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Abstract: A new kind of entropy solution to the Cauchy problem for strong degenerate parabolic equations with

unbounded coefficients,

du
ot

= AA(u) + div(uE), A'(u) >0,

is quoted. Suppose that ug € L°(RY), E = {E;} € (L?(Qr))" and divE € L?(Qr), by a modified regulariza-
tion method and choosing a suitable test function, the BV estimates are got, the existence of the entropy solution
is obtained. At last, by Kruzkov bi-variables method, the stability of the solutions is obtained too.
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1 Introduction

This paper is to study the existence and uniqueness
of BV-solution of the Cauchy problem for nonlinear
degenerate parabolic equation of the form

% = AA(u) + div(uE), in Qr = RN x (0,T),
(1)
u(z,0) = uo(x), (2)

where E = {E;} € (L*(Qr))" and
A(u) = /Ou a(s)ds, a(s) >0 (3)

When a(s) > « > 0, some applicative models related
to the equation (1) were studied in [16], the existence
of weak solutions of the first initial boundary problem
of (1) was got in [15] when ug € LY(Q), E = {E;} €
(L*(Q7))Y. Especially, when |E| € L"(0,T; L())
with 2 + % < land uy € L*>(Q), then the weak
solution u € L*®(Q) N L?(0,T; H}(£2)), where
is a bounded open set in RY, Q@ = (0,7) x .
When a(s) > 0, equation (1) arises in many ap-
plications, e.g., heat flow in materials with temper-
ature dependent conductivity, fluid mechanics, flow
in a porous medium, and the boundary layer theory
(see [1], [10] et al.). If E(z,t) is a bounded and suit-
able smooth function, the paper [2] by A. I. Vol’pert
and S.I.LHudjaev was the first to be devoted to the
solvability of (1.1). After that, many mathematicians
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(e.g. Bénilan, Brezis, DiBenedetto, Carrillo, Gag-
neux, Madaune-Tort, Wittbold, and Wu-Zhao et al.)
continued to study its solvability, and got many ex-
cellent results, one can refer to chapter 3 of the book
[10], the papers [2]-[6], [12], [13], [14], [17], [18],
[20], [21] et al. and the references therein for details.

The difficulties of problem (1.1)-(1.2) come from
three obstacles. The first obstacle is the strong degen-
eration of a, so the solutions generally are discontin-
uous even if ug(z) is smooth. The second obstacle
is the unboundedness of E, even if a(s) > a > 0,
one only can proved that there exists a weak solution
of (1.1)-(1.2) and it seems difficult to prove the exis-
tence of the classical solution, so the maximal princi-
ple can not be used directly, this adds the difficulty to
get the estimates we need. The third obstacle is also
in the unboundedness of F/, which makes the estimat-
ing method used in [12]-[18] et al. not effective. To
overcome these difficulties, solved as in [12], we put
forward a new definition of BV-entropy solution for
(1.1)-(1.2). By modifying the classical initial value
regularizing method, we get the BV estimated formu-
las, this method is completely different from that used
in [2]-[4], [12]-[14] et al. To this aim, some restric-
tions in F are added.

As for the uniqueness problem, it can be similarly
solved as [12], for the completeness of the paper, we
give the outline of the proof.
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2 Definitions and Main Results

Following reference [8], f € BV (Qr) if and only
if that the generalized derivatives of every function
f(z,t) in BV (Qr) are regular measures on Qr, i.e.

of of .
—| < o0 00,7 =1,2,--- N.
//éT|at < ’//C?T|6wz|< 71’ = I

A basic property of BV function is that [25]: let
f € BV(Or). Then there exists a sequence { f,} C
C*°(Q) such that

fim | fuf | dr =0,

nlggo//QTern|d:c=//QTerr.

So, it can be defined the trace of the functions in BV
space as in Sobolev space. Moreover, the BV func-
tions are the most weakly functions which can be de-
fined the traces.

