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1 Introduction

Let I" be a field of scalars and a linear space over
I'. We denote byP(X) the family of nonvoid subsets
of X. OnP(X) the algebraic operations

(A,B) — A+ Band(\, A) — \A,

with A € I, verify the most axioms from the defi-
nition of the linear space, excepting the existence of
the symmetrical element and the distributivity with re-
spect to the sum of scalars. SoBf.X) it is obtained
a non-linear structure. This notion was callEcost
linear space(a.l.s.) in Apreutesei [2] and [3], but it
is also known as semi-linear space (see, for example,
[14]). Godini names another similar notion by almost
linear space ([12]). In the sequel, for continuity in ter-
minology we use the termlmost linear spacéa.l.s.).
Another studies on classical operations with subsets
can be found in [12].

A lot of papers develop the idea to topologize an-

other algebraic structures than the linear spaces. The
most used structures are the algebras and the semi-

groups. This permitted to extend some classical re-
sults. For example, the Banach Principle was recently
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reformulated on JW-algebras ([13]); also the concept
of interval-valued intuitionistic fuzzy sets was imple-
mented on K-algebras ([1]).

Now consider the case of almost linear spaces. If
X is also a topological space, we must endB¢X )
with a hyperspacial topology and we ask that this hy-
pertopology be compatible with the operations of a.l.s.
The answer is affirmative for the linear topology
([6]), lower and upper Hausdorff topologies, and
T,T,, lower Vietoris topologyr;, and proximal topol-
ogy 7p (see [2]) and [3]). These examples have sug-
gested us to introduce (in [2]) the notion almost
linear topological spacéa.l.t.s.)

We notice that for an almost linear topology, a
fundamental system of neighbourhoods for a paint
isn't, generally, the translation witky of a fundamen-
tal system of neighbourhoods for the origin. So we
introduce in [3] a new notion, nametie translation
of a topologyon an a.l.t.s.

It is important to precise what are the properties
of a linear topological spaces which hold in the case
of a.l.t.s. Also we are interested to find the adequate
changes which lead to some properties like the con-
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tinuity of algebraic operations, separation or metriz-
ability on a.l.t.s.

The aim of this paper is to ask this questions for
the translation of an almost linear topology.

In Section 2 we recall certain notions, notations
and results which we need in this work; we define an
almost linear space, almost linear topological space
and the translation of an almost linear topology; we
give necessary and sufficient conditions which assure
that the translation of a topology is almost linear; we
describe some important hypertopologies and we ap-
ply these theorems in their cases.

Section 3 is dedicated to the results of T1 and T2-
separation and metrizability and to some examples.

2 Terminology and notations

Definition 2.1. Let L be a nonvoid set and

P4+" . LxL—1L

and

” ”

:I'x L —- L

two operations ot (with I" a field of scalars ) which
satisfy the axioms :

S)(z+y)+z=a+(y+2),Vr,y,z € L;

S2) there exists an unique elemént L such
thatr +0=0+z =z, Vx € L;

Szr+y=y + z,Vo,y € L;

SO\ (pzx) = (M) x, VA, n e,V € L;

SH)1-z=x,VxeL;

SN (z+y)=Ar+ Ay, VA el ,Va,y e L.

We say that(L,+,-) is analmost linear space
(denoted by a.l.s.).

Let present some examples of a.l.s.

We considerlX a linear normed space,the weak
topology onX and we denote b§ (X)) the family of
nonvoid subsets ak'. We also denote:

Cl(X)={A e P(X); Ais closed},
Pb(X) ={A € P(X); Ais bounded,
K(X)={A e P(X);Aisacompact,

KY(X) ={A4 € P(X); Aisw-compact},
D(X) ={A e P(X);Ais open}.

Except the familyK" (X), all the above classes
can be also defined X is a metric space.
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Example 2.1. P(X) with usually operations on
subsets forms an a.l.s. Obviously we have

P(X)D Pb(X) D K(X) D KY(X),

andPb(X), K(X), K*(X) are also a.l.s.

Definition 2.2. Let (L,+,-) be an a.l.s.. The
structure(L, +, -, o) is calledalmost linear topolog-
ical space(or a.l.t.s.) if the operations

P4+" . LxL—L

and

:I'x L — L
are both continuous in the topology

We recall some definitions from linear spaces
adjusted to almost linear spacés, +,-) with real
scalars.

