
A Comparative Study of Hybrid, Neural Networks and Nonparametric 
Regression Models in Time Series Prediction  

 

DURSUN AYDIN 
Department of Statistics 

Muğla University  
48000 Kötekli / Muğla 

 TURKEY 
duaydin@mu.edu.tr 

MAMMADAGHA MAMMADOV 
Department of Statistics 

Anadolu University 
26470 Tepebaşı / Eskişehir  

TURKEY 
mmammadov@anadolu.edu.tr 

 
 

Abstract: - This paper presents a comparative study of the hybrid models, neural networks and nonparametric 
regression models in time series forecasting. The components of these hybrid models are consisting of the 
nonparametric regression and artificial neural networks models. Smoothing spline, regression spline and additive 
regression models are considered as the nonparametric regression components. Furthermore, various multilayer 
perceptron algorithms and radial basis function network model are regarded as the artificial neural networks 
components. The performances of these models are compared by forecasting the series of number of produced Cars 
and Domestic product per capita (GDP) data occurred in Turkey. This comparisons show that hybrid models proposed 
in this paper have denoted much more excellent performance than the hybrid models in literature. 
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1   Introduction 
In order to forecast time series apart from 
Autoregressive integrated moving average (ARIMA) 
and artificial neural networks (ANN), a hybrid 
approach that uses ARIMA and ANN models together 
is recommended by Zhang [1] and Tseng et al.,[3]. 
Experimental results with real data sets in paper Zhang 
[1] indicate that a hybrid methodology that combines 
both ARIMA and ANN models can be an effective way 
to improve forecasting accuracy achieved by either of 
the models used separately. In addition, Aslanargun et 
al., [2] demonstrated that hybrid models combines 
models with two nonlinear components have had the 
best performance for time series forecasting. Zhang [1] 
explains the reasons of using hybrid models in detail.  

In recently, nonparametric regression methods have 
become a very useful tool for non-linear data such as 
time series (E. Ferreira et al., [4]). However, these 
approaches perform poorly when seasonality is present. 
To overcome this problem, two alternatives methods 
have been proposed in literature. In both approaches the 
trend is specified as nonparametric, but the seasonal 
component specification is different. First, we 
discussed a semi-parametric model where the 
parametric part is a dummy-variable specification for 
the seasonality. Secondly, we considered the seasonal 
component to be a smooth function of time and, the 

model falls within the class of additive models. The 
nonparametric regression models are discussed in detail 
by Wahba [5]; Hardle [6]; Green and Silverman [7]; 
Hastie and Tibshirani [8]; Hardle et al. [9]. 

Although there are numerous studies combining 
different ANN and conventional statistical techniques to 
forecast time series, so far a study that combines ANN 
and nonparametric regression models has not been made 
yet. In this paper, we generalized the hybrid models 
studied by Zhang [1] for nonparametric regression 
models. We proposed a hybrid models combining neural 
networks and nonparametric regression models called as 
semi-parametric and additive regression. It is seen that 
hybrid models obtained by combining neural networks 
and nonparametric regression models indicated the better 
performance than individual models for time series 
forecasting. 
 
 
2   Methodology 
This paper will use two real data sets, the number of 
produced cars and GDP in Turkey, in order to 
estimate and evaluate of models. Firstly, ANN 
approach is considered and then, the nonparametric 
regression models and hybrid models, one of their 
components is nonparametric regression and the 
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other is artificial neural networks model, are 
discussed in the next sections. 
 
 
2.1   The ARIMA Model 
ARIMA models are usually used to predict a univariate 
time series. In these models, any observed value of the 
series in any time period is defined as the linear 
component of the several past observations and random 
errors. The general form of ARIMA model is given by 
Box and Jenkins [10] 

ARIMA (p, d, q)(P, D, Q)s, 
where p is the number of parameters of the 
autoregressive (AR) model, d is degree of difference, q 
is the number of parameters in the moving average 
(MA) model, P is the number of parameters in AR 
seasonal model, D is the seasonal degree of difference, 
Q is number of parameters in MA seasonal model, and 
s is the period of seasonality (s = 4 for quarterly data 
and s = 12 for monthly data). 
 
 
2.2   ANN Approach  
2.2.1 Standard backpropagation training algorithm. 
Multilayer perceptrons (MLPs) are used in a variety of 
problems, especially in forecasting. Backpropagation 
(BP) is the widespread approximation approach for 
training of the multi-layer feedforward neural networks 
based on Widrow-Hoff training rule (Bishop [11]; 
Haykin [12]). The main idea here is to adjust the 
weights and the biases that minimize the sum of square 
error by propagation the error back at each step. To 
minimize the sum of square error, different BP 
algorithms are constructed by applying different 
numeric optimization algorithms among gradient and 
Newton methods class. 

The sum of squares for qth  training sample in 
supervised training situations with n  inputs, m  outputs, 
and p  hidden units, in a two-layers (with single hidden 
layer) neural network is calculated as follows: 

[ ]
22

1 1 1 1
( ) ( ( ) )

pm m n
q o h h o

k k o jk h ij i j k k
k k j i

E w y t f w f w x b b t
= = = =

⎡ ⎤
= − = + + −⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑ (1) 

where kt  is the thk  target yk  is the thk  output value; 
h
ijw  is the weight that connects the thi  input and thj  

hidden units, o
jkw  is the weight that connects the thj  

hidden and thk  output units, h
jb  is the bias for thj  

hidden unit, 0
kb  is the bias for kth  output unit, ( )hf ⋅  is 

activation function applied to the hidden units, and 
( )of ⋅ is the activation function that applied to the output 

units. Here, w is the vector of all weight and bias 

components. For simplicity, the q  indices are not 
shown. 

