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Abstract: - The aim of off-line signature verification is to decide, whether a signature originates from a given signer based on the 

scanned image of the signature and a few images of the original signatures of the signer. Although the verification process can be 

thought to as a monolith component, it is recommended to divide it into loosely coupled phases (like preprocessing, feature 

extraction, feature matching, feature comparison and classification) allowing us to gain a better control over the precision of 

different components.  This paper focuses on classification, the last phase in the process, covering some of the most important 

general approaches in the field. Each approach is evaluated for applicability in signature verification, identifying their strength and 

weaknesses. It is shown, that some of these weak points are common between the different approaches and can partially be 

eliminated with our proposed solutions. To demonstrate this, several local features are introduced and compared using different 

classification approaches. Results are evaluated on the database of the Signature Verification Competition 2004. 
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1 Introduction 
The aim of off-line signature verification is to decide, 

whether a signature originates from a given signer based 

on the scanned image of the signature and a few images 

of the original signatures of the signer. Unlike on-line 

signature verification, which requires special acquisition 

hardware and setup, off-line signature verification can be 

performed after the normal signing process, and is 

thereby less intrusive and more user friendly. On the 

other hand, important information like velocity, pressure, 

up- and down strokes is partially lost. 

In the past decade a bunch of solutions has been 

introduced, to overcome the limitations of off-line 

signature verification and to compensate for the loss of 

accuracy. However when tested against skilled forgeries, 

even the best systems deliver worse equal error rates 

than 5%, in contrast with a human expert, who is able to 

do the distinction with an error rate of 1%. To break this 

barrier it is essential to identify, understand and 

compensate for the different sources of error in the 

algorithms. This paper presents a solution to address the 

problem of improvement and thereby possibly break the 

5% barrier. Typical signature verification approaches 

consist of 3 main phases. First they extract some features 

from the images of signatures, then they compare them 

and finally, they use some kind of classifier to decide, 

whether a given signature is an original or a forgery. 

This paper concentrates on the final phase of signature 

verification. In the following section several existing 

signature verifiers are introduced, with a special 

emphasis on neural network based classification. Then 

we summarize the classification problems, occurring 

when dealing with signatures, and propose solutions for 

them. In the second part of this paper a complete neural 

network based classification method is introduced to 

demonstrate, how some of the limitations of off-line 

signature verification can be overcome. Finally 

experimental results are presented and used to evaluate 

the goodness of several different features. 

 

 

2 Related work 
Typically signature verifiers take advantage of different 

general properties (global features) of the signature and 

use them as an input for different simple classifiers [1], 

[2], [3]. In [4] a more complex approach can be seen, by 

creating a two-stage neural network classifier. Different 

groups of features are defined and separate MLP 

(multilayer perceptron) classifiers are applied to them. 

These MLPs are relatively simple, containing only one 

hidden layer. Learning is not done through 

backpropagation, but through the ALOPEX algorithm, 

which allows the network not to get “stuck” in local 

minima or maxima of the response function. The MLPs 

have a relative wide range of input parameters, in order: 

16, 96, and 48 variables. The inputs of the first network 

are the global features of the signature. The second takes 

a simplified representation of the signature as an input, 

by creating a 12*8 grid and measuring the intensity 

values in each grid cell. The third network processes 

texture information. The output layer contains a single 

neutron, delivering a response value between 0 and 1 

representing the similarity between the actually 

measured signature, and the training set. These output 
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values are then processed by an RBF to make the final 

decision.  

A similar approach is taken in [5]. They use global 

features (height-width proportion, middle point, corner 

points, etc.), and grid features as inputs. Tests are 

performed both by using simple MLP classifiers and by 

using SVMs. SVMs were tested with kernels with linear, 

polynomial, and radial basis function. The latter seemed 

to deliver the best results with an average error rate of 7-

8% compared to the 16-22% error rates measured when 

using MLPs. 

Another interesting approach can be found in [6]. It 

utilizes CGS vectors (originally developed for character 

recognition) to extract global features. The main idea 

here is, to assign a 1024 bit long binary vector to each 

image and compare these vectors in the later phases. 

