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Abstract: A spacecraft (or any particle with negligible mass) suffers a gravitational capture when its orbit changes 
from hyperbolic (small positive energy) around a celestial body into elliptic (small negative energy) using only 
gravitational forces. The force responsible for this modification in the orbit of the spacecraft is the gravitational 
force of the third and the fourth bodies involved in the dynamics. Those forces are equivalent of a zero cost 
control applied to the spacecraft, equivalent to a continuous thrust. One of the most important applications of this 
property is the construction of trajectories to the Moon. The concept of gravitational capture is combines with the 
principles of the gravity-assisted maneuver and the bi-elliptic transfer orbit, to generate a trajectory that requires a 
fuel consumption smaller than the one required by the Hohmann transfer. The present paper study the energy 
required for the ballistic gravitational capture in a dynamical model that has the presence of four bodies. Those 
bodies are assumed to follow the assumptions of the bi-circular model. In particular, the Earth-Moon-Sun-
Spacecraft system is considered. 
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1.Introduction 
 

The bi-circular problem is a particular case 
of the problem of four bodies, where one of the 
masses, let us say , is supposed to be infinitely 
smaller than the other three masses. With that 
hypothesis,  moves under the gravitational forces 
of ,  and , but it doesn't disturb the motion 
of the three bodies with significant mass. In the bi-
circular problem, the motion of ,  and  
around the center of mass is considered as formed by 
circular orbits and the motion of  has to be a 
certain function of the initial conditions. We can 
consider the bi-circular problem as a disturbance of 
the restricted problem of three bodies. This problem 
can be used as a model for the motion of a space 
vehicle in the Sun-Earth-Moon system. 
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In the first part of the paper we supplied the 
equations of motion of the model and we defined 
gravitational capture. The second part is used for the 
calculation of some numerical results for the bi-
circular problem, such as direct orbits, retrograde 
orbits, capture orbits, etc.  

 
 
2.Mathematical models 
 

The problem of four bodies with the two 
hypotheses shown below is called bi-circular 
problem. 
First hypothesis: It is considered two bodies with 
significant mass moving in circular orbits around the 
mutual center of mass. Those two bodies are called 
primaries. 
Second hypothesis: The third body with significant 
mass is in a circular orbit around the center of mass 
of the system formed by the two first primaries and 
its orbit is coplanar with the orbits of those 
primaries. 
Figure 1 shows the motion of the three primaries in 
the fixed system of coordinates, also called sidereal 
system. 
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Figure 1 – The three primaries. 
 
We will study the motion of a fourth body, with 
negligible mass, moving under the gravitational 
attractions of the three bodies with significant mass. 
We will calculate the planar equations of motion of 
the space vehicle in the sidereal and synodical 
systems. We will use the canonical system of units 
by dividing all the distances by the distance between 
the two primaries and dividing the masses by the 
total mass of the two primaries. It will also be 
defined that the angular speed of the system is 
unitary. The masses and distances of the Earth, 
Moon and Sun are: Mass of the Earth, 

; Mass of the Moon, 
; Mass of the Sun, 
. Earth-Moon distance 

; Earth-Sun distance 
.  

kgxM T
241098.5=

kgxM L
221035.7=

kgxM S
301099.1=
kmxd 5

1 10844.3=
kmxd 8

2 10496.1=
Then, the masses of the Earth, Moon and Sun in the 
canonical system are: 

Mass of the Earth = 9878715.0=
+

=
TL

T
E MM

M
µ ; 

Mass of the Moon 

= 0121506683.0=
+

=
LT

L
M MM

M
µ ; Mass of the 

Sun 48.328900=
+

=
LT

S
S MM

M
µ .  

The circumferences described by the Moon and the 
Earth has radius Eµ  and Mµ , respectively. 

 and  are the 
coordinates of the space vehicle, the Earth, the Moon 
and the Sun, respectively. Below are the equations of 
motion of the Earth, Moon and Sun: 

),(),,(),,( MMEE yxyxyx ),( SS yx

)cos(tx ME µ−= , )(tsiny ME µ−= , 
)cos(tx EM µ= , )(tsiny EM µ= , 
)cos(ψSS Rx = , )(ψsinRy SS =  and 

tSωψψ += 0 .  

Where 1723985.389=Rs  is the distance between 
the Sun and the center of the system and 

07480133.0=sω  is the angular speed of the Sun. 
We observed that the positions of the Moon, Earth 
and Sun are: )0,( Eµ , )0,( Mµ  and 

))(),cos(( 00 ψψ sinRR SS . 
The distance of the space vehicle to the Earth is 

22
1 )()( EE yyxxr −+−= ; to the Moon is 

22
2 )()( MM yyxxr −+−= ; to the Sun is 

22
3 )()( SS yyxxr −+−= . 

