
A Preprocessing Procedure for Fixing the Binary variables in the 

Capacitated Facility Location Problem through Pairing and Surrogate 

Constraint Analysis 
 

MARIA A. OSORIO1, ABRAHAM SÁNCHEZ2 
1Department of  Chemical Engineering, 2Department of Computing 

Universidad Autónoma de Puebla 
Ciudad Universitaria, San Manuel, Puebla. Pue.  

MÉXICO 
1,2{aosorio, asanchez}@cs.buap.mx    http://www.cs.buap.mx/~{aosorio, asanchez} 

 
 

Abstract: - The Osorio and Glover (2003) use of dual surrogate analysis is exploited to fix variables in 
capacitated facility location problems (CFLP).  The surrogate constraint is obtained by weighting the original 
problem constraints by their associated dual values in the LP relaxation. A known solution is used to convert the 
objective function in a constraint that forces the solution to be less or equal to it. The surrogate constraint is 
paired with the objective function to obtain a combined constraint where negative variables are replaced by 
complemented variables and the resulting constraint used to fix binary variables in the model.  
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1   Introduction 
We use dual surrogate constraint analysis to find the 
best surrogate and pairing it with the objective 
function, in the simplest case of capacitated facility 
location problems (CFLP), where there are m 
sources (or facility locations) which produce a single 
commodity for n customers each with a demand for 
dj units (j = 1, …, n). If a particular source is 
operating (or facility is built), it has a fixed cost fi ≥ 
0 and a production capacity Ki > 0 associated with it. 
There is also a positive cost cij for shipping a unit 
from source i to a customer j. The question is where 
to locate the sources so that capacities are not 
exceeded and demands are met, all at a minimal total 
cost. All data are assumed to be integral. 

The logistics for distribution of products (or 
services) has been a subject of increasing importance 
over the years. It is a significant part of the strategic 
planning of both public and private enterprises. 
Decisions concerning the best configuration for the 
installation of facilities in order to attend demand 
requests are the subject of a wide class of problems, 
known as location problems. These location 
problems have received a considerable amount of 
attention from scientists who have identified various 
problem types and developed variety methodologies 
to solve these problems, subsequently being adopted 
to make decisions belonging to locations of facilities 
in many practical applications. There are more than 
fifty facility location problem types (Lee and Yang, 
2009). The location problems can be described as 
models in which a number of facilities is to be 

located in the presence of customers, so as to meet 
some specified objectives. Obvious applications of 
the problem occur when facilities such as 
warehouses, plants, hospitals, or fire stations are to 
be located. Although these instances are quite 
different from each other, they share some common 
features. 

Most location problems can be defined as 
follows: given space, distance, a number of 
customers, customers’ demands and mission. The 
distance is defined between any two points in that 
area. The number of customers is located in the area 
under consideration and who have a certain demand 
for a product (or service). The mission is to locate 
one or more facilities in that area that will satisfy 
some or all of the customers’ demands. Depending 
on the objectives, location problems can be grouped 
into two major classes. One class treats the 
minimization of the average or total distance 
between customers and facilities. The classic model 
that represents the problems of this class is the p-
median problem. Optimally locating public and 
private facilities such as schools, parks and 
distribution centers are typical examples of this 
problem. The other class deals with the maximum 
distance between any customer and the facility 
designed to attend the associated demand. 

They often used in applications related the 
location of emergency facilities. These problems are  
known as covering problems and the maximum 
service distance is covering distance. The p-median 
is a well-known facility location problem which 

WSEAS TRANSACTIONS on MATHEMATICS Maria A. Osorio, Abraham Sanchez

ISSN: 1109-2769 583 Issue 10, Volume 8, October 2009



addresses the supply of a single commodity from a 
set of potential facility sites to a set of customers 
with known demands for the commodity. The 
problem consists of finding the locations of the 
facilities and the flows of the commodity from 
facilities to customers such that transportation costs 
are minimized. The combinatorial nature of the 
problem made it NP hard and encouraged many 
heuristic methodologies to approach the solution 
(Maric et al., 2008). 