Let

Si(s) = | h(r)dr

for small 5 > 0, where hy(s) = 2(1 — £), . Obvi-
ously hy(s) € C(R), and

hn(s) 20, | shy(s) [< 1, | Sy(s) [< 1;

2
n

. . . / _
%11)% Sy(s) = sgns, %13% 88, (s) = 0.

Definition 1 A function u is said to be a weak solu-
tion of the Cauchy problem (1)-(2), if
1.

u € BV (Qr)NL¥(Qr),

o (v 9
356i/0 va(s)ds € L*(Bg x (0,T)), VK > 0.

(4)
2. Forany ¢ € C3(Qr), ¢ >0, k€ R, n >
0, u satisfies
S Jor{In(u = k)pr — Eily(u — k)ga,

+A,(u, k)Ap — S} (u — k) | V [ Va(s)ds |2 ¢
+ Ji 8S1(s — k)dsEiz,p}drdt > 0,

(5)
3.

lim

| w(z,t) —up(z) | de =0, VR >0, (6)
t—0 /By

where the pairs of equal indices imply a summation
from 1 up to N, and
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Clearly if u is a weak solution in Definition 1,
then w is a entropy solution in [2].
We will prove the following Theorems:

Theorem 2 Suppose that A(s) has at least two order
derivatives, a(s) = A'(s) > 0; ug(x) € L=®(RN),
ug(z) € CHRN); E = {E;} € (L*(Q7))Y, divE €
L?(Qr), then problem (1)-(2) has a generalized solu-
tion in the sense of Definition 1.

Theorem 3 Let u,v be solutions of (1)-(2) with ini-
tial values uo(z),vo(xz) € L¥(RN) N L2(RN) re-
spectively. Suppose that A(s) has at least two or-
der derivatives, a(s) = A'(s) > 0, ug(x),vo(x) €
CY(RN). Then

/N | u(z,t) —v(z,t) | wy(z)de
R

§c/ | uo — vo | wa(z)dz
RN

where c, A are positive constants and

wyr(x) = exp{—\\/1+ | z |?}. (8)

Corollary 4 The solution of (1)-(2) is unique.

3 The Regularized Problem

Suppose that A(s),ug(x) are appropriately smooth
and ug(z) € L®(RN) N L*(RN), B = {E;} €
(L2(Qr)N ,divE € L*(Qr), Qr = RN x (0,7T).
For any given large positive numbers K, let us intro-
duce the following modified regularized equation.

0 1
ai; = AA(u) + 2o Au + div(ud » Tk E),  (9)
u(z,0) = uox (), (10)
where J. is the mollifier as usual, ie. let x =

($1,~ . ',J,‘N,t), and

1
6(z) = aelFPif 2] < 1,
0, if |z| >1,
where )
A= el=l*~1dx.
B1(0)
For any given € > 0, let
1 x
Oc(z) = N+l 5(5)

Here, we choose € = % especially, and

(58 * TK(E) = (55(E1) * TK(El), 65(E2) * TK(EQ),
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+,0:(En) * T (EN)),
Tk (s) = min{ K, max{—K, s}}.
Moreover, we suppose that suppugx C Bx = {z :
|x| < K}, and it satisfies

Jim |wor — uollL2(rry = 0,

(11)
It is well-known that there is a classical solutions
ug € C?1(Qr) of (9)-(10). By this fact and using the
maximum principle in problem of (9)-(10), we have

[uok [ Lo < [luol| oo (r)-

|urellzee < [luolzoe- (12)

Let gradug = (Ugy,Uzy, Uz, Uzy,,) and
Uy, = ug. For simplicity, we denote ug as u in the

following calculation. Let us derivation on zz,s =

1,2,---,N,N + 1 in (2.1). Then multiplying with
u%%go on the two sides, 0 < ¢ € C§°(Qr),

and integrating over By, we get

d/I
dt Jry

n(lgradul)pdz
1 Sy(|gradul)

(Auxs )uws

dx
K Jn, 14

|gradul
Sy(lgradul)

— AA
(u |gradul

Ry

— Vg, - 0 * T (E)uy,
Ry

—/ div(u
Ry

= 0.