A nonlinear ( )hf ⋅  function is taken. ( )of ⋅ can also be 
taken as a linear function. For all N  training sample, 
the mean square error (MSE) is defined as: 

1

1( ) ( )
N

q

q

E w E w
n =

= ∑ .   (2) 

Gradient descent numeric optimization method is used to 
decrease error in standard BP training algorithm ([11]; 
[12]). The iteration of this method is as follows: 

1k k kw w gα+ = − ⋅  
where kw is the current vector of weights and biases, kg  is 
the current gradient of error function (2) at the point kw , 
and α is the learning (training) rate. The learning rate is 
crucial for BP since it determines the magnitude of 
weight changes. 

A standard BP training algorithm that includes 
momentum (Rumelhart et al., [15]) is given by the 
improved gradient descent with momentum formula: 

1k k kw g wα µ+∆ = − ⋅ + ∆ , 
where 1k k kw w w −∆ = −  is the weight change in the 
previous iteration and µ  is the momentum coefficient. 
The weight change in BP training algorithm with 
momentum is made by the combination of current 
gradient vector and the previous gradient vector. This 
change is better for the behavior of the algorithm since it 
provides the chance of escaping surface local minimums. 

2.2.2 Conjugate Gradient (CG) algorithms. 
In CG algorithms, search is made in conjugate directions 
[14] A set of nonzero n -dimensional vectors 
{ }0 1 1, ,..., np p p −  is said to be conjugate with respect to 
the symmetric positive definite nn×  matrix A  if  

0T
i jp Ap =  for all i j≠ . 

First, we should be taken into account as the minimum 
problem of square function: 

1( )
2

T TF w w Hw b w= − ,   (3) 

where nw R∈ and H  is the nn×  symmetric positive 
definite matrix. For a starting point 0

nw R∈ , the method 
defined by the equations given subsequently is called the 
conjugate direction method [14]: 

1k k k kw w pα+ = +    (4) 
T
k k

k T
k k

p g
p Hp

α =− .    (5) 

where, equation (5) is defined by the minimum problem 
of one variable function of ( ) ( )k kF w pϕ α α= + .  
For any starting point n

0 Rw ∈ , the sequence { }kw  
generated by the conjugate direction algorithm (4) and 
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(5) converges to the minimum point w* of the problem 
(3) in at most n  steps [14]. The conjugate gradient 
method is a conjugate direction method; start out by 
searching in the gradient direction on the first 
iteration 

0 0p g= − ,    (6)  
The conjugate current kp  vector is calculated by using 
the previous 1kp −  vector and current gradient  

1k k k kp g pβ −= − +      (7) 
The coefficient kβ  in (7) is selected by the condition of 

1−kp  and kp  vectors, being conjugate with respect to the 
symmetric positive definite nn×  matrix H  
( 1 0k kp Hp− = ):  

1

1 1

T
k k

k T
k k

g Hp
p Hp

β −

− −

= .    (8) 

There are various CG algorithms depending on different 
calculation formulas of kβ  coefficients (without 
computing Hessian matrix H ): Fletcher–Reeves, Polak 
and Ribere conjugate gradient algorithms 
([11];[12];[14]). 

Now, error function (2) is taken into account. As 
activation functions are nonlinear, sum of mean squared 
error function ( )E w  is the nonlinear function of w . 
Using first two terms of the Taylor-series expansion of 

( )E w  around kw , function ( )E w  may be approximated 
to a squared function 

1 1
1( ) ( ) ( )
2

T T
k k k k k k k kE w E w E w g w w H w+ +− =∇ ≈ ∆ + ∆ ∆   (9) 

where 
2

2

( )k
k

E wH
w

∂
=

∂
is the Hessian matrix in 

current point kw . Hence, in each current step, taking 
function (9) instead of function (3), a suitable 
minimization problem is taken into account and a local 
CG is realized by using Eq. (4)-(8). In this case the 
Hessian matrix kH  is assumed positive definite. 

Another algorithm of CG algorithms is Scaled 
Conjugate Gradients (SCG) algorithm [14]. The basic 
idea of SCG is to combine the model trust region 
approach with the CG approach. The problem can be 
overcomes by modifying the Hessian matrix to ensure 
that it is positive definite [14].  

 
2.2.3 Quasi-Newton (QN) Algorithms 
The basic step of Newton’s method is 

1
1k k k kw w H g−
+ = − ,   (10) 

where kH  is the Hessian matrix in current point kw . 
Newton’s method often converges faster than conjugate 
gradient methods. Unfortunately, it is complex and 
expensive to compute the Hessian matrix. QN methods 

are based on Newton’s method, which does not require 
calculation of second derivatives however. They update 
(the update is computed as a function of the gradient) an 
approximate Hessian matrix at each iteration of the 
algorithm [14]. 

The Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
algorithm is a successful QN algorithm. In BFGS 
algorithm, instead of the inverse of Hessian matrix in 
(10), its G  approach is constructed by the following 
recursive way: 

1 ( )
TT

T Tk k
k k kT T

k

G vv GppG G v G v uu
p v v G v+ = + − + , 

where 

1k kp w w+= − , 1k kv g g+= − ,  k
T T

k

G vpu
p v v G v

= − . 

Since G  matrix is positive definite, -Gg will be the 
decrease direction of the algorithm. Weight update is 
made as follows: 

1k k k k kw w G gα+ = + , 
where kα  is found by line minimization. 