Definition 2.3. A subsetA C L is calledab-
sorbentif for everyx € L there exists\ > 0 such that
Ar € A.

Definition 2.4. A subsetA C L is calledbal-
ancedif
M C A

forany\ € Rwith |A] < 1.

Definition 2.5. By the balanced involving of a set
A C L (denoted€(A)) we mean the intersection of
all balanced subsets @fwhich containA.

Remark 2.1 The balanced involving of the set
A C L can be couched by the formula (valid in linear
topological spaces, to0)

£(A) = |J r

|AI<1

Definition 2.6. Let (L, +, -) be an a.l.s. anéd >
0. A subsetM C L is calledk-balancedif for every
A € T'with |A| < k and everyr € M we havelz €
M.

This means that

AM C M, VX e T'with || < k.

(If £ = 1 one obtains the definition of balanced
set.)
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Thesedefinitionshelp us in our purpose to give
some conditions for a family’(0) to be a system of
neighbourhoods fab in a.l.t.s.

We consider the following assertions:

(VO) 0 € VforanyV € V(0);

(V1) vV, Vo € V(0) 3V3 € V(0) such that
Vs CVinVa;

(V2) vV € V(0) 3V; € V(0) such thatl; +
VicVv;

(V3) VYV € V(0), V is absorbent set;

(V4) vV e V() 3V € V(0) such that
EW) CV.

The axiom (V2) tell us that the sum is continuous
in any point(zg,yo) € L x L; both the axioms (V2)
and (V4) assure the continuity of the multiplication
with scalars in any point0, zp) € I x L.

Following the proof from the linear topological
spaces we have:

Theorem 2.1([3], Theorem 3.1)If V(0) is a fun-
damental system of neighbourhoods of the origin in an
a.l.t.s. L, thenV(0) satisfies the axioms (V0)-(V4).

Now we give some examples of a.l.t.s.

On X we consider
S(a,e) ={r € X;lla—z| < e}
the ball of center: € X and radiuss > 0 and
B(a,e) ={x € X;l|la —z| <&}

the closed ball of center € X and radiuss > 0.
Also S.(A) is the notation foe—enlargemenbf
A:

S:(A) = {x € X;3a € Asuchthat|ja — z| < e}

with A cC X, e > 0.

Now we are ready to recall the definitions and the
most important informations about some hypertopolo-
gies. A lot of hypertopologies o C P(X) (Haus-
dorff, Vietoris, proximal etc.) must be written like a
suprema of two topologies, namely a lower topology
7~ and an upper topology™ :

r=7"Vrt.

Definition 2.7. Let (X, d) be a metric space.
The Hausdorff topology is defined onP(X)
by
TH =TV TE,
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where a basic neighbourhoods of a dgte P(X) is,
respectively:

in 75, (lower Hausdorff topology
U_(Ap,e) = {A € P(X); Ag C S-(A)}, with
e >0,

and inrg (upper Hausdorff topology
Ui(Ag,e) = {A € P(X); A C S-(A)}, with
e > 0.

This topology is also induced by the extended-
valued semi-metriéf,; on P(X), where

Hy(A, B) = sup{|d(z,A) —d(x,B)|;z € X}

(Hg : X — Ry U {+o0} is symmetrically and sat-
isfies the triangle inequality). Sqy is the topology
of uniformly convergence oX of the distance func-
tional

Av—d(z, A),

with A € P(X).
Equivalently,

Hy(A, B) = max{e(A, B),e(B,A)},
where
e(A, B) = sup{d(a, B);a € A}

is theHausdorff excess afl with respect taB.

If (X,d) is a metric space, the topology;, does
not depend by the metri€, but only the uniformity
induced byd, namely: if there existn, M > 0 such
that the metricgl andp on X verify the inequalities
m-d(z,y) < p(x,y) < M -d(z,y) forallz,y € X,
thenty, andry, are equivalent topologies. So on the
linear normed spaceX we have the same topology
for the equivalent norms.