Images are divided into 4x8=32 segments, and 

information (like concavity, gradient, structural 

properties) is encoded into the vector for each segment 

These vectors are then compared by several 

algorithms operating with vector distances. In this 

scenario, the SVM based solution performs poorly, with 

an average error rate of 46% while a Naïve Bayes 

classifier achieved error rates between 20% and 25%   

 

 

3 Processing model 
Since the first survey paper [7] (dating back to 1989) 

several surveys like[8][9][10] and journal special issues 

like[11] have been dedicated to the comparison and 

evaluation of signature verification methods. While 

trying to give a balanced overview of the field they all 

face the same problem. Namely that the evaluation of 

signature verification algorithms, as for many pattern 

recognition problems, raises several difficulties, making 

any objective comparison between different methods 

rather delicate and in many cases impossible [9]. In the 

following sections we are going to use a generalized 

model of signature verifiers (Fig. 1.) as a base of our 

discussion. 

The majority of signature verification methods can be 

divided into five main phases: acquisition, preprocessing 

and feature extraction, processing and classification 

(although these steps are not always separable).  In the 

off-line case data acquisition means simply the scanning 

of a signature.  This is followed by preprocessing 

whereby the images of signatures are altered (cropped, 

stretched, resized, normalized etc.) to create a suitable 

input for the next phase.  The next step is feature 

extraction, the process of identifying characteristics, 

which are inherent to the particular person. The 

processing phase is mainly based on a single comparison 

algorithm, which is able to calculate the distance 

function between signature pairs.  Using these results, 

the classification phase is able to make a decision, 

whether to accept or reject the tested signature. This 

coarse separation of processing phases is already an 

extension to [12] which does not separate feature 

extraction from processing and classification. In our 

model even further extensions will be necessary to allow 

a better control of the dataflow. In the following 

subsections these 5 steps will be explained in detail and 

matched to the steps of several other signature verifiers 

([13] [1] [14][15] [16] [17] [18]). Fig. 5. summarizes this 

processing model and shows the data flow between 

components. 

.  

TestingTraining

Acquisition Acquisition

Preprocessing Preprocessing

Feature extraction Feature extraction

Feature matching

Distance calculation

Classifier training

Feature matching
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Fig. 1 Generalized view of an off-line signature 

verification system 

 

The model combines the advantages of most 

previously introduced systems in the literature. Similarly 

to [16] and [18] it clearly isolates the path of the training 

set (original signatures) from the path of test signatures 

while traversing the same modules of the system. It 

incorporates the 5 phases of verification, where 

processing was further broken into feature matching and 

distance calculation steps to improve support for 

modularity. It is also interesting to note, that the two 

steps of the classifier were also partitioned: the classifier 

is trained during the training phase, only using the 

original signatures from the reference database, and 

classification decisions about test signatures will be 

made based on the training during the testing phase. 

The model allows a direct top down data flow 

without ever referencing a previous module. This makes 

a loose coupling and individual testing of the 
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components possible. 

As noted in the previous section, individual phases 

can consist of multiple sequentially or parallel coupled 

subcomponents, therefore five of the six states are 

marked as composite states. 

 

 

4 Feature extraction 
Feature extraction is with great certainty the most 

ambiguous processing phase. First let us make some 

definitions clear. “An image feature is a distinguishing 

primitive characteristic or attribute of an image. Some 

features are natural in the sense that such features are 

defined by the visual appearance of an image, while 

other, artificial features result from specific 

manipulations of an image […] Image features are of 

major importance in the isolation of regions of common 

property within an image (image segmentation) and 

subsequent identification or labeling of such regions 

(image classification).” [18]. Therefore feature 

extraction is the location and characterization of features, 

and generally it should not be confused with the later 

processing phases. Contrary to preprocessing which is 

defined sequence of transformation steps altering the 

original images, feature extraction is a set of (usually) 

independent functions returning a characteristic feature 

set for their input image. Several systems take advantage 

of multiple features to improve the quality of the input 

provided for distance calculations and classifiers.  