Therefore, we have the equations of motion of the 
space vehicle in the inertial system: 
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Figure 2. Initial position 

 
 
The fixed system of coordinates is called sidereal. In 
Figure 2 we have the initial position. 
We will introduce a system of rotating coordinates 
on the center of mass of the Earth-Moon system with 
the same angular speed of the primaries. Be ),( ηξ  
the coordinates of the particle in this synodical 
system. The equations that convert the coordinates 
of the fixed system to the rotating system are: 
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If we now differentiate each component in equation 
 twice we obtain )3(
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The positions of the four bodies are: Moon 

)0,(),( EMM µηξ = , Earth )0,(),( MEE µηξ −= , 
Space Vehicle ),( ηξ , Sun 

)]))1(([)],)1[cos(((),( 00 ψωψωηξ −−−−−= tsinRtR SSSSSS

. It is clear that Sω−1  is the angular speed of the 
Sun in the synodical system. The coordinates ),( ηξ  
are called synodical and the coordinates  are 
called sidereal. The three distances in the synodical 
system are shown below. From the space vehicle to 

the Earth is 

),( yx

22
1 )( ηµξ ++= Mr ; from the space 

vehicle to the Moon is 22
2 )( ηµξ +−= Er  and 

from the space vehicle to the Sun is 
22

3 )()( SSr ηηξξ −+−= . 
The equations of motion of the space vehicle in the 
new system are: 
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Figure 3 – Synodical system. 

 
 
In Figure 3 the axes (x,y) are of the fixed system, 
and the axes (ξ,η) are of the rotating system. 
 
3. Gravitational Capture 
 
Figure 4 shows a trajectory that ends in gravitational 
capture. To define gravitational capture it is 
necessary to use some basic concepts of the problem 
of two bodies. We will call  the double of the 
sum of the kinetic and potential energy of the 
problem of two bodies, the space vehicle and the 

Moon, that is given by: 

3C

r
VC Mµ22

3 −= , where r  

and  are, respectively, the distance and the 
velocity of the space vehicle with respect to the 
Moon, and 

V

Mµ  is the gravitational parameter of the 
Moon. 
If we consider only two bodies (the Moon and the 
space vehicle),  is constant, if only gravitational 
forces are considered. We will describe the orbits of 
the space vehicle for values of  according to the 
classification:  If , we have hyperbolic 
orbits,  If 

3C

3C
)i 03 >C

)ii 03 =C , we have parabolic orbits,  
If 

)iii
03 <C , we have elliptic orbits.  

We defined  as being the double of the energy of 
the system Moon-vehicle. Unlike what happens in 
the problem of two bodies,  is not constant in the 
bi-circular problem. Then, for some initial 
conditions, the space vehicle can alter the sign of the 
energy from positive to negative or from negative to 
positive. When the variation is from positive to 
negative it is called a gravitational capture orbit. The 
opposite situation, when the energy changes from 
negative to positive, is called gravitational escape. 

3C

3C

We describe the numerical methodology below. 
)1  A Runge-Kutta of fourth order integrator was 

used, programmed in the FORTRAN language. 
)2  We integrated the equations of motion of the 

space vehicle in the sidereal system. 
)3  The initial conditions are obtained in the 

following way. We consider the Moon in the origin 
of the XY  system and the Earth with coordinates 

)0,1(− . The starting point of each trajectory is at a 
distance of 100 km from the surface of the Moon 
( 1838=pr  km, starting from the center of the 
Moon). To specify the initial position completely it 
is necessary to know the value of one more variable. 
The variable used is the angle α  that represents the 
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position of the Moon. This angle is measured 
starting from the Earth-moon line, in the 
counterclockwise sense, starting from the opposite 
side of the Earth. The magnitude of the initial 
velocity  is calculated from the initial value of V

r
VC Mµ22

3 −= . The direction of the velocity 

vector of the vehicle is chosen as being 
perpendicular to the line that links the space vehicle 
to the center of the Moon, appearing in the 
counterclockwise direction for the direct orbits and 
in the clockwise direction for the retrograde orbits. 
The orbit is considered of capture when the particle 
reaches the distance of 100000 km (0.26 canonical 
units) from the center of the moon in a time smaller 
than 50 days (approximately 12 canonical units). 
The sphere with radius 100000 km centered in the 
Moon is defined as the sphere of influence of the 
Moon. Figure 3 shows the point P, where the space 
vehicle escapes from the sphere of influence. The 
angle that defines this point is called the angle of the 
entrance position and the Greek letter describes it 
β . During the numeric integration the step of time 
is negative, therefore the initial conditions are really 
the final conditions of the orbit after the capture. 
 