Finally we note that a sequence of subsets
(An)nen is T4 —convergent toA iff e(A4,,4) — 0
whenn — oo and(A,),en is 7, —convergent toA
iff e(A, A,) — 0whenn — oco.

More generally, if A;);c; is a net of nonvoid sub-
sets ofX andA € P(X) is arbitrary, then the follow-
ing assertions are equivalent:

1. A€ 1y —lim A;

2. limd(a;, A;) = 0 for all nets(a;);ecr of A;

3. limsupe(B,4;) < e(B,A), for all B €
Cl(X).

Also:
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1. A€ — lim A;;

2. limd(a;, A;) = 0 for all nets(a;);er with a; €
Ai, 1€ 1

3. limsupe(4;,B) < e(4,B), for all B €
Cl(X).

The Hausdorff topology is the most known topol-
ogy onP(X). Itis used for obtain the continuity of al-
gebraic operations ofi (X ) (see, for instance, [11]),

as well as in the study of uniformly autocontinuous
non-additive multifunctions ([10]).

Definition 2.8. The lower Vietoris topology
onP(X) is given by the following subbase:

T={AeP(X); ANV £ o},
whereV is an open subset of.

T, is the weakest topology gR(.X') such that all
the functionals

Avr—d(z,A)

are upper semicontinuous, for anye X.

If (X,d) is a metric space, the topology does
not depend by the metri¢, but only the topology in-
duced byd.

If A, (A;)icris anetof closed subsets &f, then
the following assertions are equivalent:

1. A€, —limA;;

2. lim d(a,A;) =0, foralla € A;

3. limsupd(4;, B) < d(A, B), for all closed
subsets3 éf X;

4. e(A, B) < liminf e(A;, B), for all closed sub-
setsB of X.

Definition 2.9. The proximal topologyrp on
P(X)is
TP =Ty V TE.

A base of neighbourhoods fer € P(X
given by

)inTpiS

S.(A)tTNnS(a,e)” N...S(an, ),

with ay,...,a, € A,n € N, n > 0ande > 0.
(For E open inX we denote

t ={A € P(X);3e > 0suchthatS.(A) C E}).
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Finally, 7p4) = 7p(,) if and only if d andp are
metrics onX which determine the same uniformity.

Definitions and details on other hypertopologies
can be found in [4]-[9], [15]-[17] and [19]-[21].

Examples 2.2. The continuity of algebraic op-
erations with respect to lower Vietoris and Hausdorff
topologies are studied, for example, in [20], paragraph
12, and [2], Propositions 3.4 and 3.7, respectively.

So the following spaces are almost linear topolog-
ical:

(P(X), 4,10,

(PO(X), +, - 7g);

(PH(X), +., 7)),

(Pb(X),+,-,7TH),

(Pb(X),+, - 7P).

BecauséDb(X), K(X), K*(X) are almost linear
subspace oP(X), then we have also another a.l.t.s.:

(PO(X),+, -, 7y),

(K(X)v +5 7'),

(ICw(X)a +5 7_)7

wherer is one of the five above hypertopologies.

Remark 2.2 (see [3], p.8). IfV(0) is a family of
subsets ofl. satisfying the axioms (V0), (V1), (V2),
then we can consider the family

(2.1) U(z) = {U c L; 3V € V(0) such that
x+V CU}.

If V(0) is also a fundamental system of neigh-
bourhoods of the origin i, then we can generate
in this way onL a new topologyr in which a funda-
mental system of neighbourhoods of a paiis given
by the above construction.

Definition 2.10. Let o be a topology on an a.l.t.s.
L and V(0) a fundamental system of neighbourhoods
of the origin (which verifies axioms (V1) - (V4)).
Then the topology on L given by the relation (2.1)
is calledthe translation of the topology.