To model the simplest case of the capacitated 
facilitated location problem (CFLP), we let xij be the 
amount shipped from source i to customer j, and 
define yi to be 1 if source i is used and 0 if it is not. 
The integer programming model is: 

 
(1) Minimize z =  ∑  ∑ cij xij +  ∑  fi yi  

                                      i∈Μ  j∈Ν                i∈Μ 

Subject to    
 
(2) ∑i∈Μ xij  ≥  di  j 

∈ Ν      (N = 1,2,…,n)                                    
(3) ∑j∈Ν  xij  ≤  Ki yi i 

∈ Μ    (M= 1,2,…,m)                                              
(4) xij  ≥ 0  i 

∈ Μ ,  j 
∈ Ν  

(5) yi  ∈ {0,1},    i 
∈ Μ            

   

where N = {1,2 ,…, n}, M = {1,2 ,…, m}, dj ≥ 0, for 
all j ∈ Ν, Ki ≥ 0, for all i ∈ Μ  cij ≥ 0, for all i ∈ Μ, j 

∈ Ν.  This model has m + n constraints and m + mn 
variables. The objective function (1) is the total 
shipping cost, i.e., ∑i ∑j cij xij, plus the total fixed cost, 
i.e., ∑ifiyi; note that fi contributes to this sum only 
when yi = 1 or source i is used. Constraints (2) 
guarantee that each customer’s demand is met. 
Inequality (3) endures that we do not ship from a 
source which is not operating (Ki is an upper bound on 
the amount that may be shipped from source i) and it 
also restricts production from exceeding capacity. 
Even though by definition xij is discrete, we may use 
the nonnegative conditions (4) because it can be 
shown that constraint (5) with (2) and (3) ensure that 
xij ≥ 0 will mean that xij is integer in the optimal 
solution (see Salkin (1975)). 

The development of exact algorithms for integer 
problems began several decades ago (Dantzig (1957), 
Balas (1965), Glover (1965)). There exists a main 
stream of algorithms that try to find upper or lower 
bounds for the objective value, to reduce the problem 
size and use information from its relaxations, and to 
employ search trees in branch and bound schemes. 
The algorithm presented in this paper belongs in this 
mainstream.  

The Constraint Pairing ideas used here were 
developed by Hammer et al. (1975) and used later by 
Dembo and Hammer (1980), as a support of a 

Reduction Algorithm for Knapsack problems that uses 
Constraint Pairing in a Lagrangean Relaxation 
framework. Glover established the main principles of 
his Surrogate Constraint Duality Theory in the same 
year (Glover, 1975), stimulating a series of 
algorithmic developments that used surrogate 
constraint analysis as an alternative to relying on 
weaker relaxations provided by Lagrangean 
Relaxation Theory. Recently, Glover et al (1997) 
generated cuts from surrogate constraint analysis for 
zero-one and multiple choice programming. Those 
cuts proved to be effective and stronger than a variety 
of those previously introduced in the literature. 

In a different application, Osorio and Gómez 
(2004) used Surrogate Analysis in Multidimensional 
Knapsack Problems to create surrogate constraints 
and Constraint Pairing to combine them with the 
objective function to generate new constraints used to 
fix variables and to generate logic cuts, using an 
initial feasible integer solution. These logic cuts were 
included in the model before solving the problem 
with branch and bound. They tested in the set of small 
problems and big instances in the OR-library, and 
compared the effect of the different sets of logic cuts 
added to the model. It could be seen that any set of 
logic cuts helps to solve difficult problems with a 
fewer number of nodes in the search tree. Our 
procedure augments a branch and cut framework, by 
a process of fixing variables and adding global cuts. 
The approach can be applied every time the branch 
and cut method gets a better integer solution or it can 
be used as a preprocessing algorithm, based on 
assuming a bound on an optimal objective value. 
Their computational experiments showed that the 
preprocessing approach created an enhanced version 
of the problem that could be solved in a fewer 
number of nodes. 

