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1 Introduction 2 Terminology and basic results

Recently, non-additivity was investigated by many
authors (e.g. Dobrakov [4], Drewnowski [5], Jiang
and Suzuki [17], Li [18], Pap [20], Precupanu [22],  o'gpsets off’, A is an algebra of subsets &fand
Sugeno [26], Suzuki [27], Zadeh [28]) due toits appli- . A0 +oo’) is a set function.

cations in mathematical economics, statistics, theory For evéryA C T, we denotel\ A by cA.

of games, probabilities, biology, physics, medicine, Byi—1 7 We rjneanz' € {1,2,...,n}, forn e
human decision making. Dempster [3] and Shafer = \vhereN is the set of all naturals amd* — N\{0}.
[25] have founded the theory of evidence based on two We' also denot&.,. = [0, +o0) andR.,. = [0, +od).
dual non-additive measures: belief measures (Bel) ’ ’

multi-criteria decision making.

In what follows, without any special assumptions, we
suppos€l’ is an abstract spac®,(T) is the family of

Definition 2.1.
v is said to be:
(i) monotonef for every A, B € A we have:

Different notions and theorems of non-additive
measure theory (such as: continuity, regularity, ex-
tensions, decompositions, measures, integrals, atoms)
were studied and extended to the set-valued case (see, AC B=v(A) <u(B).
for example, [1], [2], [7-14], [19], [23,24]).

(i) a submeasurdin the sense of Drewnowski

In this paper, we study different types of con- |5} jf v(0) = 0, v is monotone and
vergences for sequences of totally-measurable func-

tions with respect to a submeasure of finite variation. v(AUB) <v(A)+v(B),
We also establish some relationships among these dif- _
ferent types of convergences, such as, for instance, foreveryA, B € A, with AN B = ().

convergence in submeasure, convergence in variation, (iii) finitely additiveif (0) = 0 and
almost uniformly convergence, uniform convergence
and convergence i6” spaces. v(AUB) =v(A)+v(B),
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forevery A, B € Awith AN B = 0.

(iv) order-continuous(briefly, o-continuou} if
lim v(A,) = 0, for every sequence of setd,, ), C

n—oo

A, with A, \, 0 (that is, A, O A,.1, for every
neN-and N A, =0).
n=1

(v) subadditivef
v(AUB) <v(A)+rv(B),

foreveryA, B € A.
(vi) o-subadditivaf

v(4) <3 w(Ay),
n=1

for every sequence of setsl,), C A, with A =
OleAn € A.

One can easily check the following results:

Example 2.2.

) If 1 is the real Lebesgue measure[ont], then
the set functions/;, s : A — [0, +00) defined for
everyA € A by

p(A)

)= Tt u(4)

u(A) andwy(A)

aresubmeasures.

N If v1,19 : A — [0,400) are finitely additive,
then the set functiow : A — [0,+o00) defined for
everyA € A by

v(A) = max{r1(A4),1n(A)}
is a submeasure.

Definition 2.3.
(i) A partition of T is a finite family P =
{Ai},_1;; € Asuchthat4, N A; = 0,i # j and

n
A;=T.
=1

(i) Let P = {A;},_1, and P’ = {B,}
two partitions of7. ’

P’ is said to bdiner thanP, denoted byP < P’
or P' > P, if for every j = 1,m, there exists; =
1,n sothatB; C A;.

(i) The common refinemendf two partitions
P = {A;},_1; andP’ = {B;},_1; is thepartition
P/\P,:{AiﬂBj}

be

j=1lm

i=1n"
j=1lm
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We denote byP the class of all partitions af and
if A e Aisfixed, byP,4, the class of all partitions of
A.

We consider the following non-negative extended
real-valued set functions associated/to

()7 : P(T) — R, definedoy

7(A) = sup{>_ v(4)}.
=1

for every A C T, where the supremum is ex-
tended over all finite families of pairwise disjoint sets
{4;},_35; € A, with A; C A, for everyi = 1,n.

7 is calledthe variation of v.

v is said to beof finite variationon A if 7(A) <
oo, for every A € A.