Using the above examples we can prove that, gen-
erally, an almost linear topology and its translation are
different, as it results from:

Example 2.3 Let X be a linear normed space.
We consider the a.l.t.s.Pb(X) endowed with up-
per Hausdorff topology“g and its translatiorr. For
A € Pb(X), a fundamental system of neighbour-
hoods in7;; is formed by the set of closed balls
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{Bp+(A,6);6 > 0} ; we take
A={a,a+¢;},

wherea is an arbitrary fixed element of ande; is a
unit vector of the base of the linear spakeFor any
e > 0andj > 0 we have

BH+(A,(5) g A—I—BH+(O,E) :

we find the setds = {a+ de;} such thatds €
BH+(A,5) andA;s Qé A+ BH+(O,€).
Indeed,

e(As, A) = sup mf lla — bl =

bEA(sa
= min {4, [la + (5 — Desl|} <0,

S0As € By+(4,9).
Now, if B € Pb(X
set of By+(0,¢) (with SuprH < ¢), then Ay #

A + B becaused;s has only one element andl + B
has at least two elements ( evidently a + de;, SO
A has two elements).

Let observe that the translation topologyf an
almost linear topology might not be almost linear:

) is an arbitrary nonvoid sub-

Example 2.4. Let X be a linear normed space.

We endow the familyPb(X) with the translationr

of upper Hausdorff topology;; (or another almost
linear topology); the multiplication with scalars is not

continuos:
We consider the sets

1
A, = (P et e

[—1,1]}

and
A = {te;;t € [-1,1]},

wheree; is aunit vector of a base oX. We takeu,, =

2
T ascalarsequence. TheA,, —™ Aandu, —
uw=1butpu,A, - pA.
In order to prove this, we remark that

Apn = A+ By,

where
1
B, = {tei; te[-1, 1]}
n

verifiesthe relation

€(Bp,0) = sup |b| = —
beB,
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If kisareal number, we denote Ijy] the greatest
integer less theh.

For anyz > 0 there exists a positive integer =
[1] + 1 suchthat for everyn > n. we have

Bn S BH+(O7E)7
that implies
An € A+ BH""(O?S)‘

SoA4, =7 A.

Now leteg € (0,1) be fixed. For everyr € N,
n # 0, we have

:U’nAn ,¢_ MA + B+ (0) 60) :

otherwise, let b&”,, € Pb(X) with

Cy, € By+ (0, 50)

such that
that is
{n—l— ltei;t € [—1,1]} =
n
= {te;;t € [-1,1]} + Cy.
If c € C), then

e, +ceudA+C,

is anelement ofu,, A,, SO

e +c= te;.

n+1
Then

n(t—1)—1
n+1

e(Cp,0) = sup

te[—1,1]

€

_2n+1
on+1
a contradiction with the hypothesis

> 1,

C, € BH+ (0, 60)

(g0 < 1).

If we are interested by the almost linearity of the

translation of an almost linear topology @énwe need
to introduce some new axioms:
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(V3) YV e V(0),V o € T, Vg € L3I0 > 0
such thatvA € T with |\ — A\g| < 0 we havelz, €
Aozo + V;

(v4) vV € V(0), Vk > 0, 3V; € V(0) such
thatv\ € T with |\| < k£ we haveAV; C V.

The axiom(V3’) represents the continuity in the
topology given by the construction (2.1) of the appli-
cation\ — Axgin every)y € T', foranyzg € L.

The axiom (V4’) assures that, for every> 0, ev-
ery neighbourhood of the origin containg-dalanced
neighbourhood.

In fact the system (V1), (V2), (V3’) and (V4)
gives a necessary and sufficient condition which as-
sures that the translationof an almost linear topol-
ogy onL is almost linear, as we can see in:

Theorem 2.3 (3], Theorem 3.2)Let be(L, +, -)
an almost linear space.

0] If the translation of a topology on L is
almost linear, then any fundamental system of neigh-
bourhoods of the origin in the topologyverifies the
axioms (V1), (V2), (V3’) and (V4’).

(i) If a nonvoid familyV(0)C P (L) satisfies
the conditions (V1), (V2), (V3’) and (V4’), then the
family z +V(0) forms a fundamental system of neigh-
bourhoods of: in an almost linear topology.

Finally we give some sufficient conditions for the
almost linearity of the translation topology; we use for
this the continuity of the multiplications with scalars
in other points than the origin df x L. We express

these conditions by the following assertions:

(A3) Vaog € L,VV € V(0),Vup € I'30 > 0
and3W € V(0) such that/p € T" with |y — uo| < 6
we haveuzg + W C pogzo + V;

(Ad) VYV € V(0), VX € T'3Xx > 0 and
dW e V(0) such thatvA € T with |A — Xo| < ¢
we have\lW C V;

(A5) Voo € L, VYV € V(0) 36 > 03U €
V(0) such thatvA € T with |\ —1] < ¢ we have
Ao+ U Caxg+ V.