This paper applies the experience obtained by 
Osorio et al (2002), (2003) using surrogate constraint 
analysis to fix binary variables in MKP, to 
Capacitated Location Problems. The topic is presented 
in the following way. Section 2 presents the results on 
surrogate constraint duality that we apply in this paper 
and section 3 develops the constraint pairing ideas 
applied to this specific problem, according to the 
methodology described. Section 4 presents and 
example to illustrate these ideas, section 5, the 
computational results, and section 6, the conclusion. 

 

2 Surrogate Constraint Analysis 
Duality theory in mathematical programming is not 
new. For years, it has customarily been based upon 
the use of a generalized Lagrangean function to define 
the dual. Elegant results have emerged linking 
optimality conditions for the dual to those for the 
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primal. Out of these results have arisen solution 
strategies for the primal that exploit the properties of 
the primal dual interrelations. Some of these strategies 
have been remarkably successful, particularly for 
problems in which the duality gap – the amount by 
which optimal objective function values for the two 
problems differ  is nonexistent or small. A different 
type of solution strategy has been proposed for 
solving mathematical programs in which duality gaps 
are likely to be large.  

In contrast to the Lagrangean strategy, which 
absorbs a set of constraints into the objective function, 
a different strategy proposed by Glover (1975) 
replaces the original constraints by a new one called a 
surrogate constraint. Since their introduction by 
Glover (1965), surrogate constraints have been 
proposed by a variety of authors for use in solving 
nonconvex problems, especially those of integer 
programming. Surrogate constraints that were 
‘strongest’ for 0-1 integer programming under certain 
relaxed assumptions were suggested by Balas (1967) 
and Geoffrion (1969). The paper by Geoffrion also 
contained a computational study that demonstrated the 
practical usefulness of such proposals. Later, Dyer 
(1980) provided a major treatment of surrogate 
duality. Methods for generating strongest surrogate 
constraints according to other definitions, in particular 
segregating side conditions and introducing 
normalizations, were subsequently proposed by 
Glover (1968). However, a significant price was paid 
by the relaxations used in some of these early 
developments, whose effect was to replace the 
original nonconvex surrogate IP problem by a linear 
programming problem. The structure of this LP 
problem is sufficiently simple that the distinction 
between the surrogate constraint approach and the 
Lagrangean approach vanished.  

The first proposal for surrogate constraints 
(Glover, 1965) used notions that were later used in 
surrogate duality theory. It defined a strongest 
surrogate the same way as in this theory and presented 
a theorem that led to a procedure for searching 
optimal surrogate multipliers that could obtain 
stronger surrogate constraints for a variety of 
problems. Later, Greenberg and Pierskalla (1970) 
provided the first major treatment of surrogate 
constraints in the context of general mathematical 
programming. These authors showed that the dual 
surrogate is quasiconcave, thus assuring that any local 
maximum for it is a global maximum, and noted that 
the surrogate approach has a smaller duality gap than 
the Lagrangean approach. They provided sufficient 
conditions for the nonoccurrence of surrogate duality 
gaps.  

The work of Glover (1975) developed a surrogate 

duality theory that provides exact conditions under 
which surrogate duality gaps cannot occur. These 
conditions (both necessary and sufficient) are less 
confining that those governing the absence of 
Lagrangean duality gaps. Furthermore, they give a 
precise characterization of the difference between 
surrogate and Lagrangean relaxation, and give a 
framework for combining these relaxations. Useful 
relationships for combining these relaxations are also 
developed in Karwan and Rardin (1979). 

The primal problem of mathematical programming 
can be written:  

 
P: min x∈X f(x), subject to g(x) ≤ 0. 
 
Where f and each component gi(x) of the vector 

g(x) are real-valued functions defined on X. No special 
characteristics of these functions or of X will be 
assumed unless otherwise specified.  