 

 
Figure 4 – Initial conditions. 

 
 
4. Effects of the Angle α . 
 
We now show some results obtained. Figure 5 shows 
direct orbits and figure 6 shows retrograde orbits. In 
both situations the angle ψ  is constant and equal to 

, and . The angle o0 15.03 −=C α  assumes the 

values:  (6),  (5),  (4),  (3),  
(2),  (1). The coordinates of the position vector 
for the case of direct or retrograde orbits are: 

o30 o60 o90 o120 o150
o180

Eprx µα += )cos(  and )(αsinry p= . The 

coordinates of the velocity vector for the case of 
direct orbits are: )(αVsinxv −=  and 

Ev Vy µα += )cos( . For the case of retrograde 
orbits the coordinates of the velocity vector are: 

)(αVsinxv =  and Ev Vy µα +−= )cos( . We can 
clearly see the effect of the Sun pushing the 
trajectories to the right. The direct orbits has a direct 
path, while the retrograde orbits start their motion to 
the left and then feel the effects of the Sun and turn 
to the right. 
 
 

 

1 2

Figure 5 - Direct orbits. 
 
 

 
Figure 6 - Retrograde orbits. 

 
 
5. Variation of the Energy 
We now turn our attention to study the effects of the 
initial value of the energy . We consider 

 and make  to assume the values -
0.1 (1), -0.2 (2), -0.3 (3) and -0.4 (4). In figure 7 we 
have direct orbits and in figure 8 we have retrograde 
orbits. We see that the reduction of the energy 
increase the length of the trajectories and, in some 
cases, it includes loops. Trajectories with energy 
close to zero escape faster from the primary. 

3C
o30==ψα 3C
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Figure 7 – Direct trajectories varying  3C

 
 

 
Figure 8 - Retrograde trajectories varying  3C

 
 
6. Variation of the Angle ψ  
We now study the effects of the position of the Sun. 
We considered  and  in figures 9 

and 10. The angle 

o90=α 3.03 −=C
ψ  will assume the values  (5), 

 (4),  (3),  (2) and  (1). In figure 9 
we have direct orbits and in figure 10 we have 
retrograde orbits. It is clear that the Sun attracts the 
trajectories. The results show this fact. The 
retrograde trajectories have this characteristic more 
visible. 

o0
o30 o45 o60 o90

 
 

 
Figure 9 - Direct orbits. 
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Figure 10 - Retrograde orbits. 
 
 

7. Minimum Value of  3C
1 The value C3 is associated to the amount of fuel 

consumed to complete the capture, that is, if this 
value is smaller, smaller is the amount of fuel 
consumed in the maneuver. 

6

5
The first objective of this part of the text is to obtain 
the smallest consumption of fuel to complete the 
maneuver of the space vehicle when we have a 
gravitational capture in the bi-circular problem of 
four bodies. The second objective is to find 
favorable areas for gravitational capture in the bi-
circular problem. We called more favorable areas for 
gravitational capture, areas where there is a 
minimum energy. 

2 4
3

In all the graphs below, it will be made a 
variation of the angle α  from  up to , in 
steps of . The initial value of  is -0.65, and 
the final value is -0.01, with variations of -0.01.  

o0 o360
o1 3C

For the angle of the Sun (ψ), we choose the 
values : , , , , , , , 

, , , , , , , 
 e . For each one of these values of 

the angle of the sun we have a graph, shown 
below, that shows the minimum time of 
gravitational capture. 

00 030 045 060 090 0120 0135
0150 0180 0210 0225 0240 0270 0300
0315 0330

Below we have two groups of graphs for the bi-
circular problem, where the energy is a function 
of the angle of the Sun. The angle of the Sun is 
shown in degrees, and the energy in canonical 
units. The first group is for direct orbits and the 
second for retrograde orbits. 

1
2
3
4 

5
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Figure 11 – Minimum energy for ψ  (red),  

(green),  (blue) and (pink) for direct orbits. 

00= 030
045 060

 
 

 
Figure 12 – Minimum energy for ψ  (red), 

 (green),  (blue) and (pink) for direct 
orbits. 

090=
0120 0135 0150

 
 

 
Figure 13 – Minimum energy for ψ  (red), 

 (green),  (blue) and (pink) for direct 
orbits.  

0180=
0210 0225 0240

 
 

 
Figure 14 – Minimum energy for ψ  (red), 

 (green),  (blue) and (pink) for direct 
orbits. 