 

In this section three different features (baseline, skew 

and loops) are introduced. Although some of them may 

seem quiet intuitive, their exact definition and extraction 

is essential for later processing phases. It should also be 

mentioned that the choice of feature types here is 

arbitrary. Any feature type, like those introduced in [19] 

or [20] could be used for comparison purposes. 

 

 

4.1 Baseline 
Based on the algorithm described in [19], the upper and 

lower bounding envelopes (baselines) and vertical and 

horizontal projections are compared.  

Upper (/lower) Baselines are defined as a curve 

consisting of the first black pixels from the top (/bottom) 

in each column of the image. In some papers they are 

also referred to as parts of the “enclosing envelope”. 

Horizontal (/vertical) projections are defined by the 

number of black pixels in each column (/row) of the 

image. Baselines and horizontal projections can be 

thought of as functions of x while vertical projection is a 

function of y. Thereby we defined 4 different functions, 

which can be later compared to analyze their similarity. 

To improve the extraction speed and precision, 

instead of the original image a thinned, vectorized 

representation of the signature is considered, as 

described in [20]. 

For example, to locate the lower baseline, instead of 

scanning upwards for each column of the picture the 

lowest strokes are considered as a starting point for the 

scanning process and scanning is done downwards. In a 

typical 300dpi image a line width is about 8-10 pixels, 

thereby using this algorithm it is usually sufficient to 

scan 5-6 pixels to locate the lowest valuable pixel of a 

signature in a given column. An example of such a 

baseline can be seen in Fig.2. 

 

 
Fig.2. Baseline of a signature 

 

4.2 Skew 
The very first step of acquiring the skew of a signature is 

to define what skew stands for. Using the knowledge 

gained in a consultation with a handwriting expert a 

definition was created which presumably would be 

helpful at the comparison: the skew information consist 

of a set of straight lines, where each line represents an 

imaginary foundation of a component, which can be 

regarded as an autonomous element of the signature. 

This definition allows us to assign skew information to 

the gaps between signature elements, and according to 

[21] those spaces are just as peculiar as any other feature 

of a signature. 

Our first approach was a naive algorithm, where the 

goal was to obtain the lower contour of the signature, 

which was done by starting vertical scan lines from the 

bottom left corner of the image and store the lowest 

pixel which was part of the signature. To determine 

whether a pixel is representing paper or ink a function 

was created, which not only used the pixel itself but its 

environment as well to give the best result. This was 

necessary because of the different kind of images with 

different amount of noise on them. 

After obtaining the lower contour a line to each 

separable segment was fitted using linear regression. 

Separable segments are parts divided by a horizontal 

gap. The resulting lines were often convincing enough, 

but of course this algorithm has its drawbacks: the most 

important problem was that it frequently had trouble 

recognizing the separate parts of a signature, in fact it 

could only distinguish two segments when a significant 

horizontal gap existed between them, but unfortunately 

this was not true for most of the signatures in our 

database. Another remarkable disadvantage was that it 
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used information only from the image itself, while by the 

time there was additional information available [22] that 

could definitely increase the reliability of the algorithm, 

like stroke positions. 

Using the experience gained so far, we came up with 

a new approach, whose fundamental element became 

components. Components are parts of the signature that 

could and should be treated as an independent part, 

having their own skew information. Typically a 

component is a part of the name (first name, last name) 

or an accent. Experiments showed that accents should 

have their own skew information, as they are a 

distinctive feature of signatures. 

The resulting lines seemed to almost perfectly 

represent our definition of skew (Fig.3.); hence it was 

time to examine whether they could be used to make a 

distinction between forged and genuine signatures. 

 
Fig.3. Three skew lines obtained by our algorithm 

 

It is important to note, that in some cases more separable 

segments were found than expected, but since those 

extra segments were found on almost all genuine 

signatures of the given signer, they should be considered 

as a feature of the signature and not as an error. 