The conditions (A3) and (A5) are effectively re-
lated to the translation topology, while hypothesis
(A4) refers to the initial topology of..

In fact the assertion (A3) is a formulation of the
idea that any neighbourhoods @fx in translation
topology is also neighbourhood for the pointgg
"sufficiently close”.
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(A4) represents the continuity of the multiplica-
tion with scalars in the point\o,0) € I" x L and the
axiom (A5), in the poin{1,z¢) € ' x L.

Proposition 2.4 ([3], Proposition 3.2). Let
(L,+,-) beana.l.s. and’(0)C P(L) a nonvoid fam-
ily. Then, the conditions (V1), (V2), (V3), (A4) and
(A5) are equivalent with (V1), (V2), (A3) and (A4). If
V(0) is a fundamental system of neighbourhoods of
the origin for a topology inL, then both groups of
axioms assure the almost linearity for the translation
topology.

For other details on the a.l.s., a.l.t.s. and the trans-
lation of an almost topology see [3].

3 Separation and metrizability

In the sequel, our purpose is to characterize the sepa-
rations T1 and T2 on the a.l.t.s.

Theorem 3.1.Let L be an a.l.s.g a topology on
L that satisfies the axioms (V0) — (V2) and its trans-
lation 7. Then,(L,7) is a T1 separate space if and
only if one of the following equivalent properties is
fulfilled:

(3.1) If z,y € L such as, for any” € V(0)
there existey € V having the propertyz = y + v,
thenx = y;

N

(3.2)
Vev(0)
bitrary fundamental system of neighbourhoods of the
origin.

V = {0}, whereV(0) is an ar-

Proof. One can use the fact that a topological
spacel is a T1 separate space if and only if the sin-
gletons are closed sets.

This is similar with the following condition:

Vz € L andVy € L such as, fol” € V(0)
one has
(y+V)n{z} =90 =y =u,
from where the (3.1) form derives.
This is also equivalent to:
(3.3) Ifz,y € Lforwhichz e y+ (| V,
Vev(o)
thenz = .
Obviously, (3.2) implies (3.3).
Conversely,let € () V (anonvoid set: con-
Vev(o)
tains0).

Then,z = y+aandz =y, i.e.,x = x + a; from
the unigueness of elemehtpostulated by axiom S2,
Definition 2.1, it follows that: = 0. &
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Theorem 3.2.If 7 is the translation of a topology
on an a.l.s. L, then(L, ) is a T2 separate space if
and only if the following condition is fulfilled:

(3.4) If x,y € L such as for any neighbour-
hoodV € V(0) there existsv;,v2 € V, such as
T+ v1 =y + vg, thenz = .

Proof. Letx,y € L. If z # y, then there id/,
Vo € V(0)suchagz+ V)N (y+ V) =@ . From
the axiom (V1), forl; andVx, there existd” € V(0)
suchasd/ c VinVa. Then,(z+V)N(y+V)=9.
Rephrasing, according to the converse’s contrary,
it follows that, ifz,y € Lsuchagz+V)N(y+V) #
o, foranyV € V(0), thenz =y, i.e, (3.4).1

Remark 3.1. The topological condition (3.4) al-
lows us to extract equal elements from an equality re-
lationship, without using the symmetrical elements,
thus 'supplying’ the existence axiom, for each element
of L, of its symmetric.

Thus, one can give a theorem for the metrizability
ofana.l.s.

Theorem 3.3. Let L be an a.l.s.,c a topology
on L andi/(0) = (Ux)ken+ a countable, fundamental
system of neighbourhoods of the origin, in the topol-
ogyo. If U(0) satisfies the axioms (VO) — (V2) and the
condition

(3.2) N U= {0}
keN*
then the spacé with the translation topology is

metrizable.