(i) 7 : P(T) — R, definedoy

v(A) =inf{v(B); AC B,B € A},
foreveryA C T.

Proposition 2.4.

Letr : A — [0,+00) be an arbitrary set func-
tion. Then the following statements hold:

(i) 7 andv are monotone.

(iyv<w.

Proof.

(i) First, we prove that’ is monotone.

LetA, B € P(T)sothatd C B and let{ E;}! ;,
n € N*, be an arbitrary family of disjoint subsef €
A, so thatE; C A, for everyi € {1,2,...,n}. So,
we haveE; C B, for eachi € {1,2,...,n} and by
the definition ofz, it results

n

(1) S u(E) < v(B).

=1

Takingin (1) the supremmum ovefE;}? ;, we ob-
tain(A) < v(B), which shows that is monotone,
Now, we prove that’ is monotone.
Let A, B € P(T) sothatA C Bandlettl € A
such thatB C E. So, we haved C FE and by the
definition ofv, it follows

(2) v(A) <v(E).

Takingin (2) the infimmum ovetE € A with B C
E, we obtainv(A) < v(B), which proves thab is
monotone.

(i) Let A € P(T) be fixed and letB € A be
arbitrarily so thatd C B.
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Sincev is monotonejt follows
(3) v(A) <v(B).

Takingin (3) the infimmum oveB € Awith A C B,
we obtainv(A) < v(A), asclaimed. O

Fromnow on,v : A — R will be a submeasure
of finite variation.

Remark 2.5.

1) The following statements are equivalent:
() v is o-subadditive;

(ii) v is order-continuous;

(i) 7 is o-additive onA.

I) (i) v is a submeasure dA(T).

(i) If, moreover, v is o-subadditive, thew is o-
subadditive orP(T).

) 7 is finitely additive onA4, v(A) <
v(A) =7(A), foreveryA € A.

IV) For everyA € A, v(A) = 0 if and only if
7(A) = 0.

7(A) and

In what follows, f : T — R will be a real valued
bounded function.

Definition 2.6.

I) f is said to beotally-measurable o7, A, v)
if for every e > 0 there exists a partitiorP. =
{Ai};,—g5; of T suchthat:

a) (Ap) < e and
() V0 sup 1£(1) — f(s)] <e,Vi=Tom.

t,s€A;

Il) f is said to betotally-measurable orB € A
if the restrictionf|p of f to B is totally measurable
on (B, Ap,vp), whereAp = {ANB;A € A} and

vp =V|ag-

Remark 2.7.
If f is totally-measurable oft, thenf is totally-
measurable on every € A.

Now, we present some properties of totally-
measurable functions.

Proposition 2.8.

Letf : T'— R be abounded function andl, B €
A, with AN B = (). Thenf is totally-measurable on
AU Bifand only if it is totally-measurable oA and
totally-measurable oi3.
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Proof.

The "if part” is straightforward. For the "only
if part”, by the totally-measurability off on A
and B, there areP = {A;},_g; € Pa and
PP = {Bj};_y; € Pp satisfyingthe condition
(¥). Sincew is additive on A, then PAYB = {A, U
By, Ai,...,An, Bi,...,B;} € Paup also satisfies
condition(x), so f is totally-measurable oA U B.[(J

Remark 2.9.

I) In the above propositiond and B need not to
be disjoint. Indeed, if we take arbitraty, B € A,
sinceA U B = (A\B) U B and totally-measurability
is hereditary, the statement follows.

Il) Under the assumptions of the above proposi-
tion, Iet{A } C A. Thenf is totally-measurable

on U A; if and only if the same ig on everyA;,i =

1=1

i=1,p

1,p.

Proposition 2.10.

Supposea is a o-algebra andv is o-continuous
onA. Letf : T — R be a bounded function and
(A,), a sequence of pairwise disjoint sets4fThen
f is totally-measurable on eveny,,,n € N if and

only if the same ig on A = OL_len.

Proof.
The "only if part” immediately follows.
The "if part”.

We observe thatl\ U A\, 0. Sincer is o-

contmuous for every > 0 there isng € N, with
v(A\ kgl Ag) < e.