The one-step secant (OSS) algorithm is an attempt to 
bridge the gap between the CG algorithms and QN 
algorithms. This algorithm accepts that the previous 
Hessian is the identity matrix, and hence, inverse 
matrixes are not calculated to determine the new search 
direction. This algorithm requires very light storing and 
requires less storing at each step than the CG algorithms. 

The Levenberg-Marquart (LM) algorithm is one of the 
required QN algorithms [11]. Hessian matrixes are not 
calculated, and being second order. The Hessian matrices 
can be approximated as TH J J= , where J  is the 
Jacobian matrix that contains first derivatives of the 
network errors with respect to the weights and biases. 
The gradient can be computed as Tg J ε= , where ε  is a 
vector of network error. The LM algorithm uses this 
approximation to the Hessian matrix in the following 
Newton-like update: 

1
1 [ ]T T

k kw w J J I Jµ ε−
+ = + + . 

This algorithm runs fast for moderate-dimensioned 
feedforward neural networks for regression problems.  
 
2.2.4 Radial Basis Function Networks (RBF) 
RBF is also used besides MLP networks in regression 
and classification problems ([11];[12]). In RBF, one 
hidden layer with required number of units is enough in 
order to model a function. The activations of hidden 
(radial) units are defined depending on the distance of the 
input vector and the center vector. Typically, the radial 
layer has exponential activation functions and the output 
layer a linear activation function. Appropriate y output 
vector for the x  input vector is calculated as follows for 
n  input, m  output, and p  radial units for RBF: 
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0
( ) ( ), 1,2,...,

p

k kj j
j

y x w x k mφ
=

= =∑ ,     (11) 

where kjw , 1,2,...,j p=  are the appropriate weights for 
kth output unit, ( )j xφ , 1,2,...,j p= , is the basis function 

of jth radial unit, 0kw , 1,2,...,k m=  are the appropriate 
deviations for kth output unit, 0φ  is an extra basis 
function with activation value fixed at 0 1φ = . Usually, 
more attention paid for the following Gaussian basis 
function:   

2
( ) exp( 2 )j j jx xφ µ σ= − − ,  1,2,...,j p=   (12) 

where 1( ,..., )j j jnµ µ µ=  vector is center for ( )j xφ , and 

jσ  is deviation (or width) parameters of that function. 
The basis function of the unit is defined using those two 
parameters. Equation (11) can be written in matrix 
notation as 

( )y x W φ= ⋅  ,     (13) 
where ( )kjW w=  and ( )jφ φ= . As can be seen from (11), 
the linear activation function is used in RBF for output 
layer. 

Education is made in three stages in RBF. In the first 
stage, by unsupervised education, radial basis function 
centers (in other words jµ ) are optimized using all 

{ }( )ix , 1,2,...,i N= , education data. Centers can be 

assigned by a number of algorithms: Sub-sampling, K-
means, Kohenen training, or learned vector quantization. 
In the second stage jσ , 1,2,...,j p= , parameters can be 
assigned by algorithms explicit, isotropic and K-nearest 
neighbor. In the third stage of education, the basis 
functions that are obtained for adjusting the appropriate 
weights for output units are taken as fixed and deviation 
parameters are added to linear sum. Optimum weights are 
obtained by minimization of the sum of square errors,  

( ) ( )

1 1

1( ) [ ( ) ]
2

N m
i i

k k
i k

E w y x t
= =

= −∑∑ .   (14) 

In equation (14), ( )i
kt  is the target value for output unit k  

when the network is presented with input vector ( )ix , 
1,2,...,i N= . Since the equality in (13) is the quadratic 

function of the weights, optimum weights can be found 
as the solution of the linear equations system. The output 
layer is usually optimized using the pseudo-inverse 
technique. 

MLP, with a defined architecture, is given by the 
appropriate weights and the biases of the units, but in 
RBF, it is given by the center and the deviation of the 
radial units and by the weights and biases of the output 
units. As the point is given by n  coordinates in n  
dimensional space, the number of the coordinates are 
equal to the linear input units n . Hence, in Statistica 

Neural Network software, the coordinates of the center 
radial unit are taken as weights and the deviation of the 
radial unit is taken as bias. As a result, radial weights 
denotes the center point, radial bias denotes the deviation. 
Having only one hidden layer and making faster 
education than MLP, can be taken as advantages of RBF.  
As the linear modeling methods are more useful in output 
layers of RBF, the difficulties that occur about the local 
minimums in MLP are removed.  

However, RBF has some disadvantages in 
comparison with MLP. In order to correctly model a 
typical function in RBF, many more hidden (radial) units 
may be required than appropriate MLP model. That may 
cause the model slow down, and more memory may be 
required. RBF is very sensitive to any increment of the 
network dimension and some difficulties may occur as a 
result of an increment in the number of input units.   

RBF is unsuccessful in extrapolation in its nature. 
MLP networks are more successful in extrapolation 
problems than RBF because when the input data are far 
from the radial centers, the output signal is 0, and this 
may not show the required result.  