Representing the skew information with numeric values 

(angle, length, position) and examining these values for 

both forged and genuine signatures has shown that our 

skew lines were adequate features to verify signatures, 

however alone they are not sufficient to unquestionably 

separate valid and forged ones. 

 

 

4.3 Loops 
Loops in our definition are connected regions in the 

image which are fully enclosed by “signature” pixels.  

This definition implies the following 3 important 

properties: 

First: pixels should be unambiguously classified as 

some belonging to the background (“paper” pixels) or 

belonging to the signature (“signature” pixels). This is 

currently done by testing the color components of a pixel 

against some thresholds. 

Second: The region must be connected. Although it 

sounds logical at the first glance, this is against the 

traditional definition of a loop, which can be interrupted 

by other lines. This simplification however allows us a 

much faster processing of the image. 

Third: using fully enclosed regions showed to be an 

unrealistic target. Because of errors of the pen, and 

sometimes because of errors of the scanning process, 

there are often 1-2 pixel wide interrupts in the pen 

strokes, which would break our definition of loops. To 

eliminate them, a morphological closing is applied to 

each image before loop extraction. 

 

Shape descriptors are used to describe the different 

aspects of loops, thereby allowing an easy comparison. 

There are several promising formulas described in the 

literature for calculating shape descriptor values. Instead 

of choosing one of them, we used as many of them as 

possible. This will allow us to identify the most 

significant shape factors in later phases. Our hypothesis 

was that there will be at most 2-3 significant shape 

descriptors, and all the others will be redundant and can 

be ignored in the future. However, this was not the case, 

as you will see in section 5.  

The following shape descriptors were used during 

feature extraction: Perimeter, area, formfactor, maximum 

diameter, maximum diameter angle, roundness, centroid, 

bounding box, inscribed diameter, extent, modification 

ratio, compactness, bounding circle, moment axis angle, 

convexity, solidity, aspect ratio 

 

The nontrivial descriptors are defined as follows: 

 

 (1) 

 

  (2) 

 

 (3) 

 (4) 

 

  (5) 

  (6) 

 (7) 

 

 

A detailed introduction of shape descriptors can be 

found in [23]. 

 

 

5 Classification 
 

5.1 General problems of classification 
After the extraction process features are matched with an 

algorithm, like [26] and the similarity between feature 

pairs is computed. These similarity values are used to 

make decisions about the acceptance of a given signature 

in the classification phase. A single classifier is trained 

with a set of original signatures. Based on the training, 
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the classifier can make decisions about the acceptance or 

rejection of a single test signature.  

It should be noted, that in Fig. 1. several 

simplifications were used to get a uniform view of the 

different approaches. This “single classifier” can of 

course represent a composite system consisting of 

different local and global experts allowing the decision 

to be made with a deep understanding of the context. In 

some other cases there are classifiers used, to improve 

the feature extraction or distance calculation phase. 

These should not be confused with the classification 

phase which in that scenario is a single threshold 

decision. 

While it is uncommon in literature, the decision of 

the classifier is not limited to a binary decision. Beside 

the values “accept” and “reject” a third value “uncertain” 

is introduced in some works, usually combined with a 

confidence value. 

Although in many fields, the application of a 

classifier (eg. the application of a neural network) is a 

routine operation, feature based off-line signature 

verification has some specialties, which we had to 

address. The following subsections introduce some of 

the problems and describe our solutions for them. 

 

 

5.1.1 Distance measurements 

Input values are not always simple values. The baseline 

of a signature for example is a set of points, which could 

easily form a large, hard to interpret input for the 

classifier. To overcome this, the feature values are not 

directly used as an input. Instead, each signature is 

compared with every other signature, delivering a wide 

range of comparison results which are then stored and 

used as input for classification.  

Each feature can define its own distance function. For 

example when calculating the distance of loop centroids, 

this distance function is a Euclidean distance function, 

but when calculating the distance of two baselines this 

function is a DTW (Dynamic Tiem Warping) function. 