Since for every = 1,nyg, fis totally—pmeasurable
on A, let {le}]:m, {sz}]:m, ceey {Bj"O }]
bethecorresponding partitions satisfyir@g)

The partitionP = (A\ Ak) {B}} ;=1
(B2}, 155, {B} "}, e } e P4 satisfies(x),

so f is totally-measurable oA = U A, g

n=1

:07Pn0

Definition 2.11.

We say thata property (P) holds v-almost ev-
erywhere ghortly, v-ae) if there isA C T, with
v(A) = 0, so that the propertyP) is valid onT"\ A.

In the sequel, we introduce different types of con-
vergences, that will be studied throughout the paper.
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Definition 2.12.

Let f, f, : T — R be real functions for every
n € N.

One says that the sequeng®):

(i) converges in variation tg (denoted byf,, ,
f)ifforeveryd > 0, lim 7(B,(d)) = 0, where

Bn(0) = {t € T; | fn(t) — f(t)] = 0}
(i) converges in submeasure {0 (denoted by
fn = f)if for every s > 0, lim ¥(B,(5)) = 0,
whereB,, () is above defined.

(i) is fundamental (or Cauchy) in submeasifre
for every§ > 0, it holds

Tim 5({t € T3 [fa(t) — f()] > 5}) = 0.

m—00

(iv) converge%-almost everywhere tf (denoted
by f,, =% f)ifthere isA € P(T) so thatv(A) = 0
and( f,,) pointwise converges tf onT"\ A.

(vz convergeg-almosteverywhere tof (denoted
by f,, =% f)ifthere isA € P(T) so thatv(A) = 0
and( f,,) is pointwise convergent tf on 7"\ A.

(vi) converges almost uniformly tb(denoted by

au

fn — f)ifforeverye > 0, there isA. C T so that
v(A) < e andf, T\LA f (wheref, — f denotes

the uniform convergence).

One can easily verify the following statements:

Remark 2.13.
DIf f, = f,thenf, =% f.

II) According to Proposition 2.4-(ii), the follow-
ing implications hold:
fo o = a5
===
We now recall some results concerning a Gould

[16] type integral with respect to a submeasure (ac-
cording to Gavrilut and Petcu [15]).

Definition 2.14.
Let f : T'— R be areal bounded function and let

o(P) =Y f(tiv(A:),
i=1
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for any partitionP” = {4;},_1; of T andeveryt; €
A i :1,771,7% € N*.

() f is said to bev-integrable onT if the net
(0(P))pe(p <) is convergent ink, whereP, the set
of all partitions ofT’, is ordered by the relatioh < ”
given in Definition 2.3-(ii).

If (¢(P))pep,<) is convergent, then its limit is
calledthe integral of f onT with respect ta, denoted

by [ fdv.

(i) If B € A, f is said to bev-integrable on
B if the restrictionf|p of f to B is v-integrable on
(B7 AB7 VB)-

Remark 2.15.

f is v-integrable orl" if and only if there isl €
R such that for every > 0, there exists a partition
P. of T, so that for every other partition af, P =
{Ai},—15, with P > P. andevery choice of points
t; € A;,i = 1,n, we have

0(P) — I| < e.

Proposition 2.16 [15]
If Aisan arbitrary set of4, thenf is v-integrable
on A if and only if f is totally-measurable onl.

Letp € [1,4+00).
In what follows, we recall some results of [13,14].

Theorem 2.17 (Minkowski Inequality)

Supposef,g : T — R are bounded totally-
measurable or¥". Then|f|?,|g|? and |f + g|P are
v-integrable onl” and, moreover

([ 1+ ala < ([ 11ra + ([ i,

We consider? = {f : T'— R; f is bounded on
T and|f|? is v-integrable or{'}.
Itis easy to verify thal? is a linear space.

From Theorem 2.17, we immediately obtain the
following result:

Corollary 2.18.
The function|| - || : £ — R, defined for every
f € LP by

1] = </T\frpdu>i,

is asemi-norm
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(i) Since f,, — f andf,, — g, for everys > 0
it holds:

Jim p({t € T [fu(t) — (1) > 6}) =
= lim v({t € T;|fu(t) — g(t)| > 6}) = 0.