 
 

2.3   The Nonparametric Regression Approach  
The following general model form has been considered  

( ) ( ) ( ) ( ), 1,...,i i i iy t s t z t e t i n= + + =    (15) 
where it ’s are  knot points spaced in time interval [a, b], 

( )is t  is denote  the seasonal component, ( )iz t  is 
represent the trend, and ( )ie t  is indicate the terms of 
error with zero mean and common variance 2

eσ . The 
model (15) can be also written as, 

, 1,2,..., .i i i iy s z e i n= + + =    (16) 
It is assumed that the following model structure for 

the trend: 

( ) , 1,2,...,i i iz = f t + ε i n=    (17) 
where f  is a smooth function in [a, b], and iε ’s are 

assumed to be with zero mean and common variance 2
εσ , 

and different from ie ’s. The basic aim is to estimate the 
functions f and s . The function f  is estimated as a 
smooth function, but the estimation of the function s  is 
different due to seasonality (E. Ferreira et al, [4]). 
Therefore, it is considered two alternative models for the 
estimation of s . Firstly, we considered a semi-parametric 
model where parametric component is dummy variable 
for the seasonality. Secondly, we discussed the seasonal 
component to be a smooth function of time, and use a 
nonparametric method. 
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2.3.1 Semi-parametric regression model  
It is assumed that the seasonality is build as follows: 

1
*

1
( ) , 1,...,

r

i i k ki i
k

s s t D v i nβ
−

=

= = + =∑   (18) 

where r  is the number of annual observations ( r =12) 
and iv ’s are assumed to be with zero mean and common 
variance 2

vσ , and different from the errors in (16) and 
(17). *

kiD ’s are dummy variable that denotes the seasonal 
effects, and kβ ’s are parametric coefficients. Dummy 
variables are denoted by *

ki ki riD D D= −  (where 1kiD =  if 
.i  observation correspond to the kth  month of year, and 

0kiD =  otherwise) for cancels the seasonal effects when 
a year is completed (E. Ferreira et al, [4]). By substitution 
equations (18) and (17) in (16), the semi-parametric 
regression model is obtained as 

1

1
( )

r

i k ki i i
k

y D f t eβ
−

=

= + +∑ , 1,...,i n=  (19) 

where r  is the number of annual observations ( r =12 for 
monthly data), kiD ’s are dummy variable that denotes 
the seasonal effects, and kβ ’s are parametric 
coefficients. Dummy variables are denoted by 

* *
ki ki riD D D= −  , where * 1kiD =  if .i  observation 

correspond to the kth  month of year, and * 0kiD =  
otherwise, for cancels the seasonal effects when a year is 
completed [4]. Eq. (19) in vector-matrix form can be 
expressed as  

D= + +y f eβ     (20) 

where ( )1 1,..., T
rβ β −=β , ( )1,...,

T
ny y=y , ( )1( ),..., ( ) T

nf t f t=f  

( )1 2, , ..., T
ne e e=e  and D  is the ( 1)n r× −  matrix, so 

that { } 1,...,

1,..., 1

i nT
ki k r

D D =

= −
= . 

Therefore,  

1 0 . . . 0 1 1 0 . . .
0 1 . . . 0 1 0 0 . . .

.
.

.
0 0 . . . 1 1 0 0 . . .

TD

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

Model (19) is a semi-parametric model due to consist of 
parametric linear component and nonparametric 
component. The main purpose is to estimate the 
parameter vector β  and function f  at sample points 

1,..., nt t . For this aim, two estimation methods, called as 
smoothing spline and regression spline, have been 
considered by Wahba [5]; Green and Silverman [7]; 

Hastie and Tibshirani [8]; Hardle et al., [9]; Eubank 
[17].  

Estimation with smoothing spline method (SSM): 
Estimation of the parameters of interest in equation (20) 
can be performed using smoothing spline. Mentioned 
here the vector parameter β  and the values of function 
f  at sample points 1,..., nt t  are estimated by minimizing 

the penalized residual sum of squares  

{ } ( )
1

2 2

1 0

( , ) ( ) ( )
n

T
i i i

i
PSS y d f t f u duλ

=

′′= − − +∑ ∫fβ β  (21) 

where 2[0,1]f C∈  and id  is the ith  row of the matrix D . 
When the 0=β , resulting estimator has the form 

( )1 n
ˆ ˆˆ ( ),..., ( )f t f t Sλ=f = y , where Sλ  a known positive-

definite (symmetric) smoother matrix that depends on λ  
and the knots 1,..., nt t  (see, [5] and [17])  

For a pre-specified value of λ  the corresponding 
estimators for andf β  based on Eq. (20) can be obtained 
as follows (E. Ferreira et al, [4]): Given a smoother 
matrix Sλ , depending on a smoothing parameter λ , 
construct ( )D I S D= −%

λ . Then, by using penalized least 
squares, mentioned here estimator are given by  

( ) 1ˆ T TD D D
−

= y% %β   (22) 

( )ˆ ˆS D= −f yλ β    (23) 
Evaluate some criterion function (such as cross 
validation, generalized cross validation) and iterate 
changing λ  until it is minimized.  

Estimation with regression spline method (RSM): 
Smoothing spline become less practical when sample size 
n  is large, because they use n  knots. A more general 
approach to spline fitting is regression spline. Smoothing 
spline require that many parameters be estimated, 
typically at least at many parameter as observations. A 
regression spline is a piecewise polynomial function 
whose highest order nonzero derivative takes jumps at 
fixed “knots”. Usually regression splines are smoothed 
by deleting nonessential knots. When the knots have been 
selected, regression spline can be fit by ordinary least 
squares. For further discussion on selection of knots, see 
study of Ruppert and Carrol [18]).  

