuity of Φ at f . By
its definition, ωf (t) is a nondecreasing function of
t.

For a positive integer d, by ‖ · ‖1 and ‖ · ‖2

we denote the 1-norm and Euclidean norm on R
d,

resp.

3 The optimization problem as-

sociated with weight decay

In order to deal with the ill-posedness of the learn-
ing problem [2, 3], a widely-used regularization
approach consists in minimizing the regularized
empirical error functional, defined for f ∈ H as

Ez(f) + γ Ψ(f), where Ez(f)
△
= 1

m

∑m
i=1(f(xi) −

yi)
2 is the empirical error functional, γ > 0 is

the regularization parameter, and Ψ : H → R is a
functional called regularizer. The corresponding
model for the learning problem is (M, Ez + γΨ),
i.e., inff∈M (Ez(f) + γ Ψ(f)). The parameter γ
controls the trade-off between the following two
requirements: i) fitting to the data sample (via
the value Ez(f) of the empirical error in corre-
spondence of f); ii) penalizing functions f that
give a large value of the regularizer Ψ(f). For
certain normed hypothesis spaces H, the choice
Ψ(·) = ‖·‖2

H allows one to enforce certain smooth-
ness properties of the solution. In this case, the
parameter γ quantifies the compromise between
enforcing closeness to the data sample and avoid-
ing solutions that are not sufficiently smooth.

Given a regularization parameter γ > 0 and
a pd kernel K (e.g., the Gaussian kernel), for
f ∈ spanGK we define the weight-decay empir-
ical error functional as

ΦWD,γ(f)
△
= Ez(f) + γ ‖cf‖2

2 , (2)

where the components of the vector cf =

(cf,1, . . . , cf,l)
T and x̂1, . . . , x̂l ∈ X are the param-

eters in the expansion

f =
l
∑

j=1

cf,jKx̂j . (3)

Choosing a pd kernel guarantees that f has a
unique representation of the form (3), thus l and
‖cf‖2

2 in (2) are defined unambiguously (otherwise
one may choose, among all equivalent representa-
tions of f - possibly with different values of l - the
infimum of the squared norms ‖cf‖2

2 of the corre-
sponding coefficient vectors cf ). Note that in gen-
eral the functional (2) cannot be continuously ex-
tended on HK(X) if K is continuous on X ×X ⊆
R

d × R
d. Indeed, by varying the number of ker-

nel units in (2), it is easy to construct a sequence
{f2l} such that f2l ∈ span2l GK , ‖f2l‖K → 0 and
‖cf2l

‖2
2 → ∞ as l → ∞. One example of such

a sequence is given by f2l
△
=
∑2l

j=1(−1)jKx̂j(l),

where, for each l, when j is odd x̂j(l) and x̂j+1(l)
are chosen “sufficiently close” to each other such
that ‖f2l‖K < 1

l .
The number l of terms in the expression (3) is

equal to the dimension of the vector cf in (2). In
the following, we consider the weight-decay func-
tional corresponding to the choice l = m (i.e., l
equal to the size of the data sample) and x̂j = xj

for j = 1, . . . , m. In other words, we investigate
the minimization of the functional (2) over lin-
ear combinations spanm GKx

of m kernel func-
tions centered at the m input data. Hence, we
model the weight-decay learning problem as

(spanm GKx
, ΦWD,γ) . (4)

The next proposition, from [7], expresses the so-
lution to the weight-decay learning problem as a
linear combination of kernel functions centered at
the input data points, with coefficients obtained
by solving a linear system of equations. Its proof
given in [7] is based on the theory of regulariza-
tion of inverse problems; for completeness of ex-
position, here we sketch a simpler proof.