Ts )uxs

Sy(|gradul)

|gradul

Sy(|lgradul)
|gradul

(9(55 * TK(E)
O0xg

)uws

Integrating by part, we have

d

— I

dt /RN K

+i stxiuxpxs 82[17(‘9"”adul)
K Jry 6§sfp

1 Sy(lgradu
L Sl

(lgradul)pdx

Ry |gradul
32[77(|gradu|)

OEs&p

Uz g; Uy Py AT

wdx

+ a(u)uxs:ciuxp:cs
Ry

] ot Sl

o

‘LJMMDMWWMNWWM

|gradul

w)ug, In(|gradu|) g, dx

[
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—I,(|gradul) pdz

—/ d' (w) Au(|gradul S, (|gradul)
RN
—I)(|gradul))pdx

—Z/ 0e * Tx (E;)(|gradul Sy (|gradul)

— I, (lgradul))pda

_/ div(a[uég « T (E)] i, Sy(|gradul)
Ry 0z, |gradul
=0.
(14)
For the last term of the left side in (2.6),
/ div[ua(se * TK(E)]U% Sn(]gradu|)(pdx
Rn Oz ° |gradul
N 00T (E)) 8%« T (E))
- Z/ e = e
i—1/ BN Ts LsOT;
Sy(lgradul)
r.———————>dT. 15
E ‘g""adu’ ()0 T ( )
If we notice that ¢ = %, then
0(0e x Tk (E;))
0xs
_ / 2K2<xs - ys) KN+1
(K @—yl<1y (K@ —y)? -1 A
1
€ K (2—y)|? -1 TK(EZ(y7 S))dydsv
where x = (z1,- -+, zN,t) as before.
Moreover, it is well known that
1 1 ¢?

eIKGe—yP—1 <

(|K(x—y)]> —1)2 4’
s0, by the facts of that
|K(x—y)| <1, [Tk (E;))| < K,
0xs
< / 1
<e
ik (a—y)l<1} (K (z —y)[* — 1)
KN+3 1

elK(@—y?-1 dyds
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Thus, if we choose that

1

le(ﬂ«“%s@l € Cg°(RY),

p(r) =

Sy(lgradul)

Ils — / [U$1 8(6&‘ * TK (E)) uzs
Ry

Ox |gradul

c
< —
K Jry

Similarly, we are able to show that

|gradul|pidx. (16)

0?(0:. x Tk (E))

< CKN+4
0x,0x; = ’

0%(6- % T (E))

Sy (lgradu)
0x,0x; e

|gradul

<c prdx.

Ry

(17)
By the following facts

L[ Syllgradul)

. d
K Jry |gradul Yoz Uas Py 0T

1
= _W/ I, (|gradul) Apidx,

2
d
[ s, 2 ollrod
Ry

OEs&p
[ atwySilorada

|gradu]
o

- KN+4 /RN a(u)Iy(|gradul) Aprde,

pdx > 0,

umswiul's Squl dl’

I, (|gradul) s, dx

and as 7 — 0,

|gradu|Sy(|gradu|) — L,(|gradu)

lgradul
= / Thy(T)dT — 0.
0

By a process of limit, one can assume that

p1 = wa(x) = exp(=Ay/1 + [[2),

where A is a positive constant. Then

Whg, = W)\ —F/———x
Ax; A 1+|$|27
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‘VW)\| S C W), |AW)\| S C W) -

Letn — 01in (14). We have

d
d7/ |gradulwydz < ¢1 + 02/ |gradu|wydz,
t JRy Ry

equivalently,

¢
/ |gradulwydz < Cl+02/ ds/ |gradu|wydz,
Ry 0 Ry
by Gronwall Lemma, we have

/RN |gradu|wydz < (T, A, ||Juo||Le)- (18)

By (18), from (9), it is easy to show that
) | Vug [2< (T, \, ||uol|ze<)-

[ Jo et
(19)

By (12), (19) and Kolomogroff’s Theorem, there
exists a subsequence {ug,, } of the family {ux } of so-
lutions of regularized problems (9)-(10), which con-
verges strongly in L'(Qr). Thus the limit function
u € BV (Qr) NL>®(Qr) and ug, — u a.e. on Q7.