In the following, we introduce another type of
convergence:

Definition 2.19. (7)
Let f € LP andf, € LP, for everyn € N.
The sequencéf,,) is said to besemi-norm con-

vergentto f (denoted byf, = f) if lim |fu, = Now, ford > 0, we have

1 1lp- v({t eT;[f(t) —g(t)| = 6}) <

®)  <v{teT;|fa(t) - f(B) > $H+
+o({t € T3 fa(t) — 9(t)] = §}).

From (7) and (8) it follows thatv({¢
g(t)| > 6}) = 0, for eachs > 0.

3 Convergence theorems
€ Ts|f(t) —

In this section, we present some relationships among
different types of convergences introduced in Defini-

tion 2.8.

Following the classical proofs (see, for example,

Precupanu [21]) we obtain the next results.

Theorem 3.1.

Letr : A — [0,+00
variation and let us considef, g, f,, : T — R.

() If f, = fandf = g v—ae, thenf, = g.

(i) If 7 is o-subadditive or®(T'), f, ~ f and
fn 2 g, thenf = g v—ae.

(iii) If (f,) converges in submeasure, then it is

fundamental in submeasure.

(iv) If f,, == £, then every subsequengg —

Proof.
(i) Since f,, — f, for everys > 0, it holds:

(4)  dm B({t € T3 |alt) — F(0)] > 6}) = 0.

Sincef = g v-ae, it results:

() v({t € T; f(t) # g()}) = 0.

Now, for everys > 0, we have

v({t € T;|fult) — g(t)| > 6}) <
<v({t € Ts[fu(t) = F(O)] > 6})+
+v({t e T5 f(1) # 9(1)}) =
=v({t € T;[fu(t) — ()] > 0}).

Thus, from (4), (5) and (6) we obtaihim 7({t €

T;|fn(t)—g(t)] > 6}) = 0, which proves thaf,, —
g.

(6)

ISSN: 1109-2769

) be a submeasure of finite

Since(t € T /(1) # g(t)} = U {t € T: |1(t)-

n=1

g9(t)] > 1} andv is o-subadditve, it resultsv({t €
T; f(t) # g(t)}) = 0. Therefore,f = g v-ae.

(iii) Supposef,, — f. Since
|fn_fm| S ‘fn_f‘ +’f_fm‘a Vn,mEN*,
we have for every > 0 :
{t € T;[fu(t) = fm(?)]
c{teT;[fult) = f()] = 3
U{t € T3 | fm(t) — f(D)] = 51,
whichimpliesthat

ﬂ{t € T; ’fn(t) - fm(t)’ > 5} <
STt eT;|fult) — F(O)] > 3+
+7{t € T; | fm(t) — ()] > 3}

Sincef, — f, itfollows lim v({t € T;|fu(t) —
fm(t)| > d}) =0, for everyd > 0, i.e. the sequence
(fn) is fundamental in submeasure.

(iv) As in the proof of (iii), since

we have for every > 0:
At € T [fn, (8) = f(B)] 2 0} <

9 <Pt ET;|fu,(t) = fu(t)] = §3+

+{t € Ts | fin(t) — F(8)] = 5}
Since f, — f, we have lim ({t € T;|fn(t) —
f(#)] > $}) = 0and by (ii?)zi bogcauséfn) is funda-
mental in submeasure, it results that

lim F({t € T fug — FnD)] = 3) = 0.

m—00

Issue 10, Volume 8, October 2009



WSEAS TRANSACTIONS on MATHEMATICS

Now, from (9) it follows klim v({t € T;|fn,(t) —
f(®)| > 6}) = 0, which proves thaf,,, —~ f. O

Theorem 3.2
Letv : A — [0,4+00) be a submeasure of fi-
nite variation, so that is subadditive orP(7") and

f>gafn V =

T — R are real functions so that, — f
and f, =% g. Thenf = g.

Proof. -
Sincef, =% fandf, —= g, there ared,B €
P(T) so thatv(A) = D(B) = 0, f, Tf\% f and

fn T\LB g (where f,, -2 f denotes the pointwise

convergence).