A surrogate constraint for P is a linear combination 
of the component constraints of g(x)≤ 0 that associates 
a multiplier ui with each gi(x) to produce the 
inequality ug(x) ≤ 0, where u=(u1, … um). Clearly, this 
inequality is implied by g(x) ≤ 0 whenever u ≥ 0. 
Correspondingly, we define the surrogate problem as:  

 
SP(u): min x∈X f(x), subject to ug(x) ≤ 0. 
 
The optimal objective function value for SP(u) will 

be denoted by s(u), or more precisely, as: 
 
s(u) = inf x∈X(u)  f(x), where X(u) = { x∈X : ug(x) ≤ 0}. 

 
Since SP(u) is a relaxation of P (for u 

nonnegative), s(u) cannot exceed the optimal objective 
function value for P and approaches this value more 
closely as ug(x) ≤ 0. Choices for the vector u that 
improve the proximity of SP(u) to P  – i.e. , that 
provide the greatest values of s(u) – yield strongest 
surrogate constraints in a natural sense, and motivate 
the definition of the surrogate dual:  

 
SD: max u ≥ 0 s(u). 

 
The surrogate dual may be compared with the 

Lagrangean dual LD: max u 0 L(u), where L(u) is the 
function given by L(u) = inf x∈X  {f(x) + ug(x)}. It 
should be noted that s(u) is defined relative to the set 
X(u), which is more restrictive than the set X relative 
to which the Lagrangean L(u) is defined. Also, 
modifying the definition of L(u) by replacing X with 
X(u), while possibly increasing L(u), will nevertheless 
result in L(u) ≤ s(u) because of the restriction ug(x) ≤ 
0; that is, L(u) may be regarded as an 
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‘underestimating’ function for both the surrogate and 
primal problems. 

Another immediate observation is that any optimal 
solution to the surrogate problem that is feasible for 
the primal is automatically optimal for the primal and 
no complementary slackness conditions are required, 
in contrast to the case for the Lagrangean. These 
notions have been embodied in the applications of 
surrogate constraints since they were first proposed. 
Taken together, they provide what may be called a 
’first duality theorem’ for surrogate mathematical 
programming. 

The strong surrogate optimality conditions are 
necessary and sufficient for optimality, and they can 
be used in a variety of new inferences for surrogate 
constraints in mathematical programming. The 
methodology proposed here draws on these 
fundamental results. 

 

3   Constraint Pairing for CFLP 
The main ideas about constraint pairing in integer 
programming were exposed by Hammer et al. (1975). 
Based on the objective of getting bounds for most 
variables, the strategy is to pair constraints in the 
original problem to produce bounds for some 
variables. 

Based on the results exposed about surrogate 
constraints, the dual surrogate constraint provides the 
most useful relaxation of the constraint set, and can be 
paired with the objective function. Multiplying the set 
of inequalities in (3) by –1, and using the generic 
name aij for all the coefficients in the sets (2), (3) and 
(4), and zj as a generic matrix notation name for all the 
variables, the resulting surrogate is:  

 
∑i∈Μ+Ν  ui (aij zj ) ≥ ∑i∈Μ +Ν ui bi, j 

∈ Μ + ΜΝ.                                      
   

Now, we define   si =   ∑ 
i∈Μ +Ν  ui (aij xj ) and make 

the objective function less or equal to a known integer 
solution (UB). If we use the generic name gi for all 
the coefficients in the objective function, the paired 
constraint between the surrogate and the objective 
function will be,   

 
∑

 
j∈Μ+ΜΝ  (gj( - sj) zj ≤ UB  −  ∑i∈Μ+Ν  ui bi .

          

  

Coefficients for this paired constraint can be 
positive, negative or zero. To be able to use this 
constraint to fix variables in both bounds, all 
coefficients must be positive or zero. We substitute wj 

= 1–zj in the negative coefficients (gj-sj) to get positive 
ones (gj-sj)’and add the equivalent value in the right 
hand side. The resultant constraint is,  

 

∑j∈Μ+ΜΝ,+ (gj-sj)zj + ∑j∈Μ+ΜΝ,− (gj-sj)’wj ≤ 

                 UB−∑i∈Μ+Ν ui bi + ∑j∈Μ+ΜΝ,− (gj)sj)’.  
 