4 The Proof of Theorem 2

We need the following Lemma, which can be found in
[22].

Lemma 5 Assume that U C RY is an open bounded
set and let fi, f € LY(U) as k — oo,

fr — fweakly in L1(U),1 < g < oc.
Then

limkiilgo | fx HLQ(U)—H Flie (20)

We now prove that u is a generalized solution of

(1)-(2). From (19), we have
ox; / / \/7(18

weakly in L2 (RN x (0,7)),i = 1,2,---, N. This
implies
i / Ja(s)ds € L2(RN x (0,T)),VR > 0,

i=1,2,---,N.

Thus wu satisfies (1) in Definition 1.
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Let ¢ € C3(Qr), ¢
Multiplying (9) by ¢.5,
Qr, we obtain

, ke R n >0

—/ I (ug — k)pidadt
Qr

K// Sy(u — k)2 a
8uK8uK
PR / J—
—I-K//QT Sn(uK k) oz, Oz, pdxdt

_ / / Sy(ux — k) (A(ug) — A(k))Apdadt

2, dxdt

_ / St (ux — k)(A(ur) — A(k:))auK 0 ddt
QT Ox;
+ / S!(ux — k)a () 2 QU
QT

0x; Bxl

+// Sn(’LLK — k) TK(Ei)quoxidxdt
Qr

pdxdt = 0.

(21)
Notice that the second term trends to zero as K —
00, the third term is nonnegative, and by Lemma 5,

9
+ / S (s — B)Tie (B uge ek
QT 0

T

.. Oug Oug
| f !
im inf o, Sp(ux — k)a(uk) Oz, On: wdxdt
> // Sy (ur — k) | V/ " \a(s)ds |* pdzdt.
Q 0

) (22)

At the same time, we have
ou
/ Sy(uure = B)(A(ure) = A(K) 52 dads
Qr

4 / Sy (ux — k) (Aux) — Ak)) Apdedt
Qr

—//T/kws,g(s—k)(A

+ / / Syl = B)(Alux) = A(k) Apdrdt

(s)— A(k))dsApdzdt

ug

—// / Sy(s —k)a(s)dsAgdxdt,  (23)
Qr

/ Sy(ur — k)T (Ei)ug @y, drdt

Qr

+/ S (uge — B)Tie (B yuge 2 ot
op K K (£ Kaxiw
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—/// A(sy(s — k),

/k 55y (s — k)ds@| Tk (E;)dxdt

://T[/:Ksn(s—k)ds

K
55, (s — k)ds]pz, Tk (

_//T/uKss,g(s—k ds

(02, Tr (E;) + ¢Tki(E;))dxdt

=] Jy, e

+ /k 58 (s — k)dsTici (E)pldaudt.

UK - k)goxi

(24)
where Ty ;(E;) = aEaig(cf’t)

Noticing that £ = {E;} € (L*(Qr))" and
divE € L?(Qr), let K — oo in (21). By (22)-(24),
we get (5).

Now, we will prove that the above u satisfies the
initial condition (2). This is the direct corollary of the
following Theorem 6.

Let us choose the K in (9) to be m,l € N, the
initial condition (10) be

Um (2,0) = up(x), uy(z,0) = up(z),

respectively. Then we have

Theorem 6 For any given R > 0 and when m,l are
large enough,

/ (2, £) — w(, £)|da
Bgr

< / lwom () — ugp(@)|dz + Cr(t).  (25)
Bagr

where CR(t) is independent of m, l, and moreover
%EI%) CR(t) =0.