( )if t  in (19) is approximated by 

0 1
1

( ) ( , ) ... ( ) , 1,...,
K

p p
i i i p i k i k

k
f t f t t t b t i nγ γ γ γ κ +

=

= = + + + + − =∑   (24) 

where 1p ≥  is an integer (order of the regression spline 
and usually chosen a priori), 1,..., Kb b  are independently 
and identically distributed (i.i.d) with 2(0, )bN σ , ( )t t+ =  
if 0t >  and 0 otherwise and 1 .... kκ κ< <  are fixed knots 
( 1min( ) ,..., max( )i K it tκ κ< < < ).  
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In matrix notation model (19) can be written as 
D Z= + +y bβ η   (25) 

where 

1
1 1

1

1

1 . . .1 0 . . . 0 1 1 0 . . .
1 . . .0 1 . . . 0 1 0 1 . . .
. . ..
. . ..
. . ..
1 . . .0 0 . . . 1 1 0 0 . . .

n
p p

n

T

p p
n

t t
t t

D

t t

− −

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
 and 

1 1 1

1

( ) . . . ( )
. .
. .
. .

( ) . . . ( )

p p
K

p p
n n K

t t

Z

t t

κ κ

κ κ

+ +

+ +

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

( )1,..., T
Kb b=b  is vector of coefficients and 

( ),..., T
nη η1η =  is a vector of the random error. 

Predicted value of ŷ  in (17) is given by  

( )( )0 1 1 1 1 1 1̂
ˆˆ ˆˆ ˆ ˆˆ ... ... ,..., ,...,

T
p

i p i r K K Kt t D D Z Z b bγ γ γ β β −= + + + + + + +y .(26) 

Regression spline estimators  

( )( )0 1 1 1 1̂
ˆˆ ˆ ˆ ˆˆ ˆ ˆ, ,..., , ,..., ( ,..., )

T

p r kb bγ γ γ β β− =fβ= ,  of ( )fβ,  are defined 

as the minimizer of 

{ }2 2

1 1

( , ) ( )
n K

T
i i i k

i k

PSS y d f t bλ
= =

= − − +∑ ∑fβ β   (27) 

where 0λ >  is a smoothing parameter such as in (21). As 
λ →∞ , the regression spline converges to a pth  degree 
polynomial fit. As 0λ→ , the regression spline 
converges to the ordinary least squares (OLS) fitted 
spline. For a pre-specified value of λ the corresponding 
estimators for and fβ  based on Eq. (25) can be 
obtained as follows (Ruppert et al., [20]): 

( ) 1
1 1ˆ ˆˆ TD D D

−
− −= ∑ ∑ yβ ,    (28) 

where,  2 2ˆ ˆ ˆ( ), 1,2,...,T
b iZZ diag i nησ σ∑ = + = , 

( )2 1
1

ˆˆ ˆˆ ˆˆ( ,..., )T T
k bb b Z Dσ −= = ∑ −f y β   (29) 

The smoothing parameter (penalty parameterλ ) and the 
number of knots K  must be selected in implementing the 
regression spline. However, λ  plays a more important 
role (see, Ruppert [18] for more details on discussion of 
the knot selection). The solution can be obtained by S-
Plus software.  
 
 

2.3.2 Additive regression model (ARM) 
In the previous section, it was used the semi-parametric 
model for estimation of the parameters in (19). However, 
there are situations in which a dummy variable 
specification does not capture all fluctuations because of 
the seasonal effects. For this reason, in this section, it is 
considered a more general case for seasonal component 
as follows: 

( ) , 1,...,i i is g t i nν= + =   (30) 
where g  is an (0,1) and g∈ 2[ , ]C a b , 'i sν are denote 
the terms of random error with zero mean and common 
variance 2

νσ . By substitution of the equations (17) and 
(30) in (16), it is obtained as 

( ) ( ) , 1,...,i i i iy g t f t u i n= + + = ,  (31) 
where 'iu s  are the terms of random error with zero mean 
and constant variance 2 2 2 2

u e vεσ σ σ σ= + + . 
Model presented in (31) has a fully nonparametric 

model because of the parametric component is missing. 
These models are called as additive nonparametric 
regression models. In order to estimate model in (31), it 
can be generalized the criterion (21) and (31) in an 
obvious way. Estimator of the model (31) is based on 
minimum of the penalized residual sum of squares [8] 

{ } ( ) ( )
1 1

2 2 2
1 2

1 0 0

( ) ( ) ( ) ( ) ( )
n

i i i
i

PSS y f t g t f u du g u duλ λ
=

′′ ′′= − − + +∑ ∫ ∫f,g  (32) 

where the first term denotes the residual sum of the 
squares (RSS) and this term penalizes the lack of fit. The 
second term multiplicand by 1λ  is denote the roughness 
penalty for the f , and the third term multiplicand by 2λ  
is denote the roughness penalty for g . Firstly, Eq. (32) 
can be written as 

( ) 1 2, ( ) ( )T T T
f gPSS K Kλ λ= − − − − + +f g y f g y f g f f g g  (33) 

Here fK  is a penalty matrix for f  and gK  is a penalty 
matrix for g . Then, by differentiating to f  and g : 

( ) 1, / 2 ( ) 2 fP S S Kλ= − − − +f g f y f g f  (34) 

( ) 2, / 2( ) 2 gPSS Kλ= − − − +f g g y f g g  (35) 
Afterwards, by making (34) and (35) setting to zero, 
the estimators of f  and g  are defined as:  

1

1
1

ˆ ( ) ( ) ( )fI K Sλλ −= + − = −f y g y g   (36) 

( ) ( ) ( )
2

1

2ˆ gI K Sλλ
−

= + − = −g y f y f  (37) 
 