An interesting property of the last constraint is that 

the positive coefficient values are the negative 
reduced costs for the variables in the LP solution and 
the negative values correspond to the negative dual  
values  of  their  bounds  in  the  LP  solution.   
Besides, the value of  ∑i∈Μ +Ν ui bi ∑

 
j∈Μ+ΜΝ, − (gj-sj)’ is 

the optimal solution of the LP problem (LB), and the 
right hand side of this paired constraint becomes the 
difference between the upper bound that corresponds 
to the best know solution for the problem and the 
lower bound that corresponds to the LP solution (UB–
LB). This resultant constraint is used to fix variables 
to zero or one,  

 
∑j∈Μ+ΜΝ, + (gj-sj)zj + ∑

 
j∈Μ+ΜΝ, −(gj-sj)’wj   ≤ UB-LB. 

     
 If coefficients (gj-sj) of zj are greater to the 

difference (UB-LB), those variables must be zero in 
the integer solution; if the coefficients (gj-sj)’ of wj are 
greater to the same difference, those variables must be 
one in the integer solution because its complement, wj 

must be zero. Variables whose coefficients are smaller 
than the difference remain in the problem. 

Because we depend on the gap UB-LB and LB can 
not be changed because it is the LP continuous 
relaxed solution of the problem, a lower UB given by 
the best integer solution known, can increase the 
number of integer variables fixed. 
 

4   Example 
To illustrate the procedure described, we will use a 
model (Figure 1) with three sources and two demand 
points: 

 
The data for the example can be seen in Table 1. 
The mixed integer model for this example is, 

 
Minimize   250 y1 + 180 y2 + 170 y3 + 65 x11 + 70 x12  
                 + 60 x21 + 65 x22 + 55 x31 + 60 x32 
 
Subject To 

 
x11 + x12 ≤ 13 y1   or 13y1-x11-x12 ≥ 0 
x21 + x22 ≤  9 y2          or  9y2-x21-x22 ≥ 0 
x31 + x32 ≤  8 y3               or  8y3-x31-x32 ≥ 0 
x11 + x21 + x31 ≥ 7 
x12 + x22 + x32 ≥ 8 
x11, x12, x21, x22, x31, x32 ≥ 0 
y1, y2, y3 ∈ {0,1}  

 
After solving the relaxed LP problem, the 
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corresponding dual values are uj = {15, 20, 25, 80, 
85}. The LP solution of the relaxed problem (with 
0≤yi≤1, i = 1, 2, 3) is 1210 (LB) and the variable 
values: y2=.77778, y3 = 1, x21 = 7 and x32 = 8, with all 
other variables equal to 0. This problem has a known 
integer solution of 1260 (UB). The objective 
inequality and the dual surrogate constraint, obtained 
multiplying each dual value by its respective 
constraint in the model, are: 
 
250 y1 + 180 y2 + 170 y3 + 65 x11 + 70 x12 + 60 x21 + 
65 x22 + 55 x31 + 60 x32  ≤ 1260 

195 y1 + 180 y2 + 200 y3 + 65 x11 + 70 x12 + 60 x21 + 
65 x22 + 55 x31 + 60 x32  ≥ 1240 

 
And the paired constraint is, 55y1-30y3≤1260-1240. 

Replacing y3 by w3= (1–y3), we get,  
 

55y1+30w3≤1260-1240+30=1260(UB)–1210(LB)= 50.  
 
From 55 y1 + 30 w3 ≤ 50, we can fix y1 = 0. In this 
case, if y1 = 0, then x11 =  x12  = 0, according to the first 
constraint in the model. 
 