Proof. Denoting that v = u,, — u;, by (9), for any
given t, choosing o(z,t) € CL(RY),

t
/ / pudzdt
0 JBagr

t O, Ouy, Op
] Tt G~ atw) 52 57 dwdr
t 1 Oup, 1 0u;, Op
+/0 /BQR[m ox; laxz]ﬁxld zdr

t 5 A
+/ / i\Um —

0 JBog (u Uz)awi
=0
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Let
p(x,t) = ((2)8(v),

where

((x) € Cy(B2r),0< ¢ < 1,{|p, =1

[ ] s
1o ()53 (0) + C0)Sy(0) 5 dnds

_/t/ [iﬁum_laul]
0 JByy m Ox; l Ox;

[Car(£)Sy(v) + ¢(2)S) o >§?]dm

0y
+ Ei(
/ Bar u) Ow;

Then

/ " 5, (s)ds), dadr
0
8’11,[

Noticing that

V(] < hm Sy (s)s =0,8;(s) >0

and

1 Juyy,
(—

m Ox;
1 Juyy,

_18ul)8v
&t _18ul)(8um_8ul)
 'm Oxy [ Ox;" " Ox; ox;

1 Ougy 9 1 1, Oup, Ou; 1 ,0u; o
_m((?:cz) (m+l)6a:i 8xi+l(8xi)

1 Oupm .o 1 1. Ou,, O 1, 0u; o
> (4= -
_m(axz) (m+l)|8xi 8xi‘+l(6xi)

1 Oupm .o 2 Oupy Oup, 1 ,0u; 4
> - _ -

- m( o0x; ) \/ml| o0x; am»' + l(axi)

> 0.

Then, let 7 — 0 in (26). One gets the conclusion.
By Theorem 6, for any given R > 0 and m, [ large
enough, if let

uom () = ug () = uo(x),
we have

|u(z,t) — up(x)|dx
Br

< /B e, 1), 1)+ /B o () —va(2)
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+OR() + /B Juar(e) = o)l

+/BR g (2, ) — g ()| d.

Lett — 0 and notice that u,, (z, t), u;(x, t) is classical
solutions of (9). We know (2) is true in the sense of

(6).

5 The Proof of Theorem 3

Let I',, be the set of all jump points of u € BV (Qr),
v the normal of T, at X = (z,t), u™(X) and ™ (X))
the approximate limits of u at X € I', with respect
to (v,Y — X) > 0and (v, Y — X) < 0 respectively.
For continuous function p(u, z,t) and u € BV (Qr),
define

1
Blua.t) = [ plrut + (1= 2, 0dr,
0

1
§(u+ +u),
which is called the composite mean value of p and w.
For a given ¢, we denote I'},, H', (v}, ---,vY;) and
v, as all jump points of u(-,t), Hausdorff measure
of T, the unit normal vector of I'Y,, and the asymp-
totic limit of u(-,t) respectively. By [8], if f(s) €
CY(R), u € BV(Qr), then f(u) € BV(Qr) and
ou

Of(u) _ 4 i
. f()xz — 1,2,

u =

,N.

Lemma 7 Let u be a solution of (1)-(2). Then

), u” (2, 1)),

a.e. on T, where I(c, 3) denote the closed interval
with endpoints o and (3.

a(s) =0, se I(u"(z (27)

Proof. Denote

'y ={(z,t) € Ty,v1(z,t) = --- = vn(x,t) =0}

Iy ={(z,t) € I‘u,v%(m,t) =

First prove a(s) = 0, s € I(u™(z,t),u™ (z,t)),
a.e. on I';. Since any measurable subset of I'; can
be expressed as the union of a Borel set and a set of
measure zero, it suffices to prove

t),u” (z,1)),

a.e. on U C I'y,where U is a Borel subset of I';. We
may suppose U is compact. By Lemma 3.7.8 in [10],

= v%(z,t) > 0}.

a(s) =0, s€ I(u"(z
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for any bounded function f(x, t), which is measurable
with respect to measure g we have

//Uﬂw’t)g; —/OTdt/Utf(:c,t)g;,

where U = {z : (z,t) € U}. By [11], for any Borel
subset S C U,

n(s) = [t @)

Ou(-, 1) t t
oz, (S)—/St(u_,_—u Yv;dH?.