Proposition 1 Let X be a nonempty set, K :
X × X → R a pd kernel, m a positive integer,
x = (x1, . . . , xm) ∈ Xm with no repeated entries
xi, y = (y1, . . . , ym)T ∈ R

m, and γ > 0. Then
there exists a unique solution

fo
WD,γ =

m
∑

j=1

co
WD,γ,jKxj (5)
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to the problem (spanm GKx
, ΦWD,γ), where

co
WD,γ = (co

WD,γ,1, . . . , c
o
WD,γ,m)T is the unique

solution to the linear system of equations

(

K[x] + γ mK−1[x]
)

co
WD,γ = y . (6)

Proof. Let F = {e1, . . . , em} be the canonical or-
thonormal basis of R

m and define the m-variable
function Φ̃WD,γ : R

m → R such that, for every

f =
∑m

j=1 cf,jKxj ∈ spanGKx
, Φ̃WD,γ(cf )

△
=

ΦWD,γ (f). The problems (spanGKx
, ΦWD,γ)

and (spanF, Φ̃WD,γ) are clearly equivalent, and
straightforward computations show that

ΦWD,γ(cf ) = cT
f

(

1
mK2[x] + γI

)

cf

− 2
mcT

f K[x]y + 1
myTy . (7)

Then (6) follows by minimizing (7) w.r.t. cf . �

4 Comparison with Tikhonov

regularization

Tikhonov regularization in learning from data can
be formalized in terms of the following Tikhonov-
regularized empirical error functional:

ΦT,γ
△
= Ez(f) + γ ‖f‖2

K . (8)

The corresponding Tikhonov-regularized learning
problem is

(HK(X),ΦT,γ) . (9)

Existence, uniqueness, and an explicit formula de-
scribing the solution to the learning problem (9)
are given by the so-called Representer Theorem
(see, e.g., [16, p. 42]). For a nonempty set X,
K : X×X → R a psd kernel, m a positive integer,
x = (x1, . . . , xm) ∈ Xm, y = (y1, . . . , ym)T ∈ R

m,
and γ > 0, the Representer Theorem states that
there exists a unique solution fo

T,γ to the problem

(HK(X),ΦT,γ) and it has the form

fo
T,γ =

m
∑

j=1

co
T,γ,jKxj , (10)

where co
T,γ = (co

T,γ,1, . . . , c
o
T,γ,m)T is the unique

solution to the linear system of equations

(K[x] + γ m I)co
T,γ = y . (11)

The optimal solution to the Tikhonov-
regularized learning problem described by (10)
is an element of spanm GK,x ⊆ spanm GK .
Since, by the Representer Theorem, the solu-
tion to the Tikhonov-regularized learning prob-
lem (HK(X),ΦT,γ) belongs to spanm GKx

, one
can restate such a problem as (spanm GKx

, ΦT,γ)
and compare its solution with the solu-
tion to the weight-decay learning problem
(spanm GKx

, ΦWD,γ). This is done in [7] in terms
of spectral windows.

5 Combining weight decay and

Tikhonov regularization

By considering, for γT , γWD > 0 the minimization
of the following mixed regularized functional

ΦWDT,γT ,γWD
(f)

△
= Ez(f)+ γT ‖f‖2

K + γWD ‖cf‖2
2

it is possible to combine weight decay and
Tikhonov regularization. For simplicity and with-
out loss of generality, we take γT = γWD = γ/2
and we define the mixed regularized learning prob-
lem (spanm GKx

, ΦWDT,γ/2), where

ΦWDT,γ/2(f)
△
= ΦWDT,γ/2,γ/2(f) .

The next proposition, also taken from [7], inves-
tigates the problem (spanm GKx

, ΦWDT,γ/2) and
gives a formula for its solution. Its proof is simi-
lar to that of Proposition 1, so is omitted.

Proposition 2 Let X be a nonempty set, K :
X × X → R a pd kernel, m a positive integer,
x = (x1, . . . , xm) ∈ Xm with no repeated entries
xi, y = (y1, . . . , ym)T ∈ R

m, and γ > 0. Then
there exists a unique solution

fo
WDT,γ/2 =

m
∑

j=1

co
WDT,γ/2,jKxj (12)

to the problem (spanm GKx
, ΦWDT,γ/2), where

co
WDT,γ/2 = (co

WDT,γ/2,1, . . . , c
o
WDT,γ/2,m)T is the

unique solution to the linear system of equations
(

K[x] +
γ

2
m (I + K−1[x] )

)

co
WDT,γ/2 = y .