It follows that f(¢)
B).

Sincer is subadditive orP(T'), we have

= g(t) for everyt € T\ (AU

0<(AUB) < ¥(A)+¥(B) = 0.

Sof = g, as claimed. O
One may immediately prove the following:

Theorem 3.3
Letf,fn : T — R, n € N, be real functions. If

fo == f,thenf, = f.

Proof.
Lete > 0. Sincef,, — f, it results that there is

A e P(T)sothatv(A) < ¢ andf, w I

For everyo > 0, there exists:y € N such that

|[fn(t) = F(B)] <6,
for everyn € N,n > ng andt € T\A. But {t €
T3 |fa(t) — £(1)] 2 8} € Aand so,

v({t € Ts [fu(t) = F(O) = 0}) < D(A) <&,

for everyn € N, n > ng, which proves thaf,, — f.
U

In the following theorem, we establish that, under
some assumptions, convergence in submeasure pre-

serves totally-measurability.

Theorem 3.4.

If 7 is subadditiveon A and for everyn € N,
fn : T — Ris totally-measurable anff,,) is conver-
gent in submeasure t6 : T" — R, thenf is totally-
measurable.
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Proof.
Since for everyn € N, f,, is totally-measurable,
then for everye > 0 there existsP' = {A7'}, 57—

€ P sothatv(Ay) < 5= and sup |fn(t) — fu(s)] <
t,s€A

T 2,“ for everyi = 1, m,,.
Since lim v(B,(4)) = 0, for everyd > 0, there

isno(e) € N such that’(B,(9)) < §, for everyn >
ng. Let, particularly,d = %.

Thenfor everye > 0, there existsip(¢) € N so
thatv(Bn, (5)) < 5-

By the definition of v we find a set’,,, € A so
that B, (5) € Cp, andv(C,) = v(Cp,) < 5.

ConS|derP = {Cyp, U ASO,A’{‘O N cChry, A5° N
gy wvey AB0 1 ¢Chy} € P.

Sincev is subadditve, it holds:
(Cpy UAL) = ﬁ((]n0 U A”O)
<(Cry) +7(AY°) < = ) S 27 <e.
Now, it only remains to prove that

sup | f(t) -

t,seA?O NcCny

fs)] <e,

for everyi = 1, my,.
Indeed we have:

sup  [f(t) = f(s)] < sup [f(t) = fuo(t)|+
t,seA?Oﬁcho tecCh,
+ sup [ fno(t) = fro(s)[ + sup |fno(s) — f(s)]
t,s€A;0 s€cChny

< 5+ gom + 5 <eg, foreveryi = 1,m,,. O

Theorem 3.5.
Letf: T — Randf, : T — R, foreachn € N*.

If f, = f,thenf, == .

Proof.

Sincef, —% f,fore = L (m € N*), thereis
Ay, € P(T) so thatv(4,,) < L andf, T\LA> f.

m

ConsiderB = ﬂ Ay,. Sincer is monotone, we

have0 < 7(B) < z/(A ) < L, for everym € N,
which yieldsv(B) = 0.
Now, if t € T\B =T\ ﬂ Ay, = U (T\A),

m=1

then there exists,y € N* such that € T\Amo and
S0, fn(t) — f(t). This shows thaf, T\—B> f, which

proves thatf,, =% f. O

The next result is a Riesz type theorem.
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Theorem 3.6.
Suppose is o-subadditive orP(7T") and letf,, :
T — R, for anyn € N. If the sequencéf,,) is funda-

Anca Croitoru, Alina Gavrilut, Nikos E. Mastorakis

which shaws that(f,,) is uniformly convergent on
T\E. Thus, the subsequencg),,) is almost uni-
formly convergent. O

mental in submeasure, then there exists a subsequence

of (f,,) that converges almost uniformly.

Proof.
Since (f,) is fundamental in submeasure, we
have for every) > 0:

(10) 1im F({t € T; | fusm(t) = falt)] > 6}) =0,
for eachm € N.