(28) is equivalent to

[ renete

= /T dt [ flz,t)(u' (z,t) —u’ (z,t))vldH".
0 Ut

The definition of I'; implies that the left hand side
vanishes, so we have

(28)

—u” (z,1))vidH,

) —u (x,t))vidH

T t t t t
/0 dt/wf(x,t)(u+(33,t)—u_(x,t))vidH 0.

Choose f(z,t) = xu(z,t)sgn(uly (z,t) — u' (z,t))
sgnv!, where x,(z,t) denote the characteristic func-
tion of U and sum up for ¢ from 1 up to N. Then we
obtain

/dt/ (u!y (z,t)—u' (2, 1)) (| v} |+ + | oy [)dH"
Ut

=0, (29)
where G is the projection of U on the ¢-axis. (29)

implies for almost all ¢ € G,

[ ety = o @) [+ | ol

=0

and hence for almost all ¢t € G,
vl ==l =0,

H'-almost everywhere on U?, which is impossible un-
less mesG = 0.

For any o, 8 with 0 < a < 8 < T, we choose
;(t) € C§°(0,T) such that

0<4;(t) <1
Jlgglo ¢J( ) X[a,ﬂ] (t)a Vt € [O,T],
ISSN: 1109-2769 547
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By [4], we can choose ¢, € C5°(Qr) such that
| n(z,t) [< 1,
Jm g =0

in LY(Qr,| 3¢ |).

Now from the definition of BV-function, we have

[ et
S
S,

Letting j — oo leads to

ou
//QT Qpn(xyt)X[a,ﬁ](t)a

_ / AW AGn (.10 ()t
T

0
_//QT El-ua—xigon(:n,t)X[aﬂ](t)da:dt.

) A (, )5 () ddt

0
Eiua—xigpn(m, t);(t)dxdt.

Clearly, this equality also holds if [« ] is replaced by
(ar, B) and hence it holds even if [« (] is replace by
any open set I with I C (0,7). Since G is a Borel
set, by approximation we may conclude that

[, e
J 0

0
- Eiu—opn(z, .
/ o, uaxigp (z,t)xq(t)dzdt

w) Ay (z,t)xc(t)dzdt

Since mesG = 0, the two terms on the right hand
vanish and

[ eaneoz=o

ou
—//TXU(:E XG 7= Y =0.

/ (u* (2, ) — u™ (2, t))oedH = 0,
U

Hence
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which implies H(U)
arbitrariness of U.
Next we prove H(I'2) = 0. Let U be any Borel
subset of I'y which is compact in @7, Since U is a
set of N + 1-dimensional measure zero and VA(u) €
loc(QT) we have

//

= 0 and H(I';) = 0 by the

u)dxdt = 0,

axz

and hence
/U(A(zﬁ(x,t))—A(u*(x,t)))yth —0,i=1,---,N.

Form this it follows by the definition of I's that
ut(z,t)
/ a(s)ds =0,
u™ (w,t)

a.e. on I'5.Thus the lemma is proved.
Proof of Theorem 3. Let u, v be two generalized
solutions of (1) with initial values

u(z,0) = up(z), v(z,0) = vo(z).

By Definition 1, we have for any ¢ € C2(Qr),
p>0, k,leR,

[ = b= B nn b

A, k) Ap — ! (u— k) | v/ou Ja(s)ds 2 o

_/k 55y (s — k)dsEjq,p}dzdt > 0, (30)

[ = Dee - Bty 1w =g,

+Ag(0, D) Ap — S (v —1) | v/ov Ja(s)ds 2 ¢

_/l 58, (s — k)dsEy,p}drdt > 0.