Proof. One can closely follow the classical proof
for the metrizability of linear topological spaces (see,
for example, [18]) and adjust it using Theorem 2.3:

I) Let U; € U(0); from the axiom (V4’) there
exists a balanced neighbourhoddof the origin with
Vi € Uy (see Theorem 2.3). Now, if we consider the
neighbourhood/> NV} of the origin, from axiom (V2)
and Theorem 2.1 we can found the neighbourhidéd
such that

Wo+ W CUaynVy C Vy.

For W5 there existd/s balanced which verifies the re-
lation: V5 + Vo € Ws. Then

Vo+Vo+ Vo C Vo4 Vo4 Vo + Vo C Wo+ W,
SO

Vo+Vo+ Vo C V3.
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We take back this proceeding for the neighbourhood
Us N V5 and we findV; (balanced) such that

Vs+ Vs + V3 C Vs,

One can recurrently construct a fundamental sys-
tem of neighbourhoods of the origii¥,,),cn for the
topologyo of L, having the following property:

(3.5) Var1 N V1 NV CVy,

foranyn € N, n > 0. All the setsV,, are balanced
andV,, c U,.

Denote byV(0) = (V,,)nen. Evidently,2(0) is
finer thanV(0) from construction. Buf/;, are also
neighbourhoods in the topology, soV(0) is finer
than/(0). It results that’(0) and/(0) are equiva-
lent. Forn = 0 we putV,, = L.

Let 7 be the translation topology ah.

II) We consider the functio : L x L — R,
d(z,y) = inf{5-;2 €y + Vi }.
Fromthedefinition of ¢ we have
(3.6) o(z,y) < 1/2"ifandonly ifz € y +
Vi
Letx,y,u,v € L ande > 0, such as
o(z,u) < g o(u,v) < e d(v,y) < g if
ne€N,1/2" <ecandx € u+ Vy,u € v+ V,,
v € V,, then

reu+Vy,Co+Vya+V,Cy+Vy+V,+ Vy;

from (3.5) we deduce that € y + V,,_; and 3 < ¢
(in fact, ;;= < 2¢). It follows that¢(z, y) < 2e. So

(3.7 o(xu) <e d(u,v) <& gv,y) <e
= ¢(z,y) < 2e.
) We defined : L x L — R, d(z,y) =
-1
infpz (;S(ul, Ui—i—l)v
i=0

where infimum is considered on all the finite sys-
tems of pointgu; ),_1; forwhichug = z andu, = y.
Then, the double inequality takes place:

(3.8) g olx,y) <d(z,y) < d(z,y), Yo,y €
L.

Indeed, the right member of the inequality fol-
lows from the definition ofl (we takep = 1).

For the left member of inequality we prove that

(3.9) 3 o(z,y) < pil P (ui, uiy1) for all
=0

x,y € Land anyp € N.

This results using the mathematical induction
method with respect tp. So we consider that (3.9)
is valid for all systems having at the mogt— 1
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points attachedof any pair of points We denote by
Z od(ui,uig1). If s > 1/2 then the relation

(3.9)i |s eV|dentIy true becauggx,y) < 1.
Now suppose that < 1/2. We denote by the

t—1
biggest integer for whichy " ¢(u;, uit1) < s/2; SO
i=0

p—1
ZQS(ul,qu) > s/2and > P(ug,uirr) < s/2.
i=t+1
Weobservethat<p—1andp—1—t<p—1 We

apply the inductive hypothesis for the pairs of points
(uo, u¢) and(u¢1, up) and we found

1
§¢(U07Ut) < 5 and- ¢(Ut+1,up) <

L\’)\cn

Sinceg(ug, urr1) < s we use (3.7) forg, ug, w1,
up, and it follows thatp(ug, uy) < s/2,i.e. (3.9).

It results thatd is a metric onL:

i) from (3.8),d(z,y) = 0 < ¢(z,y) = 0;

from (3.6),z € y+ V,, foralln € N, soz €

y+ ) Va.

neN

From hypothesis( V,, = ﬂ U, = {0}, so
z=1y. neN

i) d(z,y) = d(y, ) because(z, y) = ¢(y, z).

iii) Let be x, y, z € L arbitrarily. All the systems
(ui)i=0,1,..p and (v;)=o,1,.4 for the pairs of points
(z,z) and(z, y) are also systems of points for the pair
(z,y),s0

d(z,y) < d(z,z)+d(z,v).