 

5.1.2 Normalization 

Input variables can, and should be interpreted on 

different scale. Some features (like moment axis angle) 

are stored in degrees, some of them represent Euclidean 

distances in pixels, and again others (like solidity) are 

simple proportions, with no direct meaning. To allow a 

general processing, all input values are rescaled to fit in 

the [0…1] interval.  

 

5.1.3 Missing values 

A neural network has a well defined number of input 

variables. When working with global features (like width 

or height of a signature) this number can be easily 

defined. On the other side local features tend to be much 

more instable. Some signatures of a signer may have 3 

loops, while all the others contain 4 loops. Without 

further preprocessing, this could result in input vectors 

of different lengths for the classifier. To eliminate this 

problem, the feature extraction phase is extended to 

consider not only a single signature, but to examine all 

original signatures of a signer available for training 

purposes. Thereby, the feature extractor is able to 

identify the stable features of a signer, thus setting their 

count to a fixed number. Later, when testing new 

signatures, features located in the test signature can be 

matched to this fixed model. If a feature has no match in 

the model, it is ignored. On the other hand, if there is a 

feature in the model, which has no matching feature in 

the test signature, the distance of the features is set to 

infinite. 

This allows us to lock the length of the input vector 

used by the neural network.  

 

 

 
Fig.4. Matching loops: bounding rectangles of 

matching loops are projected over each other (top) 

 

5.1.4 Incomplete training data 

Most of the previous problems addressed were specific 

problems to the feature based approach. However there 

is one important problem, which every classifier in the 

field must address: in the real world, there are no 

negative samples available for training. Without negative 

samples, a neural network (or any other classifier) can 

easily get overtrained, which is of course not desirable. 

It is acceptable to ignore this problem, and provide 

some negative samples to the system [24][25], however 

this kind of benchmarking allows only a theoretical 

evaluation of the goodness of given feature extraction 

and classification algorithms, with respect to the quality 

of the provided forgeries. 

To prepare the system for real world scenarios, 

another approach has to be taken, which is the artificial 

generation of negative samples. This can be done in any 

phase of the signature processing 

- the original signature can be morphed, however, 

there is no guarantee, that the morphing will 

realistically model real forgeries 

- feature values can be altered: this seems to be a 

promising way, because alterations could be 
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performed with respect to the current features 

- normalized feature distances can be altered: this 

is the easiest way, because it does not require 

feature specific implementation. This is the 

approach we have taken. 

 

 

5.2 Statistical evaluation of features 
 

5.2.1 Correlation of features and originality 

The fact, how much a specific feature  can imply 

originality of a signature can be measured by the 

correlation of the coordinates, representing the feature 

value, and a value, representing, whether the signature is 

original or a forgery. Thus the correlation coefficients 

can be calculated. 

  

  (8) 

 

Talking about geometric features, especially in the 

case of shape descriptors it is probable, that there will be 

a strong correlation between some of them. During our 

experiments, we performed the independence analysis 

for each feature pair. When experimenting with new 

feature types these results helped us to evaluate the 

effective value of a new method.  

Table 1 showed that there is no specific feature type 

with a strong correlation between the originality of a 

given signature. This means, that there probably none of 

the features examined here can be used in itself, to 

differentiate between original and forged signatures.  

Motivated by the above results, and real life 

experiences, we also performed a cluster analysis for 

feature values of signatures from a typical signer. 

Results can be seen in table 5 and 6.  

 

5.3 Decision tree 
Considering the final decision as a logical function with 

multiple values, we can apply the method of decision 

trees. A decision tree is a tree, with all inner nodes 

representing input parameters. At a given node the 

choice is always made based on the value of the 

associated parameter. The training phase in this case 

means the building of the decision tree, while the 

classification would be a simple series of choices made 

based on the tree. It would be also possible to alter the 

tree based on some feedback. A possible building 

algorithm would look like this: the parameter with the 

best separation power is taken as the root node of the 

tree, and the training set is divided into two sets, based 

on the given parameter. If one of these sets includes only 

positive samples and the other consists only of negative 

samples, the tree is ready, otherwise, the algorithm is 

repeated recursively, and sets are divided into new and 

new sets based on the next parameter until the best 

possible separation is achieved. 