From (10), takingy = 1, there exist®; € N such
that

{t € T fnsm(t) = fur (O] 2 1}) < 1.

Now;, for§ = 1, thereexistsn, € N, ny > n; so that

N

Pt € T frasm(®) — faal0)] 2 31) <

Recurrentlythere exists a sequenge,),en C N, SO
thatn, < ne < ..., satisfying for every € N :

v({t € T3 frp4m(t) — fo, (1) =

(11) 1 1
2 511 < o1

for everym € N.

Now we prove that f,, ) ,en+ is almost uniformly
convergent.

Let Ep = {t € T3 fn,tm(t) — fa, (8)] > 5=}
for every p € N* andd > 0. Then there exists
no(0) = nog € N* such that

1

(12> ono—2

< 0.

Denotingltl = |J E,, from (11) and (12) it follows:

P=n0
oo oo
v(E) =1( U Ep) < Z g(EJD) <
p=no p=no
o0
1 1
S Z 2p71 = 271072 < 5

p=no
Now, for eacht € T\ E and everyi,j € N, so that
i > j > ng, we have:

o0

[ £ (&) = o, O < D () = fruas )] < 53

k=j
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From Theorems 3.5 and 3.6, the following corol-
lary holds:

Corollary 3.7.

Suppose is o-subadditive orP(T) and let f,, :
T — R, for everyn € N. If (f,) is fundamental in
submeasure, then there exists a subsequen¢g, df
that isv-almost everywhere convergent.

Proof.
Since( f,,) is fundamental in submeasure, accord-
ing to Theorem 3.6, there exist$,,) a subsequence

of (f,), such thatf,, == f. By Theorem 3.5, it fol-
lows thatf,,, == f. O
Theorem 3.8.
Suppose is o-subadditive orP(T) and letf,, :

T — R, for everyn € N. If (f,) is fundamental in
submeasure, thefy,,) is convergent in submeasure.

Proof.
According to Corollary 3.7, there exist¥),,) a

subsequence dff,,), such thatf;, v_a f, wherej :
T — R is areal function.
Now, for everys > 0 it holds:

[t € T3 1falt) ~ 7)) 2 6} €
€ {t € T3 falt) — ()] 2 310

U{t € T; 1 fu, () = F(1)] = 5}

Lete > 0. Since(f,) is fundamental in submeasure,
there existsn; € N, so that for everyp € N with
n, > ni, We have:

(13)

(14) B T3 )~ £, (0] 2 3) <

Sincefy, o f, itresults there i1y € N such that
for everyp € N, with n,, > ng, it holds:

- 0
P({t € Ts1fn, (8) = F(0)] = 3) <
Now let nyg = max{ni,ne} andn € N, n > nyg.
From (13), (14) and (15) we obtain:

P({t € T |fult) = £(1)] = 6}) <
<T({t €T3 fu(t) = S, (1) = 3})+

(15)

N ™

~ )
+o({t € T; [ fa, (1) = f(O)] 2 5}) <
(3 13 .
< 5 + 5 =g,
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' z In L
which proves thatf, — f. u S0 v(A}) < Y w(A7) < &llfa — flb.
In the sequel, consider an arbitrane [1, +00). =1 =1

Consequentlytaking the supremum on the left

Theorem 3.9 side overall sequencegsdl’ ), we obtain:
Letf € £P and f,, € LP, for everyn € N. Then
the following statements hold:

W) fos f=fa2F
i) fn 2 f = fu 2 f.

ln
P(Ba(6)) = sup{d_w(AD) < 51— 11
=1

Since lim ||f, — f||, = 0, then for everys >

L sn
(ii)) fu 5 = fu 2 F. 0, lim 7(B,(8)) = 0, as claimed.
Proof. " _ (iii) It immediately follows from the inequality:
() Sincef,, — f, then for everye > 0, there is
no(e) = no € N so that for evenyn > no, | fn(t) — [ fallp = Fllpl < 1fa = fllp, ¥neN.
f(t)] <e, foreveryt € T.
Then, using the properties of the integral (see O

[14]) for everyn > ng, we have:
Theorem 3.10 [13] (Fatou Lemma)

1 1
fo = Fllp = (/ o — f‘pdy> "< </ gpdy> ! Supposed is ac-algebra,v : A — R is a sub-
\JT - \Jr measure of finite variation so thatis o-continuous

o\ 7 1 onP(T).