(13)

Similarly to Proposition 1, Proposition 2 ex-
presses the solution to the mixed regularized
learning problem as a linear combination of ker-
nel functions centered at the data points, with
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coefficients obtained by solving the linear system
of equations (13). The expression co

fWDT,γ/2
=

(

K[x] + γ
2 m

(

I + K−1[x]
))−1

y can be compared
in terms of spectral windows with the expressions

co
fWD,γ

=
(

K[x] + γ mK−1[x])
)−1

y and co
fT,γ

=

(K[x] + γ m I)−1 y for the coefficients of the so-
lutions to the weight-decay and the Tikhonov-
regularized learning problems, respectively [7].

6 Accuracy of suboptimal solu-

tions

The expressions (6), (11), and (13) for the coef-
ficients of the linear combinations providing the
solutions to the respective problems require to
solve linear systems of equations, so, in principle,
they can be used to design linear learning algo-
rithms. However, their applications are limited
by the rates of convergence of iterative methods
solving linear systems of equations.

Recall that the condition number of a nonsin-
gular m × m matrix A with respect to a norm
‖ · ‖ on R

m is defined as cond(A) = ‖A‖ ‖A−1‖,
where ‖A‖ denotes the norm of A as a linear op-
erator on (Rm, ‖ · ‖). For a symmetric matrix A,
we denote by λmax(A) and λmin(A) its maximum
and minimum eigenvalues, respectively. It is easy
to check that for every norm ‖ · ‖ on R

m and
every m × m symmetric nonsingular matrix A,

cond(A) ≥ |λmax(A)|
|λmin(A)| and cond2(A) = |λmax(A)|

|λmin(A)| ,

where cond2(A) denotes the condition number of
A with respect to the ‖·‖2-norm on R

m [8, p. 35].
To simplify the notation, we write λmax instead of
λmax(K[x]) and similarly for λmin.

For pd kernels and every x with no repeated
entries xi, the matrix K[x] is positive definite, so
all its eigenvalues are positive. By simple alge-
braic manipulations and spectral theory, for the
condition numbers of the matrices involved in the
solutions of the linear systems of equations (6),
(11), and (13), simple calculations give

cond2(K[x] + γ mK−1[x]) ≤ cond2(K[x]) , (14)

cond2(K[x] + γ mI) = cond2(K[x]) , (15)

cond2(K[x] + γ mI) ≤ 1 +
λmax

γ m
, (16)

cond2(K[x] +
γ

2
m(I + K−1[x])) ≤ cond2(K[x]) ,

(17)

and

cond2(K[x] + γ
2 m(I + K−1[x]))

≤ λmax
γ
2

m
+

γ
2

m (λmin+1)

λmin (λmin+ γ
2

m )
. (18)

By equations (14), (15), and (17), when
cond2(K[x]) is sufficiently small, good condition-
ing of the respective matrices is guaranteed for ev-
ery value of γ. However, for large values of the size
m of the data sample, the matrix K[x] might be
ill-conditioned. On the other hand, the regular-
ization parameter γ can always be chosen “large
enough” such that cond2(K[x] + γ mK−1[x]),
cond2(K[x] + γ mI), and cond2(K[x] + γ

2 m(I +

K−1[x])) are close to cond2(K[x]), 1, and 1+ 1
λmin

,
resp. Unfortunately, good conditioning of the ma-
trices is not the only requirement for γ, as its
value must also allow a good fit to the empirical
data and thus it cannot be too large. The prob-
lem of choosing the regularization parameter in
Tikhonov and other regularization techniques is
studied, e.g., in [17].

Summing up, when a small condition number
of the matrices in (6), (11), and (13) and a good
fit to the empirical data cannot be simultaneously
guaranteed, one has to consider other learning
techniques. In particular, one may be interested
in suboptimal solutions depending on a number
of computational units smaller than m, as they
have smaller memory requirements, better inter-
pretability, and in some cases are easier to find
than the optimal ones (e.g., through the so-called
greedy algorithms [18]). For instance, in contrast
to the respective optimal solutions, which are lin-
ear combinations of Kx1

, . . . , Kxm determined by
the sample x = (x1, . . . , xm) of input data, one
may search for suboptimal solutions formed by
linear combinations of n < m such functions, or
that depend on arbitrary n-tuples of elements of

GK
△
= {Kx : x ∈ X}.
In the following, we investigate the accuracy

of suboptimal solutions over (spann GKx
, ΦWD,γ)

and (spann GKx
, ΦWDT,γ/2) to the solutions

fo
WD,γ fo

WDT,γ/2 provided by Propositions 1 and

2, resp.
The next theorem improves [7, Theorem 4]

and estimates for increasing values of n < m the
rates of approximation of fo

WD,γ , which can be
obtained by suboptimal solutions to the problem
(spann GKx

, ΦWD,γ). Note that, differently from
[7, Theorem 4], we do not require the condition

sK = supx∈X

√

K(x, x) < +∞.