There are two main difficulties, when applying this 

method. First and most important is the lack of negative 

samples, and second is that our input parameters (which 

represent feature distances) have non discrete values. 

 

 

5.4 Nearest neighbor 
 

Considering the fact, that signatures can differ on a wide 

scale it may be useful to ignore the original signatures 

which have the less in common with a tested signature 

and only use the most similar signatures as references 

[2]. The need for such a distinction was also confirmed 

by the cluster analysis of feature distances. 

The nearest neighbor algorithm realizes the above 

idea. The main advantage of its application is that 

because of the reduced number of samples, testing can 

be performed by the direct comparison of feature pairs in 

contrast to other methods, which have to calculate 

cumulated values, like averages of feature distances.  

It may be possible, that results can be improved, when a 

few more samples (not only the nearest neighbor) are 

taken into account.  

 

 

5.5 Quartile 
 

Another simple solution for grouping the signatures into 

separate sets is based on a simple outlier detection 

principle. The algorithm is based on the quartile based 

outlier detection algorithm, which is widely used in 

mathematical statistics. 

In this case, all the feature distances of the original 

samples are grouped into 4 quartiles based on their 

distribution. During the training the middle quartiles are 

used as reference intervals for each feature type. When 

testing a signature, features are examined in each of the 

corresponding dimensions, whether they are within the 

given reference interval. A positive answer means a 

positive vote and a negative answer means a negative 

vote for the given feature. These votes can then be 

summarized (and may be weighted) to make the final 

decision. The precision of this algorithm depends highly 

on the fine tuning of the voting algorithm. It can also be 

seen that the proportion of the FAR and FRR values can 

be easily controlled, by setting the number of positive 

votes required for a positive decision. Thereby the 

strictness of the system can be parameterized. 

 

.  
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Fig.5. quartiles in a typical distribution 

 

A main advantage of the algorithm is that it only 

requires positive samples in the learning phase. 

Drawbacks are the need for manual parameterization and 

the fact, that it is only able to consider feature pairs and 

ignores any higher relationships between them. 

 

5.6 Neural network classifier 
Basically there are two different applications of neural 

networks in our system. First, a neural network is used, 

to evaluate the “optimal” solution, the theoretical limits 

of the whole approach, by using the whole signature 

database as an input. Second, a classifier is used, to learn 

the specifics of each signers signatures. Training is done 

with generated negative samples. Testing is done with 

real originals and forgeries. 

 

5.6.1 Optimal solution 

Supposed, that there is some kind of nonlinear 

relationship between the input vectors and the originality 

of a signature, neural networks can be effectively used to 

identify the best theoretical results which could be 

achieved by a classification algorithm.  

Of course, a neural network can easily get 

overtrained, therefore we separate the samples in three 

disjoint sets, one for training, one for measurement and 

one for testing[26] purposes. The training set is used for 

training the neural network until it reaches a given 

precision measured on the measurement test. Finally the 

effective performance of the network is tested on the test 

set. The results of the later are then used to calculate the 

error rates. 

 
Fig.5. Learning curve of the neural network

 

 

5.6.2 Real world scenario 

In a real world scenario, a classifier can only be trained 

with artificial forgeries. Although we have experienced 

with several alternative configurations, best results were 

achieved by a network with 13 preprocessing neurons, 

two hidden layers (with 2 and 8 neurons) and with a 

transformed sigmoid activation function. Further results 

are presented in the next section. 

 

 

6 Experimental Results 
In our experiments the database of the Signature 

Verification Competition 2004 [15] was used. This is an 

on-line signature database therefore it contains the stroke 

information, but no images are provided. The stroke 

information was used to synthesize signatures similar to 

the original ones. Stroke points were connected with 

straight lines, fading out on the line borders. Bicubic 

interpolation and anti-aliasing were used to make the 

final image smoother. An example of reproduced 

signature can be seen on Fig. 2. 1600 signatures from 40 

signers (20 originals and 20 forgeries from each) ensure 

a sample large enough for testing our feature extraction 

and classification algorithms. 