IV) The topology induced by the metrid is
equivalent withr, because the fundamental system of
neighbourhoods: + V(0) is equivalent with the fun-
damental system of neighbourhood®,(x,1/2");

n € N}. This follows from the relation:

T+ Vn, CBy(z,5) Cx+Vyy,foranyz € L
and anyn € N:

Consideru € x + V,,; from (3.6) we obtain
¢(u,z) < 1/2™ and from (3.8) we have(u,z) <
1/2",s0u € By (z, 3+) -

Now, if uw € By (z,5), thend(u r) < 1/27
and from (3.8) we deduce thétgb u,x) < 1/2", so
(see 36 exr+ V1. 1

Remark 3.2.

(i) The metricd constructed in the proof of The-
orem 3.3 satisfies the following condition of "semi-
invariance” to translations:

dx + z,y+ z) < d(z,y), foranyz,y, z € L,
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as the functionp defined above fulfils the same in-
equality: ifx € y + Vi, then for anyz € L, one has
T+ z€y+z+ Vi, thus

oz + 2,y +2) < Bla,y).
The family

1
{or8a(0.5)}
keN*

also constitutesa fundamental system of neighbour-
hoods forz on the topologyr. One can notice that,
if d is any metric onL, the setsz + B(0,¢) and
B(z,e) are not necessarily comparable. Butdif
is "semi-invariant” to translations, from the inequal-
ity d(xz + u,xz) < d(u,0) applied to the elements
u € B(0,¢) one can find that
z+ B(0,¢) C B(z,¢).

(iii) If we remove the hypothesis of T1 sep-
aration from the Theorem 3.3, then the almost linear
topology will be only semi-metrizable.

(ii)

In the following, we will apply the Theorem 3.3
for the topologiesr;;, 7;7, 7, and7p , in order to
find the conditions for semi-metrizability. We will de-
sign asD(X ) the family of nonvoid open sets of linear
normed spaceX. Evidently, (Pb(X),y) is semi-
metrizable; we have also a metrizability result for the
topologyp ([7]):

(CI(X), Tp(q)) is metrizable if and only if X, d)
is totally bounded.

For the translations of the above hypertopologies
we have:

Corollary 3.4.

(i) The translated of topologyr; is semi-
metrizable orPb(X).

(i) The translated of the topologyg
metrizable orD(X).

(i) The translated of the topology;;
metrizableon P(X).

(iv) The translated of the topologyp
metrizable orD(X).

Proof. (i) A fundamental systerw of neighbour-
hoods of the origin inr;; on Pb(X) will be formed
by the sets having the form

is semi-
is semi-

is semi-

V(0 B,e) = {A € Pb(X); B C S.(A)}

with B € Pb(X) containing the origin anel > 0.
Let be the family)’ of the neighbourhoods for
the origin ofr,; having the type

Vi (05 B(0,), )
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with p,n € N*. The systenV C V' is countable and
defines the same topology &5 as: B is bounded,
then there existy € N* such thatB C B(0,p);
we taken = [6/¢] + 1 (where o] is the greatest
integer less than the real numbey. Then for any
A € Pb(X) having the propertyB(0,p) C Sy, (A),
the following inclusion is also valid:

1
B C S.(4) (SOVH(O;B(O,p), E) C VH(O;B,5)> .
(ii) For the topologyr;; onD(X), a fundamental
systemV of neighbourhoods of the origin is formed
by sets of the type:

Vi (0;B,e) = {A € D(X); AC S:(B)},

whereB € D(X) with 0 € B ande > 0.

For such a seB, there existp € N* such that
S(0,1/p) € B, and ifn = [6/¢] + 1, then for any
A € D(X)suchthatd C Sy,,(5(0,1/p)) , it follows
that A € S.(B). From here, one can deduce that the
family V'c V formed by the sets of type

{A € D(X); A C S1/n(S(0,1/p))} withn,p €
N* also constitutes a fundamental system of neigh-
bourhoods equivalent 13 .

(iii) Let be g1, €9, ....,6, > 0, withn € N* and
Uy- = S(0,e1)” N S(0,e2)” N...nN S(0,e,) =
S(0,e)~, wheree = min{e;; j = 1,n} is a funda-
mental neighbourhood of the origin ..