Let w($7t7y77—) 2 07 ¢ < CZ(QT X QT)’ supp
w('v 5T, y) C QT if (Tay) € QTv Suppw($7t7 B) ) C
Qr. We choose k& = v(y,7), | = u(z,t), ¢ =
Y(x,t,y,7)in (30) (31) and integrate over Qr, to get

//T//QT{IH(U —v) (Yt +¢r) — (Ei(x, 1))y,

+E;(y, T)¢yi)1n(u —v)
+A,(u, v) Azth + Ay (v, u)Ayth)

(31)
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=Syu=0)(V [ fale)ds
1V [ ats)as By

—(Biz; — Eiy,) / sS) (s — k)dsi}ddtdydr

A\

0. (32)
Let(x,t,y,7) = gb(x t)jn(x—y,t—7). Where
¢(z,t) 2 0, o(z,t) € C5°(Qr), and
dn(z =y, t —7) = wp(t — 7)Y wp (2 — 13),

an(s) = 3e(3)

w(s) € C°(R), w(s) >0, w(s) =0,

if[ s[>1,
/ w(s)ds = 1.
it is clear of that
Ojn | Ojn _
o " or O
n  Odn _ 0
Ox; Oy ’
o v _ 0.
at ar ot
N N oy 6¢
ox;  Oy; 6:BZ

If we notice that

Ei(a, )1 (u — v) = /” Eix,1)S,(s — v)ds

—/

u

(Ei(z,t)s —

—vE;i(y,7))'S,(s — v)ds,

lim

vE;(y, 7)) Sp(s —v)ds
n—0Jy

= sgn(u —v)(Ei(z, t)u — E;i(y, T)v),

because F; € L?(Qr) and v € C5°(Qr x Qr), by
the control convergent theorem, we have

liny / / ) / / (B, )¢, + Bily7)

Py, ) In(u — v)dxdtdydr

://T//QTSgn(u—v)(Ei(%t)u—Ei(y:T)“)

Oy, Jndxdtdydr.
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Let h — 0 in the above equality. We have
lim // // sgn(u—v)(E;(z, t)u—E;(y, T)v)
h—0 T T

Oy Jndadtdydr

:// Ei(z,t)|u — v|¢pg,dxdt.
Qr

At the same time, it is clear of that

i | f, J Jp, (B~ )

/v sy (s — k)dsydrdtdydr = 0. (34)

(33)

For the third terms in (32), by Lemma 7, we can
deal with it as [12, 13], and get

%E%(An(uv V)Pu; Jha; + An(uv U)(éyz’jhyi) =0. (35)

Combing (32)-(35), and letting n — 0, A — 0 in (32),
we get

/ 0, {u(z,t)—v(x,t)pt—sgn(u—v)(Eju—E;v) ¢y,

+sgn(u —v)(A(u) — A(v))Ap} > 0.
Let

(36)

s—t
n(t) = / az(o)do, & < min{r,T — s},
T—t

where a.(t) is the kernel of mollifier with a(t) = 0
fort ¢ (—¢,¢).

By approximation, we can replace ¢ in (36) by
d(x,t) = wyr(xz)n(t), where wy(x) is the function of
(8), n(t) € C}(0,T). Using the estimates

| Vwy |< Chwx(z),
| Awx(z) < Crwa(),
we obtain from (36)
[ Tt t) = v(a,t) [wr(@)da
RN
< [ Tulw.m) = ole,7) | on(e)do
RN
—l—c/ / | u(z,t) —v(x,t) | wa(x)dzdt
T JRN

By Gronwall Lemma

[ ulws) = v(a.s) | on(@)da
R
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< c/ | u(z,7) —v(x,7) | wr(x)de.
RN
Letting 7 — 0, the proof of Theorem 2 is complete.
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