The experimental setup uses 10 original signatures 

from each signer and a set of generated forgeries for 

training. Afterwards the network is tested with 10 other 

original and 10 forged signatures. The resulting average 

error rates are summarized in table 4. It can be seen, that 

the values vary largely between different signers. It is 

however really promising, that this error rate is under 

10% at two of the signers. 

Another application of our setup is the evaluation of 

the differentiating power of the different shape 

descriptors. Experiments have shown that in contrary to 

our hypothesis, none of the shape descriptors is 

significant for all the signers. However, 12 out of 16 

signers, who have loops in their signatures, have 

significant differences at some of their descriptors. 

 

 

7 Conclusion 
In this paper we discussed problems occurring during 

feature based off-line signature verification and 

delivered solutions for the special questions of this 

problem class. Although our achieved error rates are not 

yet ready for real world scenarios, we have demonstrated 

that local features can successfully be used with neural 

network classification systems, to distinguish original 

signatures from forgeries.  

We have also demonstrated that by changing the 

testing configuration our system can be used to estimate 

its own theoretical boundaries, and to evaluate the 

discriminative power of different features. 
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Feature 
Correlation 

 to original 

DTW -0,340 

Loop Area1 Difference 1 -0,096 

Loop Area2 Difference 1 -0,097 

Loop Area3 Difference 1 -0,097 

Loop Perimeter Difference 1 -0,111 

Loop FormFactor1 Difference 1 -0,148 

Loop FormFactor2 Difference 1 -0,159 

Loop FormFactor3 Difference 1 -0,158 

Loop Maximum Diameter Difference 1 -0,096 

Loop Roundness1 Difference 1 -0,174 

Loop Roundness2 Difference 1 -0,172 

Loop Roundness3 Difference 1 -0,170 

Loop Compactness1 Difference 1 -0,158 

Loop Compactness2 Difference 1 -0,173 

 
Table 1. Correlation of feature values and originality  

 

 
Feature Average 

error rate 

Baseline angle difference 0,412108726 

Baseline length difference 0,425197368 

DTW 0,220716759 

Gap angle difference 0,483051619 

Gap length difference 0,458522267 

Loop Area 0,45683366 

Loop Bounding Circle Radius 0,432501408 

Loop Compactness  0,442280517 

Loop count difference 0,44958795 

Loop Extent 0,440355355 

Loop FormFactor  0,449571648 

Loop Inscribed Diameter  0,444257183 

Loop Maximum Diameter  0,432918075 

Loop Maximum Diameter Angle  0,382043038 

 
Table 2. Discriminative power of features 

 

 

 

 

 

 

 

 

 

 

 

 

SVC signature identifier EER 

002.csv 50% 

006.csv 43% 

013.csv 27% 

015.csv 37% 

018.csv 20% 

020.csv 37% 

032.csv 33% 

033.csv 37% 

035.csv 3% 

038.csv 47% 

040.csv 7% 

Average 31% 

 
Table 3. Achieved equal error rates with a neural 

network, using artificial negative samples 
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  002 0 ,49 0,48 0,51 0,43 0,48 0,42 0,18 0,51 0,13 0 