 
2.4   The hybrid methodology 
Suppose observed are measurements , 1,2,...,ty t N= . 
The forecasts of the combined model in hybrid 
methodology are defined as follows: 
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1 2ˆ ˆ ˆt t ty y y= +  
where superscripts denote the row number of the hybrid 
model, 1ˆ ty and 2ˆ ty are estimations of the appropriate 
first and second combined models at the time point t . 
Firstly, to obtain the forecast values 1ˆ ty  of the first 
model at time point t, the model with 1-indiced is applied 
to the observation data , 1,2,...,ty t N= . If the first 
model contains 1m  input units, the forecast values of the 
first model are calculated as follows: 

1

1
1 1 2ˆ ( , ,..., )t t t t my f y y y− − −=  

where 1f  is the function obtained from the first model. 
After this stage, the input data are calculated as 

1 1ˆt t te y y= −  for the second model. In this case, the number 
of 1

te  will be 1N m−  for this model. If the second model 

contains 2m  input units, the number of 2ˆ ty forecast 
(improved residuals) values will be 21 mmN −− . In 
this case, the forecast values that are appropriate for the 
second model are calculated as follows: 

2

2
2 1 2ˆ ( , ,..., )t t t t my f e e e− − −= , 

where 2f  is the function obtained from the second 
model.  

In case of the nonparametric of the first model, 

1 0m =  and the number of 1
te  units will be N . If the 

second model is nonparametric, the number of 
2ˆ ty forecast values will be 1N m− .  

 
 
3   Experimental Evaluations 
In this section, two different real data sets occurred in 
Turkey is discussed as experimental. Appropriate ANN, 
nonparametric regression models and hybrid models 
were chosen by doing experiments to forecast, and these 
models are also compared with each others. In this study, 
STATISTICA Neural Networks, S-Plus, and R-Programs 
are used. 
 
 
3.1   Data Sets 
The first real data set is from Central Bank of the 
Republic of Turkey. The data can be found in 
www.tcmb.gov.tr, and denotes the number of produced 
cars in Turkey for January 1989–December 2006 period 
[21]. The data set is divided into two parts to use in 
training and forecasting. In the first part, 216 monthly 
data are taken into account for the January 1989–
December 2006 period. These data are used in training to 
construct the models. In the second part, by using the 
models obtained in the first part, the performances of 

these models are calculated for the 24 monthly test data 
in the January 2007–December 2008 period. 

The second real data set is also taken from Central 
Bank of the Republic of Turkey. The data can be found 
in www.tcmb.gov.tr and indicates GDP occurred in 
Turkey for January 1989–December 2006 period [21]. 
The data set is divided into two parts for the use in 
training and forecasting. In the first part, 156 quarterly 
data are taken into account for January 1989–December 
2004 period. These data are used for constructing of the 
models. In the second part, by using the models obtained 
in the first part, the performances of these models are 
calculated for the 24 quarterly test data in the January 
2001–December 2006 period.  
 
 
3.2  Choice of Appropriate ANN Models 
The choice of the best ANN models depends on a 
comparison of statistics such as the MSE (RMSE), MAE, 
and MAPE. As the initial weight and bias values of the 
network were random, 150 replications were made for 
the same network structure, and the models giving the 
best forecasts were determined. 

For the first data set, the 216 monthly data were used 
in training stage of the network, whereas the 156 
quarterly data were used in training of the ANN models 
for the second data set. For all data sets, an evaluation of 
the model was made depending on the forecasts for the 
24 observations, test data set. As the initial weight and 
bias values of the network were random, experiments 
with 150 replications were made for the same network 
structure, and the models giving the best forecasts were 
determined. Since the mentioned times series data sets 
include the seasonality, after trying many neural 
networks with different numbers of input units, as 
expected, the number of input units was determined as 12 
for the first data set. On the other hand, the number of 
input units was determined as 4 for the second data sets 
During these experiments, various, with one or two 
hidden layers multilayer feed-forward (MLP) neural 
network algorithms and the RBF models were applied on 
the data set. For the first data set, as the initial 12 data 
were lost because of the seasonality, 204 from the 216 
data were used to adjust the weights. In the training stage 
of the network, data were divided into two parts: 132 of 
the 204 data were used for training and 72 data were 
used for validation. This division was used to restrict 
memorization of the network and provided for better 
forecasts ([11]; [12]): For the second data set, as the 
initial 4 data were lost because of the seasonality, 152 
from the 156 data were used to adjust the weights. In the 
training stage of the network, data were divided into two 
parts: 98 of the 152 data were used for training and 54 
data were used for validation 
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For the first data, the MLP(12:7:1) model showed the 
best performance among the MLP networks. The CG 
algorithm is used to train the network, and found the best 
performance on the 24th epoch. A hyperbolic tangent 
function is applied in the hidden unit and the linear 
activation function is applied in the output unit. The 
weights and biases of the MLP(12:7:1) model are given 
in Table 1:  
Table 1. The weights and biases of the MLP(12:7:1) 
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1 
Thresh -0,795 0,780 0,184 -0,325 -0,032 0,385 0,867 0,325 
1.1 -0,392 0,035 0,188 0,539 -0,024 -0,735 0,398  
1.2 0,882 0,124 0,480 -0,267 0,479 0,558 0,073  
1.3 -0,502 -0,587 -0,341 0,338 -0,348 0,015 0,250  
1.4 -0,396 -0,426 -0,562 0,773 0,480 -0,469 0,099  
1.5 0,636 0,456 -0,767 -0,599 -0,549 0,557 0,219  
1.6 0,003 0,007 -0,341 -0,374 -0,747 -0,364 -0,170  
1.7 0,077 0,617 -0,115 -0,018 -0,483 -1,028 -0,455  
1.8 0,111 0,801 0,792 0,783 -0,527 -0,571 -0,283  
1.9 0,507 0,290 0,464 0,242 -0,835 0,049 -0,350  
1.10 0,123 -0,819 0,647 0,609 -0,758 0,790 0,358  
1.11 0,363 -0,906 0,752 0,957 -0,237 0,167 -0,280  
1.12 -0,427 -0,239 0,157 -0,854 0,691 0,318 0,896  
2.1        0,463 
2.2        -0,406
2.3        0,449 
2.4        -0,513
2.5        -0,272
2.6        -0,723
2.7        0,597 