Theorem 3 Let X be a nonempty set, K : X ×
X → R a pd kernel, z a data sample of size m
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with no repeated entries xi, λmin and λmax the
minimum and the maximum eigenvalues of K[x],

resp., and γ > 0. Let α(t)
△
=
(

λ2
max

m + γ
)

t2, and

∆WD,γ
△
= ‖co

WD,γ‖2
1−‖co

WD,γ‖2
2. Then the follow-

ing holds.
(i) For every positive integer n < m

inf
f∈spann GKx

ΦWD,γ(f) − ΦWD,γ(fo
WD,γ)

≤ α

(

√

∆WD,γ

n

)

.

(ii) Let εn > 0 and fn ∈
argminεn

(spann GKx
, ΦWD,γ). Then

‖fn − fo
WD,γ‖2

K ≤ λmax

λ2

min

m
+γ

[

α

(

√

∆WD,γ

n

)

+ εn

]

.

Proof. (i) Since co
WD,γ is optimal for the

problem (spanF, Φ̃WD,γ), by the first-order op-
timality condition for unconstrained optimiza-
tion and the specific form of Φ̃WD,γ it follows

Φ̃WD,γ(cf ) = Φ̃WD,γ(co
WD,γ) + 1

2H(co
WD,γ)‖cf −

co
WD,γ‖2

2, where the Hessian H(co
WD,γ) has the ex-

pression H(co
WD,γ) = 2

(

K2[x]
m + γI

)

and is posi-

tive definite. So the function α(t)
△
= (λ2

max

m +γ)t2 is

the modulus of continuity of Φ̃WD,γ on (Rm, ‖·‖2).
Let F = {e1, . . . , em} be the canonical orthonor-

mal basis of R
m. Then by the definitions of Φ̃WD,γ

and of modulus of continuity, we have

inf
f∈spann GKx

ΦWD,γ(f) − ΦWD,γ(fo
WD,γ)

= inf
cf∈spann F

Φ̃WD,γ(cf ) − Φ̃WD,γ(co
WD,γ)

≤ α

(

inf
cf∈spann F

‖co
WD,γ − cf‖2

)

.

The estimate infcf∈spann F ‖co
WD,γ − cf‖2 ≤

√

∆WD,γ

n follows by applying Theorem 5 in the

Appendix.
(ii) By the proof of (i) and the definition of

fn, we get

(

λ2
min

m
+ γ

)

‖cf−co
WD,γ‖2

2 ≤ α

(

√

∆WD,γ

n

)

+εn .

(19)
The estimate is obtained by applying (19) and
‖fn − fo

WD,γ‖2
K ≤ λmax‖cf − co

WD,γ‖2
2 (which fol-

lows easily by the definition of the norm in an
RKHS). �

The next theorem improves [7, Theorem 4]
and estimates for increasing values of n < m the
rates of approximation of fo

WDT,γ/2, which can be

obtained by suboptimal solutions to the problem
(spann GKx

, ΦWDT,γ/2). The proof is similar to
that of Theorem 3, so it is omitted.

Theorem 4 Let X be a nonempty set, K : X ×
X → R a pd kernel, z a data sample of size m with
no repeated entries xi, λmin and λmax the mini-
mum and the maximum eigenvalues of K[x], resp.,

and γ > 0. Let β(t)
△
=
(

λ2
max

m + γ
2 (λmax + 1)

)

t2,

and ∆WDT,γ/2
△
= ‖co

WDT,γ/2‖2
1 − ‖co

WDT,γ/2‖2
2.

Then the following hold.
(i) For every positive integer n < m

inf
f∈spann GKx

ΦWDT,γ/2(f) − ΦWDT,γ/2(f
o
WDT,γ/2)

≤ β

(
√

∆WDT,γ/2

n

)

.