004                     

006 0,5 0,48 0,49 0,5 0,49 0,5 0,46 0,49 0,4 0,42 

008 0,43 0,39 0,38 0,36 0,43 0,37 0,2 0,38 0,48 0,13 

010 0,49 0,5 0,5 0,45 0,48 0,42 0,45 0,5 0,41 0,42 

013 0,5 0,34 0,35 0,41 0,51 0,48 0,5 0,35 0,5 0,5 

015 0,48 0,48 0,48 0,48 0,47 0,5 0,38 0,48 0,5 0,43 

018 0,41 0,48 0,5 0,37 0,41 0,4 0,42 0,5 0,46 0,46 

020 0,1 0,19 0,26 0,25 0,09 0,2 0,37 0,25 0,49 0,25 

022                     

024                     

025 0,44 0,42 0,45 0,49 0,43 0,49 0,42 0,45 0,44 0,44 

028 0,32 0,32 0,41 0,46 0,27 0,48 0,42 0,4 0,4 0,5 

032 0,38 0,31 0,27 0,35 0,48 0,43 0,41 0,26 0,49 0,49 

033 0,5 0,49 0,48 0,44 0,48 0,4 0,48 0,48 0,45 0,45 

034                     

035 0,29 0,31 0,33 0,46 0,35 0,44 0,45 0,33 0,23 0,23 

037 0,46 0,44 0,38 0,46 0,48 0,47 0,46 0,38 0,5 0,5 

038 0,36 0,38 0,32 0,34 0,33 0,31 0,41 0,33 0,37 0,4 

040 0,5 0,5 0,5 0,44 0,5 0,45 0,41 0,5 0,25 0,27 

 
Table 4. Achiveable equal error rates by considering 

single shape descriptors in signatures. Error rates 

below 35% are highlighted 
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 Cluster 

 1 2 3 

VAR00001 ,42 ,41 ,33 

VAR00002 ,39 ,15 ,40 

VAR00003 ,40 ,15 ,40 

VAR00004 ,40 ,15 ,40 

VAR00005 ,47 ,19 ,45 

VAR00006 ,53 ,36 ,21 

VAR00007 ,63 ,39 ,24 

VAR00008 ,64 ,39 ,25 

VAR00009 ,58 ,25 ,39 

VAR00010 ,65 ,38 ,23 

VAR00011 ,71 ,42 ,23 

VAR00012 ,72 ,41 ,23 

VAR00013 ,65 ,38 ,22 

VAR00014 ,71 ,41 ,22 

VAR00015 ,71 ,40 ,22 

VAR00016 ,36 ,18 ,33 

VAR00017 ,66 ,36 ,22 

VAR00018 ,45 ,35 ,31 

VAR00019 ,39 ,27 ,25 

VAR00020 ,38 ,27 ,25 

VAR00021 ,58 ,24 ,41 

VAR00022 ,47 ,55 ,49 

VAR00023 ,27 ,49 ,29 

VAR00024 ,25 ,23 ,25 

VAR00025 ,31 ,48 ,30 

VAR00026 ,39 ,37 ,40 

VAR00027 ,20 ,16 ,30 

VAR00028 ,21 ,15 ,31 

VAR00029 ,36 ,20 ,36 

VAR00030 ,21 ,45 ,32 

VAR00031 ,22 ,45 ,32 

VAR00032 ,21 ,51 ,31 

VAR00033 ,33 ,36 ,33 

VAR00034 ,39 ,60 ,32 

VAR00035 ,38 ,60 ,32 

VAR00036 ,26 ,45 ,27 

VAR00037 ,54 ,23 ,34 

VAR00038 ,61 ,24 ,32 

VAR00039 ,62 ,24 ,32 

VAR00040 ,54 ,23 ,34 

VAR00041 ,62 ,24 ,32 

VAR00042 ,63 ,24 ,32 

VAR00043 ,20 ,38 ,32 

VAR00044 ,64 ,22 ,33 

VAR00045 ,44 ,37 ,37 

VAR00046 ,43 ,45 ,35 

VAR00047 ,43 ,46 ,35 

VAR00048 ,24 ,45 ,27 

VAR00049 ,49 ,39 ,52 

VAR00050 ,32 ,49 ,33 

VAR00051 ,28 ,19 ,34 

VAR00052 ,34 ,46 ,33 

VAR00053 ,27 ,42 ,36 

VAR00054 ,21 ,53 ,28 

VAR00055 ,20 ,51 ,28 

VAR00056 ,26 ,48 ,26 

 

Table 5. Final cluster centers 

 

 

 

Cluster 1 25,000 

 2 40,000 

 3 71,000 

Valid  136,000 

 

Table 6. Number of cases in each cluster 
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