Note: The row and column header numeric terminology 
first lists the layer, then the unit number within the layer. 
For example, 2.1 stands for unit 1in layer 2 

Among the MLP networks, the MLP(4:3:1) model 
showed the best performance with respect to the second 
data set. The CG algorithm was used to train network, the 
best network discovered during that run was selected, and 
this network was found on the 46th epoch. A hyperbolic 
tangent function is applied in the hidden unit and the 
linear activation function is applied in the output unit. 
The weights and biases of the MLP(4:3:1) model are 
given in Table 2.  

 Table 2:  The weights and biases of the MLP(4:3:1)   
  2.1 2.2 2.3 3.1 

Thresh -0.96938 -0.645298 0.742079 -0.38392 
1.1 0.15117 0.791275 -0.724751  
1.2 -0.19540 0.952034 0.523114  
1.3 0.17326 0.555809 -0.544963  
1.4 -1.08251 0.943615 -0.081043  
2.1    -1.05406 
2.2    0.22117 
2.3    -0.47403 

 
 
3.3 Constructing Appropriate Nonparametric Models 
We used two nonparametric regression models. Firstly, 
we considered a semi-parametric model to estimate the 

parametric vector β , and nonparametric function f . The 
estimators of the β  and f  are obtained by using (5). We 
need to select the smoothing parameter λ  presented in 
(5). In practice, a value of the smoothing parameter can 
be chosen by specifying degrees of freedom 
( )( )df trace Sλ=  for the nonparametric components [8]. 
Therefore, we used the df  in order to select the 
smoothing parameter λ  in smoothing spline. On the 
other hand, both the smoothing parameter λ  and the 
number of knots K  must be selected in implementing the 
regression spline. Secondly, we considered an additive 
regression model to estimate f  and g  in eq. (10). The 
estimators of f  and g  are obtained by using eq. (11). 
We need to select the soothing parameters called as 1λ  
and 2λ  in (11). We select the both of the smoothing 
parameters by specifying the df . For both data sets, 
observed and their estimated results obtained by 
appropriate nonparametric models are given in Figure 1 
and 2, respectively. 
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3.4   Constructing Appropriate Hybrid Models  
In this study, we discussed hybrid models where 
components are nonparametric regression and ANN. In 
determining hybrid models whose first component is 
nonparametric regression, firstly, the nonparametric 
regression model was applied to the 216 real data, and 
then, the 216 residuals were obtained. At the next step, as 
the second component, ANN was applied to the 216 
residuals data. As shown Table 3, according to the 
forecasts resulting from experiment, the models with the 
best performance among hybrid models whose first 
component is nonparametric regression are ARM&RBF 
(12:4:1) ARM&MLP(12:8:1) RSM&RBF(4:9:1) 
RSM&MLP(6:8:1) SSM&RBF(12:3:1) SSM&MLP 
(12:6:1). As for the second data sets, among hybrid 
models whose first component is nonparametric 
regression, SSM&MLP(4:8:1) SSM&RBF(4:10:1) 
RSM&MLP(6:8:1) RSM&RBF(4:9:1) ARM&MLP 
(4:8:1) ARM&RBF(4:4:1) models showed a good 
empirical performance (see in detail Table 4).  

For the first data, the models denoting a good 
performance out of 150 replicated models among hybrid 
models where first component is ANN and second 
component is nonparametric regression are the 
MLP(12:7:1)&ARM MLP(12:7:1)&RSM MLP(12:7:1) 
&SSM RBF(12:18:1)&SSM RBF(12:18:1)&ARM, and 
RBF(12:18:1)&RSM (see Table 3). For the second data, 
among hybrid models, whose first component is ANN 
and second component is nonparametric regression, 
RBF(3:18:1)&SSM RBF(3:18:1)&RSM RBF(3:18:1)& 
ARM MLP(1:8:1)&SSM MLP(1:8:1)&RSM MLP(1:8:1) 
&ARM models denoted a good performance (see Table 
4).  

For test data composed of the 24 values, the observed 
and forecasted values obtained by different models are 
calculated, but they are only given as graphically for 
three models since they would occupy very much place. 
Observed and their forecasted values by the best SSM, 
ANN and hybrid models are given in the following figure 
3 and 4, respectively. 
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3.5   Comparisons of the Models 
We used the test data to compare the performances of the 
hybrid and the others models. The performances of 
models are evaluated the criterion such as  the mean 
square error (MSE), the root mean square error (RMSE), 
the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE). (see in detail Carey and Rob 
[22]).  