 

5 Computational Results 
We tested three sets in order to explore our 

methodology impact in sets obtained with different 
generators. 
 
a. Data sets using Hooker’s generator 
 
We tested our approach with the generator presented 
by Hooker et al (1999) and used by Osorio et al 
(1999) to prove the logic cuts efficiency. The fixed 
costs were generated using a normal distribution with 
a mean of 200 and a standard deviation of 20; the 
variable costs, according to the function: 50+5*|i-j|, 
where i and j are the warehouse and demand point 
indexes, respectively. The right hand sides for the 
capacity warehouse constraints were obtained with a 
normal distribution, using the number of warehouses 
as a mean and the half of this value as a standard 
deviation. For the demand amounts, we used numbers 
sequentially generated in order to accommodate the 
ratio tested of total warehouse capacity to total 
demand.  

Two sets were tested in order to explore the impact 
of different reasons methodology with total storage 
capacity to total demand. . For the first set in Table 2 
we always started with a fixed number and for the 
second test in Table 3, we chose the number of 
warehouses –1 as the first demand value and 
incremented sequentially from it. 

 The first integer solution by CPLEX was used as 
the best integer solution. 

Results for these problems are shown in Tables 2 
and 3. It can be seen that the procedure proposed 
allows the binary variables to be fixed in a good 
percentage. The time in which the procedure was 
executed was virtually 0 seconds in all cases. 

 
5.2 IFORC Data set 
 
For the second part of the experiment, we used the 
instances generated by (IFORCF, 2006) as proposed 
by Cornuejols, and Thizy Sridharan (1991). Overall 
results are reported for 24 instances of problems with 
different sizes and ratio r of total capacity to total 
demand. The small instances tested had a range of 25 
customers and 10 potential demand points to 
instances with 500 customers and 50 potential 
demand points, and a ratio of total capacity to total 
demand, equal to 1.5 to 3 as reported in the database 
used.  

The coordinates of clients and storage sites were 
selected randomly in a square of 1000 X 1000 for 
these problems. The customer demands were 
generated with a uniform distribution in the range of 
[5,35], rounded to the next integer. The capacities of 
the warehouses were generated with a uniform 
distribution in the range [10,160], rounded to the next 
integer. Transportation costs were calculated using 
the Euclidean distance between the customer and the 
warehouse sites multiplied by 0.01. Operating costs 
of storage was zero and fixed costs were calculated 
according to the following equation: Fixed Costj = 
U[0,90] + U[100,110]*SQRT(Warehouse_capacity), 
where U[a, b] is the uniform distribution in [a, b]. 
After generating these data, the capacities of the 
warehouses were adjusted so that the ratio of total 
capacity to total demand equaled the desired ratio of 
1.5 and 3.0. 

Results for the instances tested are reported in 
Table 4. The percentage of fixed binary variables 
with this procedure ranges from 0% to 60%. The 
difference in the number of binary variables fixed for 
the instances generated under the same conditions 
leads to closely assess the characteristics of the 
problem that may impact on the performance of the 
proposed methodology. In particular, instances T311 
and T411 were closely examined. In Problem T311, 
the percentage of binary variables fixed is 0% and  in 
problem T411, the percentage of fixed variables is 
60%, although both instances were produced with the 
same generador. The CPU time needed to fix the 
vaalues of the binary variables was less than 2 
seconds in both cases and less than 0.02 seconds in 
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the remaining problems. The characteristics of the 
T311 and T411 problems can be seen in Table 5.  

Although the main characteristic data of the two 
bodies appear to be similar, as the ratio of demand / 
capacity problem, the sum of coefficients in the 
function introduces a difference. The main elements 
on the right side of the inequality used to fix the 
variables are the solution LP (LB) and the best 
integer MIP-known solution (UB). In Problem T311, 
this difference is 1197.42 and 353.25 on the instance 
T411. If one gets the ratio of the coefficients in the 
objective function over the coefficients in the 
constraint and the difference UB-LB, the results are 
more significant. This ratio is 29.65 for the problem 
T311, and 115.8188 for problem T411. This analysis 
can be seen in Table 6. 

An important observation is that the effectiveness 
of the proposed methodology depends primarily on 
the closeness of the entire solution and the LP 
optimal solution related to the sum of the coefficients 
in the objective function and the coefficients in the 
overall restriction.  