By choosing for every > 0 an € N*ie.,n =
[6/¢], one can obtain

S(0,1/n)~ C S(0,¢e)~,
that is, the family
V' ={5(0,1/n)";n € N*}
is contained inY = {S(0,e) ;e > 0}; alsoV’

represents a fundamental system of neighbourhoods

for the origin inT,.
(iv) This follows from (ii) and (iii), asrp = 7, V
R |
TH'

Now we offer a sufficient condition for a metrik;
in order to induce a topology which is almost linear.

Theorem 3.5. Let (L, +,.) be an a.l.s. andl a
semi-metric orl, satisfying the properties:

I)d(a+c¢,b+c) <d(a,b), foranya,b,c € L,

IT) d(Aa, A\b) < || d(a,b), for anya,b, € L,
Ael

II1)d(Aa, pa) < |\ — pl-d(a,0),forany\, u €
I'and anya € L.

Then the topology induced oh by the semi-
metricd is almost linear.
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Proof. Letzg, yo € L and(xy, )nen+, (Yn)nen+ C
L, with d(zy,, x0) — 0, d(yn,yo) — 0.

We have the inequalities:

d(xn + Yn, o + yo) < d(Tpn + Yn, To + Yn) +
d(zo+Yn, To+y0) < d(Tn, x0)+d(Yn, yYo), SOd(2,+
Yn, To +yo) — 0.

Now, let\,, A € T, z,,, 29 € L with d(x,,, xg) —
0and), — AinT.

In this case,

d(AnZn, Mozo) < d(Mpxp, Apwo) +

d()\nfL‘o, )\0$0) < |>\n‘d(ﬂfn, Jio)-f-‘)\n - )\0|-d(x0, 0),
henced(\,x,, Aoxg) — 0. B

For discuss the Theorem 3.5 we need first to give
some properties off,;. The below proposition de-
scribes the behavior of the Hausdorff "distance” with
respect to latticeal and algebraic operations :

Proposition 3.6 Let X be a linear normed space
over the scalar field’and H the Hausdorff extended
semi-metric orP(X). Then the following assertions
hold:

0] H(AUuC,BUC) =

= max{igg min{d(a, B),d(a,C)},
ilelg min{d(b, A),d(b,C)} }

and

H(AuC,BUC) < H(A,B),

forall A, B,C € P(X).

(i) HA+C,B+C)<H(A, B),
forall A, B,C € P(X);

forall A, B € P(X);

i(iv) |H(A,0) — H(B,0)| < H(A, B),
forall A, B € P(X);

(V) HOApA) < A - pl - H(A,0),
forall \,p € T'and A € P(X);

(vi)  HAAB) = |\-H(A,B),
forall A e "and A, B € P(X).

Proof. The conditions (i), (ii) and (vi) are prove
in [2], Proposition 4.5.
(iii) We have
€(A, B) < supsup ”CL - bH = G(A - B, 0)
acAbeB

and symmetrically we found(B, A) < e(A —
B,0).

Bute(0, A — B) = inf{||a — b||,a € A,b € B}.

It follows that

H(A—-DB,0)=e(A—B,0) >
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> max{e(4, B),e(B,A)} = H(A, B).

(iv) If « € Aandb € B, first we take the infimum
forall a € A in the formulal|a|| — ||b]] < ||la — b]|;
second we take the supremum for iale B and we
obtainH(A,0)—H(B,0) < e(A, B). ChangingA for
B, itimplies that{ (B,0) — H(A,0) < e(B, A) and
it results the inequality from our assertion.

(v) In order to calculatd? (\A, nA) we estimate
e(AA, nA). So

e(M, 5A) < sup||Aa — pal| =
a€A

= A= ul-sup flaf = [A = pf - H(A,0).

ac

Evidently,e(uA, AA) < |\ — pu| - H(A,0), so we ob-
tain the desired inequalifil.

Remark 3.3. The conditions of Theorem 3.5 are

consistent. As an example of distance which induces
a topology almost linear on an a.l.t.s., the conditions [13]

I, Il, Il from Theorem 3.5 are fulfilled by the semi-
metric H on the familyPb(X): see Proposition 3.6.
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