0270=
0300 0315 0330

 
 
The minimum value of the energy happens in all 
the graphs above when . In all the 
graphs there is an area where gravitational 
capture doesn't happen. In that area we have 
collisions and the motion is dominated 
predominantly by the effect of the Sun. 

65.0C3 −=

For example, when ψ  there are no 
gravitational capture in the interval 

α . The minimum value of the 
energy happens when 160 α . 

00=

≤0350 0360≤
≤0 0180≤

Several similar results can be obtained just by 
looking at the plots.  
This analyzes are now repeated for the group of 
retrograde orbits. 
 
 

 
Figure 15 – Minimum energy for ψ  (red),  
(green),  (blue) and  (pink) for retrograde 

orbits. 

00= 030
045 060
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Figure 16 – Minimum energy for ψ  (red), 

 (green),  (blue) and 150 (pink) for 
retrograde orbits. 

090=
0120 0135 0

 
 

 
Figure 17 – Minimum energy for ψ  (red), 

 (green),  (blue) and (pink) for 
retrograde orbits. 

0180=
0210 0225 0240

 
 

 
Figure 18 – Minimum energy for ψ=  (red), 

 (green),  (blue) and  (pink) for 
retrograde orbits. 

0270
0300 0315 0330

 
 
Again, as an example, we see that for ψ  there 
are no gravitational capture in the interval 

α . The minimum value of the energy 
happens when α .  

00=

≤01 019≤
≤0164 0196≤

Several similar results can be obtained by examining 
the figures. 
 
8 Initial distances different from 100 
Km 
Now we will consider the initial distance between 
the space vehicle and the Moon having three 
different values: 100 km, 500 km and 1000 km. Our 
objective is to see how this value interferes in the 
minimum value of the energy of the space vehicle. 
In Figure 19 we have direct motion in red (100 km), 
in green (500 km) and in blue (1000 km). The initial 
angle of the Sun is ψ . 00=
 
 

 
Figure 19 – Different values for the initial distance 
from the Moon: 100 km, 500 km and 1000 km, for 

ψ= . 00
 
 
In Figure 20 we have direct motion in red (100 km), 
in green (500 km) and in blue (1000 km). The initial 
angle of the Sun is ψ .  060=
 
 

 
Figure 20 - Different values for the initial distance 
from the Moon: 100 km, 500 km and 1000 km, for 

ψ  060=
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In Figure 21 we have direct motion in red (100 km), 
in green (500 km) and in blue (1000 km). The initial 
angle of the Sun is ψ .  090=
 
 

 
Figure 21  - Different values for the initial distance 
from the Moon: 100 km, 500 km and 1000 km, for  

ψ  090=
 

In Figure 22 we have retrograde motion in red (100 
km) and in green (500 km). The initial angle of the 
Sun is ψ . 00=

 
Figure 22  - Different values for the initial distance 

from the Moon: 100 km and 500 km for ψ  00=
 
In Figure 23 we have retrograde motion in red (100 
km) and in green (1000 km). The initial angle of the 
Sun is ψ . 00=
 

 
Figure 23  - Different values for the initial distance 
from the Moon: 100 km and 1000 km  for  ψ  00=

In Figure 24 we have retrograde motion in red (100 
km) and in green (500 km). The initial angle of the 
Sun is ψ . 090=

 
Figure 24  - Different values for the initial distance 

from the Moon: 100 km and 500 km for ψ  090=
 
In Figure 25 we have retrograde motion in red (100 
km) and in green (1000 km). The initial angle of the 
Sun is ψ . 090=

 
Figure 25  - Different values for the initial distance 
from the Moon: 100 km and 1000 km for ψ  090=

 
In Figure 26 we have retrograde motion in red (100 
km) and in green (500 km). The initial angle of the 
Sun is ψ  0270=
 

 
Figure 26  - Different values for the initial distance 
from the Moon: 100 km and 500 km for ψ  0270=
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In Figure 27 we have retrograde motion in red (100 
km) and in green (1000 km). The initial angle of the 
Sun is ψ  0270=
 

 
Figure 27  - Different values for the initial distance 
from the Moon: 100 km and 1000 km for ψ  0270=
 
 
We can observe that there are differences among the 
values of the energy when the initial distance is 1000 
km in both graphs. Those differences do not exist 
when the distance is 100 km or 500 km. 
 
 
 
9. Conclusions 
This paper studied the problem of gravitational 
capture under the bi-circular four-body problem. The 
approach is to perform numerical simulations, in 
order to know the main characteristics of the 
problem. In particular, the effects of the initial 
position and the energy of the spacecraft are 
considered, as well as the position of the Sun. The 
results shown here can help mission designers to get 
the most of the gravitational forces involved in the 
problem. 
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