Testing this set of data with different 
methodologies, it can be noticed that instances 
obtained from this generator can be resolved almost 
completely with the different types of cuts generated 
by CPLEX and almost no nodes in the tree branch 
and bound, noting that the obtained synthetically 
problems with generators yield instances that are 
usually very sensitive to very specific methodologies.  
The performance of this methodology is not affected 
by the problem size or other characteristics as the 
ratio of capacity or the generator used to obtain 
instances of trial, but is influenced by the quality of 
the entire solution known. This method only needs to 
solve a problem LP whenever the fixation procedure 
is applied and can be used as often as new integer 
solutions act as upper limits can be found. This 
allows the method to be used in combination with a 
tree branch and bound or other methodologies that 
can take advantage of the knowledge generated by 
the procedure. Knowing in advance the real value of 
any of the binary variables in the problem and to 
reduce its size, can be extremely useful in problems 
that can not be solved optimally with other 
methodologies.  

For instances too difficult it can be used in 
combination with heuristics to generate solutions that 
can be used as part of this process set. With the 
setting of variables and reducing the size of the 
problem the heuristics can be used again to generate a 
better solution as many times as the procedure can fix 
more binary variables. 
 

6   Conclusions 

Our procedure solves a linear program to generate a 
surrogate constraint that can be paired with the 
objective function to fix a percentage of the binary 
variables in the problem. The results obtained seem to 
be a promising way to reduce the size of the searching 
branch and bound tree. The approach can be applied 
every time the branch and cut method gets a better 
integer solution or it can be used as a preprocessing 
algorithm (as we have done), based on assuming a 
bound on an optimal objective value. Our 
computational experiments show that the 
preprocessing approach creates an enhanced method 
that allows problems to be solved by constructing 
smaller search trees. 
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Fig. 1.  Location model with three sources and two demand points. 
 

Table 1. Data for the example 
Fixed Costs 
for source i 

Shipping costs by unit from source i 
to demand point j 

Maximum on the 
amount from i 

Demand 
units in j 

f1 f2 f3 C11 c12 c21 c22 c31 c32 K1 K2 K3 d1 d2 
250 180 170 65 70 60 65 55 60 13 9 8 7 8 

 

Table 2. Results for random instances with fixed initial demand 
Warehouses Demand 

Points 
Number of 
Variables 

Binary 
Variables 

Binary 
Fixed to 0 

Binary 
Fixed to 1 

Ratio 
Capacity 

20 5 120 20 13.9 0 8.8889 

20 10 220 20 6.3 0 3.4783 

20 15 320 20 3.1 0 1.9048 

30 5 180 30 24.4 0 20 

30 10 330 30 0 0 7.8261 

 

Table 3. Results for random instances with initial demand equal to warehouses - 1 
Warehouses Demand  

Points 
Number of  
Variables 

Binary  
Variables 

Binary  
Fixed to 0 

Binary  
Fixed to 1 

Ratio  
Capacity 

20 10 220 20 7.4 0 2.5974 

30 20 630 30 3.6 12.4 1.2594 

40 30 1240 40 4.4 33 1.0774 

50 40 2050 50 1.6 46.6 1.0001 
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Table 4. Results for the set of IFORCF instances 
Name Ratio Warehouses Demand  