= (/T6 dV) =e(@(T))7, Let (f.)n be a sequence of uniformly bounded,
totally-measurable functiong, : T — R. Then

SOnILH;onn —fllp=0.

.. . liminf f,,dv < lim inf/ fndv.
(ii) For everyé > 0 and everyn € N, consider /T n n T

Bn(6) = {t € T;|fu(t) — f(1)| = 0} € P(T).

For establishing the next theorem, we shall need

We havef,, — f if andonly if for everyd > 0, the following lemma.

Tim 7(B,(3)) = 0.

Leté > 0 be arbitrary. We have: Lemma 3.11.
In Letx, ay, b, € R, for everyn € N so thatx > 0,
7(B,(8)) = sup{ Y _v(A?): (A});_i7; € A b 20 forallin € N, a, = = and
=1
z < liminf(a, — by).
pairwisedisjoint, for everyi = 1,1,,, AT C B,,(0)}. oo

. Consider an arbitrary sequence of pairwise dis- Thenb,, — 0.
joint sets(A}),_17- C A, where for everyi = 1,1,

Aj € Br(9). Theorem 3.12
Then, for everyi = 1,1, SupposeA is a o-algebra andv : A — R,
is a submeasure of finite variation so thatis o-
/ | fo—fPdv = / Pdv = [ oPdv = 6Pv(AY), continuous orP (7).
A A A Suppose(f,,) C LP is uniformly bounded and

whence pointwise converges tg € £P. If f,, =% f, then

LP

DN VIED O VAT

i=1 i=1 AT Proof.

As in Florescu [6], we use the inequalit

:/nn’fn_ﬂpdyé [6] quality

A (16) la+ b|P < 277 (|al” + [b]P),
S/T|fn—f|pdl/= 1fn = fII5, for everya, b € R.
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Considetthesequencég,, ) defined for every: €
N by:

gn =27+ 1 fal?) = | = ful.

By the inequality (16) it results that, > 0, for
everyn € N.

One can easily see that,) is uniformly bounded
andg, is totally-measurable, for every € N.

Now, we apply Fatou Lemma (Theorem 3.10) for
(g9n) and we have:

(17) /liminfgndl/ < liminf/ gndv.
T " " T

Sincef, % f, itresultslim inf g, = 27 - | f|P.
And [}, gndv = 2271 (|[ 5+ I fullp) = 1 f— F115-
So, from (17) it follows

27| £IIf < Yo inf (2P (| F(15 + [ fullB) = [L.£o — FIIE]-

Sincef,, % f,itresults lim 2P=L(||£|Ib+ I fl12)
n—oo
% |IfIE.
According to Lemma 3.11, we have:

lim [ fn = fll = 0,
n—00

which proves thaf,, £, f O
In what follows, we present several counterexam-
ples:

Example 3.13.

Let i be the real Lebesgue measure and consider
the submeasuredefined byv(A) = /u(A), for any
Aec A

I) For everyn € N* andz € (0, 1], let

fa(z) = {

Thenf, —— 0 andf, —— 0, but f,, —/— 0.
o on o d ©.1] s (0,1]

e}

<z

SM—‘

1
V7

0, <z

1
n

I) For everyn € Nandz € [0, 400), let

L

b

Thenf, —>— 0, but f,, —%/— 0.
[0,400) [ )

;00 )

_ n<r<n+l1

otherwise.
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Concluding remarks. In this paper, we estab-
lish some relationship among different types of con-
vergences for sequences of totally-measurable func-
tions, such as convergence in submeasure, conver-
gence in variation, almost uniformly convergence,
uniform convergence and convergencefn spaces.

These relationships are synthetized in the follow-
ing scheme:

/

au —— ;‘(116 —_— g-ae

| |

V<—-—"-—"7"—VU

where(x) meanghehypothesis of Theorem 3.12.
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