(ii) Let εn > 0 and fn ∈
argminεn

(spann GKx
, ΦWDT,γ/2). Then

‖fn − fo
WDT,γ/2‖2

K

≤ λmax

λ2

min

m + γ(λmin+1)
2

[

β

(
√

∆WDT,γ/2

n

)

+ εn

]

.

7 Sparseness and generalization

Besides advantages in terms of memory require-
ments and, in some cases, computational require-
ments, a sparse suboptimal solution to a learning
problem stated on a RKHS should have good gen-
eralization properties. If an a-priori upper bound
on the ‖ · ‖K-norms of suboptimal solutions is
known, then one can study the associated estima-
tion errors following the approach of [19, Chap-
ters 4 and 7] (see also [20]), which employs upper
bounds on Rademacher’s complexity for balls in
RKHSs, or [21, Section 6], which uses other mea-
sures of complexity for such balls.

It is worth remarking that there are situa-
tions in which sparseness itself enforces good gen-
eralization capability (quantitatively expressed by
suitable bounds from statistical learning theory).
For example, in the context of binary classifi-
cation problems, [22, Theorem 4] gives a lower
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bound on the probability of finding, after a train-
ing process from m data samples, a sparse kernel-
based binary classifier with a small generaliza-
tion error, provided that a (not necessarily sparse)
kernel-based binary classifier that correctly clas-
sifies all the training set exists and has a large
margin. The main tools used there to obtain
such a result are Littlestone-Warmuth’s compres-
sion lemma [23] and an extension to kernel-based
binary classifiers of classical Novikoff’s mistake
bound for perceptron learning [24]. Related re-
sults for regression problems were given in [25,
Theorem 3].

8 On algorithms for sparse sub-

optimal solutions

Various algorithms have been proposed in the lit-
erature to find sparse suboptimal solutions to ap-
proximation and optimization problems. In the
following, we report a discussion from [20] on
those useful for the regularization techniques con-
sidered in this paper.

The context common to all such algorithms is
the following. Given a (typically redundant) set D
of functions, called dictionary, which are elements
of a finite- or infinite-dimensional Hilbert space
H, for a “small” positive integer n one aims to find
an accurate suboptimal solution fs

n from spannD
to a function approximation problem, or, more
generally, to a functional optimization problem.

When no structure is imposed on the dictio-
nary D, the problem of finding the best approx-
imation of a function f ∈ H from spannD is
NP-hard [26]. However, the problem may dras-
tically simplify when the elements of the dictio-
nary have a suitable structure. The simplest sit-
uation arises when they are orthogonal. The case
of a dictionary with nearly-orthogonal elements,
i.e., a dictionary with small coherence [14], stays
halfway between these two extremes and provides
a computationally tractable problem, for which
constructive approximation results are available
[27, 28, 14, 29]. As in our context D = GKx

,
we may want to choose a kernel K such that the
dictionary GKx

has small coherence. If this is
not possible, then, as in [30], one may consider as
dictionary a suitable subset of GKx

with a small
coherence.

In the remaining of this section, we shall
discuss three families of algorithms to derive
sparse suboptimal solutions.

Greedy algorithms. Starting from an ini-
tial sparse suboptimal solution fs

n with a small n
(usually n = 0 and fs

0 = 0), typically greedy al-
gorithms obtain inductively an (n + 1)-term sub-
optimal solution fs

n+1 as a linear combination of
the n-term one fs

n and a new element from the
dictionary. So, a sequence of low-dimensional op-
timization problems has to be solved. Depend-
ing on how such problems are defined, different
kinds of greedy algorithms are obtained; see, e.g.,
[31, 32, 33]. These algorithms are particularly
suitable to derive sparse suboptimal solutions to
Tikhonov regularization.

Remarkable properties were proven for
Matching Pursuit and Orthogonal Matching
Pursuit; their kernel versions, known as Kernel
Matching Pursuits, are studied, e.g., in [34, 25].
Given f ∈ H and provided that the positive
integer n and the dictionary D are suitably cho-
sen, the n-term approximations found by these
two algorithms are only a well-defined factor
C(n) > 0 worse than the best approximation
of f in terms of any n elements of D (see [28,
Theorem 2.1], [29, Theorem 2.6], [14, Featured
Theorem 3], and [27, Theorem 3.5] for some
values of C(n) and estimates on the number of
the iterations).