Points 
Number of  
Variables 

Binary  
Variables 

Solution Fixed 

LP MIP Variables % 

T111 1.5 10 25 260 10 33,993.01 34,684.31 2 20% 
T211 1.5 10 25 260 10 35,341.58 35,999.81 2 20% 
T411 1.5 10 25 260 10 52,338.89 52,692.14 6 60% 
T511 1.5 10 25 260 10 22,583.63 23,443.57 3 30% 
T512 3 10 25 260 10 16,187.24 18,582.39 1 10% 
T121 1.5 25 50 1275 25 48,481.03 49,625.8 7 28% 
T221 1.5 25 50 1275 25 57,553.97 58,100.14 4 16% 
T321 1.5 25 50 1275 25 67,186.85 68,825.59 6 24% 
T421 1.5 25 50 1275 25 55,446.97 56,313.57 9 36% 
T521 1.5 25 50 1275 25 40,945.51 42,031.83 1 4% 
T131 1.5 225 100 2525 25 75,558.07 78,368.85 3 12% 
T231 1.5 25 100 2525 25 89,277.96 92,451.39 1 4% 
T431 1.5 25 100 2525 25 69,930.24 72,756.81 1 4% 
T531 1.5 25 100 2525 25 75,273.69 78,269.36 2 8% 
T161 1.5 25 500 12525 25 38,3319.9 389,604.9 10 40% 
T261 1.5 25 500 12525 25 31,7799.8 324,594.8 7 28% 
T461 1.5 25 500 12525 25 33,9378.1 346,452.6 4 16% 
T561 1.5 25 500 12525 25 29,4165.7 300,336.7 3 12% 
T162 3 25 500 12525 25 30,3024 316,388.7 1 4% 
T171 1.5 50 500 25050 50 252,088.4 260,612.2 1 2% 
T271 1.5 50 500 25050 50 238,401.4 246,806.2 1 2% 
T371 1.5 50 500 25050 50 263,744.1 273,241.9 1 2% 
T481 1.5 50 500 25050 50 248,676.5 257,131.7 1 2% 
T581 1.5 50 500 25050 50 237,806.3 247,536.1 3 6% 

 

Table 5. Data Characteristics for instantes T311 and T411 
Warehouses T311 

Capacity 
Fixed 
Costs 

Variable Costs T411 
Capacity 

Fixed 
Costs 

Variable Costs 

Sum Mean Std.Desv. Sum Mean Std.Desv. 

1 26 546 2515 100.6 56.81 125 1217 4130 165.2 106.7 

2 30 617 2436 97.45 54.44 47 791 2988 119.5 89.5 

3 150 1299 2471 98.83 62.58 19 548 3096 123.8 84.22 

4 88 1087 2274 90.97 50 114 1142 3590 143.6 94.8 

5 106 1110 3503 140.1 71.97 90 1150 2984 119.4 71.62 

6 77 971 2671 106.8 64.72 76 1028 2133 85.3 48.16 

7 74 901 2904 116.2 65.15 76 943 2525 101 63.38 

8 105 1110 2952 118.1 61.78 118 1255 3778 151.1 96.89 

9 67 947 2372 94.89 51.55 21 529 3090 123.6 87.2 

10 26 587 2983 119.3 65.29 134 1311 3505 140.2 92.95 

Sum 749 9175 27081 1083 604.3 820 9914 31819 1273 835.4 

Mean 74.9 917.5 2708 108.3 60.43 82 991.4 3182 127.3 83.54 

Desv. 38.1456 242.9 357.2 14.28 6.637 39.9049 269.2 561.2 22.45 16.67 
 

 

WSEAS TRANSACTIONS on MATHEMATICS Maria A. Osorio, Abraham Sanchez

ISSN: 1109-2769 591 Issue 10, Volume 8, October 2009



Table 6. Data Analysis for problems T311 and T411 
Problem T311 T411 

Total Capacity 749 820 
Total Demand 499 546 

 Total Capacity/ Total Demand 1.501002 1.501832 
Total Sum RHS -499 -546 

Objective Coefficients Sum 36256 41733 
Constraints Coefficients Sum -749 -820 

Objective Coefficients + Constraint Coefficients 35507 40913 
LP Solution (LB) 30159.14 52338.89 

Best Integer MIP (UB) 31356.56 52692.14 
UB-LB 1197.42 353.25 

(Objective Coefficients + Constraint Coefficients)/(UB-LB) 29.65292 115.8188 

 
 

 

 

WSEAS TRANSACTIONS on MATHEMATICS Maria A. Osorio, Abraham Sanchez

ISSN: 1109-2769 592 Issue 10, Volume 8, October 2009