By using test data, for the number of produced Cars in 
Turkey, the performance values of the nonparametric 
regression, ANN and hybrid models are presented in 
Table 3. For this data, the SSM among the nonparametric 
models, and the MLP (12:7:1) among the ANN models 
have also indicated the best empirical performance 
scores. The SSM and MLP models individually indicate 
good performance. According to the values of MSE, 
RMSE, MAE and MAPE, the SSM&MLP(12:6:1) hybrid 
model, whose components are SSM and MLP, have 
indicated the best empirical performance scores.  

Table 3. Performance values for selected models  
Models MSE RMSE MAE MAPE 
ARIMA(1,1,1)(1,1,0)12 2,16E+08 14707,63 12345,00 33,00 
MLP (12:7:1) 1,69E+08 13010,87 10197,49 26,55 
RBF(6:9:1) 2,22E+08 14907,37 13349,63 32,62 
SSM 1,85E+08 13609,15 10025,80 28,60 
RSM 2,86E+08 16921,10 10353,00 33,50 
ARM 2,33E+08 15255,52 11385,80 31,00 
SSM&MLP(12:6:1) 1.2E+08 11032.22 7807.3 23.70 
SSM&RBF (12:3:1) 2.81E+09 53008.07 51335.79 99.54 
RSM&MLP (6:8:1) 2.3E+08 15157.17 8826.4 27.80 
RSM&RBF (4:9:1) 2.78E+08 16668.61 10207.21 32.65 
ARM&MLP (12:8:1) 2.2E+08 14922.17 10968.2 30.10 
ARM&RBF (12:4:1) 2.23E+08 14936.24 11131.065 30.32 
RBF (12:18:1)&SSM 2.73E+09 52264.65 49797.48 94.31 
RBF(12:18:1)&RSM 6.71E+09 81941.47 79833.04 162.11 
RBF(12:18:1)&ARM 5.89E+09 76774.33 73385.10 140.77 
MLP (12:7:1)&SSM 5.11E+08 22611.99 20233.27 39.36 
MLP (12:7:1)&RSM 5.57E+08 23597.74 21125.97 40.48 
MLP (12:7:1)&ARM 4.50E+08 21204.30 17744.20 41.23 

(*) Indicates the model having best performance  
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For the GDP test data set, the performance values of 
the nonparametric regression, ANN and hybrid models 
are given in Table 4. As can be seen Table 4, the SSM 
among the nonparametric models, and the MLP (4:3:1) 
among the ANN models have denoted the best 
performance. According to the values of MSE, RMSE, 
MAE and MAPE, the SSM&MLP(4:8:1) hybrid model 
has denoted the best empirical performance among the all 
models for the GDP data set. 
Table 4: Performance values of the selected models  

Models MSE RMSE MAE MAPE 
ARIMA(1,1,1)(1,1,0)12 1,87E+11 432997,2 431235,0 94,20 
MLP (4:3:1) 4,49E+08 21192,5 15210,66 3,20 
RBF(4:6:1) 2,06E+09 45469,8 42273,5 9,06 
SSM 1,93E+09 43892,7 37243,5 8,70 
RSM 3,38E+09 58096,6 48340,2 10,20 
ARM 2,49E+09 49916,7 44345,0 10,20 
SSM&MLP (4:8:1) 3.2E+08 18017.92 13785.8 3.20 
SSM&RBF (4:10:1) 6.70E+08 25890.43 20064.64 4.76 
RSM&MLP (6:8:1) 2.1E+09 45460.88 37720.6 7.80 
RSM&RBF (4:9:1) 2.79E+09 52795.12 46986.78 9.91 
ARM&MLP (4:8:1) 1.1E+09 33301.77 24650.6 5.70 
ARM&RBF (4:4:1) 3.04E+09 55152.88 47265.68 11.03 
RBF (3:18:1)&SSM 7.69E+09 87696.31 82650.59 17.68 
RBF(3:18:1)&RSM 9.87E+08 31418.91 25572.10 5.93 
RBF(3:18:1)&ARM 5.21E+08 22815.30 18534.60 4.17 
MLP (1:8:1)&SSM 1.12E+09 33402.51 29412.32 6.22 
MLP (1:8:1)&RSM 1.37E+09 36995.60 27762.00 5.71 
MLP (1:8:1)&ARM 1.40E+09 37370.19 27877.08 5.73 

* Indicates the model having the best performance 
 
 
4   Conclusions 
It is known that hybrid models indicate very good 
performance in time series forecasting problems. Zhang 
[1] reported that hybrid models where a component is 
linear and the other is nonlinear have demonstrated a 
good performance in time series forecasting. Then, a 
study has been made by Aslanargun et al., [2] and found 
that usage of hybrid models, whose components are 
nonlinear, are more effective.  

In this paper, in the time series forecasting problems 
based on two real data sets, we observed that hybrid 
models where one of its components is nonparametric 
regression model and the other is ANN, make more better 
forecasting than hybrid models discussed in Zhang [1] 
and Aslanargun et al., [2]. We noticed that hybrid 
models, whose first component is SSM and second 
component is MLP, have indicated very good 
performance. At the same time, the hybrid models, whose 
second component is particularly MLP, have denoted 
good results too.  

As a result, our opinion is that, using hybrid models, 
whose components are nonparametric regression and 
ANN, can be more useful in time series forecasting 
problems included seasonality and trend. Especially, for 
prediction problems of the time series data included trend 
and seasonality, our sight is that, hybrid models having 

the form SSM&MLP will be having much better 
performance. 

As individual models, the SSM among the 
nonparametric models, and the MLP (CG algorithm) 
among the ANN models, can be used as model having a 
good performance.  
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