Algorithms based on low-rank ap-
proximation of the Gram matrix. Another
possibility consists in replacing the Gram matrix
by a low-rank approximation, by using greedy
algorithms and/or randomization techniques
[35, 36]. Low-rank approximations can be used,
e.g., to find a sparse suboptimal solution to
Tikhonov regularization [35].

Algorithms based on convex formula-
tions of the problem. Also when the func-
tional to be minimized is convex and defined on a
convex set, when suboptimal solutions in spannD
are searched for, the corresponding optimization
problem may be not convex any more. Then one
may consider a related convex optimization prob-
lem with sparse optimal solutions, for which effi-
cient convex optimization algorithms can be ex-
ploited. In linear regression, e.g., adding an upper
bound on the l1-norm of the coefficients instead of
their l2-norm (or an l1 penalization term instead
of an l2 one) is known to enforce the sparseness
of the solution. This is called the Least Abso-
lute Shrinkage and Selection Operator (LASSO)
problem [37], for which kernel versions have been
proposed in the literature [38]. In [39], an algo-
rithm well-suited to LASSO was proposed, which
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shows how the degree of sparseness of its solution
is controlled by varying the regularization param-
eter. Another computationally promising tech-
nique to solve LASSO is based on the operator-
splitting approach studied in [40]. Some limita-
tions of LASSO have been overcome by its ex-
tension called elastic net [41], where the l1 and
l2 penalization terms are simultaneously present.
In [41], it was shown that the elastic net can be
considered as a LASSO on an extended artificial
data set, so that the algorithms from [39] can be
still applied. A kernel version of the elastic net
was developed in [42].

9 Conclusions

In a variety of applications, an unknown function
has to be learned on the basis of a sample of input-
output data. Usually such a problem is ill-posed,
unless a-priori knowledge is incorporated into the
learning model. This can be achieved by regular-
ization techniques.

Representer Theorems in Reproducing Kernel
Hilbert Spaces (RKHSs) describe the optimal so-
lutions to various regularized learning problems.
For data samples of size m, their solutions are
expressed as linear combinations of m computa-
tional units determined by the kind of hypothesis
space, and for which the optimal coefficients can
be obtained by solving certain linear systems of
equations. However, solving such systems may
be computationally demanding for large data sets
and may suffer from ill-conditioning.

We have investigated the accuracies of subop-
timal solutions obtainable by arbitrary n-tuples
of computational units, with n < m. In partic-
ular, we have investigated the learning technique
known as “weight decay” and we have compared it
with learning techniques based on Tikhonov reg-
ularization and on the combination of the latter
with weight decay.

The upper bounds that we have obtained in
Theorems 3 and 4 exhibit a common feature:
they are of the form A/n, where A > 0 de-
pends on properties of the output data vector
y and of the regularized functional. Thus, in
the presence of large data samples and when
algorithms based on Representer Theorems suf-
fer from ill-conditioning, algorithms operating on
models with n < m computational units can pro-
vide useful alternatives, as sparse models can ap-
proximate the optimal solutions quite well. The
estimates in this paper improve the ones given in
[7] for the same regularized learning problems.
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Appendix

In the proofs of Theorems 3 and 4 we exploit the
following result from [43]. It is a special case of
a reformulation (given in [44]; see also [45]) of a
result on the approximation of elements in the
closure of the convex hull of a set, by n-tuples of
its elements. Given an orthonormal basis F of a
separable Hilbert space H, by ‖ · ‖1,F we denote
the 1-norm with respect to F , defined for every
φ ∈ H as ‖φ‖1,F =

∑

f∈F |〈φ, f〉H|. This is a

norm on the set {φ ∈ H : ‖φ‖1,F < ∞}.

Theorem 5 [43, Theorem 2] Let (H, ‖ · ‖H) be
a separable Hilbert space and F its orthonormal
basis. For every φ ∈ H and every positive integer
n,

‖φ − spann F‖H ≤

√

‖φ‖2
1,F − ‖f‖2

H

n
.
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