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1 Introduction

Let Γ be a field of scalars andX a linear space over
Γ. We denote byP(X) the family of nonvoid subsets
of X. OnP(X) the algebraic operations

(A, B) 7−→ A + B and(λ,A) 7−→ λA,

with λ ∈ Γ, verify the most axioms from the defi-
nition of the linear space, excepting the existence of
the symmetrical element and the distributivity with re-
spect to the sum of scalars. So onP(X) it is obtained
a non-linear structure. This notion was calledalmost
linear space(a.l.s.) in Apreutesei [2] and [3], but it
is also known as semi-linear space (see, for example,
[14]). Godini names another similar notion by almost
linear space ([12]). In the sequel, for continuity in ter-
minology we use the termalmost linear space(a.l.s.).
Another studies on classical operations with subsets
can be found in [12].

A lot of papers develop the idea to topologize an-
other algebraic structures than the linear spaces. The
most used structures are the algebras and the semi-
groups. This permitted to extend some classical re-
sults. For example, the Banach Principle was recently

reformulated on JW-algebras ([13]); also the concept
of interval-valued intuitionistic fuzzy sets was imple-
mented on K-algebras ([1]).

Now consider the case of almost linear spaces. If
X is also a topological space, we must endowP(X)
with a hyperspacial topology and we ask that this hy-
pertopology be compatible with the operations of a.l.s.
The answer is affirmative for the linear topologyτL

([6]), lower and upper Hausdorff topologiesτ−H and
τ+
H , lower Vietoris topologyτ−V and proximal topol-

ogy τP (see [2]) and [3]). These examples have sug-
gested us to introduce (in [2]) the notion ofalmost
linear topological space(a.l.t.s.).

We notice that for an almost linear topology, a
fundamental system of neighbourhoods for a pointx0

isn’t, generally, the translation withx0 of a fundamen-
tal system of neighbourhoods for the origin. So we
introduce in [3] a new notion, namelythe translation
of a topologyon an a.l.t.s.

It is important to precise what are the properties
of a linear topological spaces which hold in the case
of a.l.t.s. Also we are interested to find the adequate
changes which lead to some properties like the con-
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tinuity of algebraic operations, separation or metriz-
ability on a.l.t.s.

The aim of this paper is to ask this questions for
the translation of an almost linear topology.

In Section 2 we recall certain notions, notations
and results which we need in this work; we define an
almost linear space, almost linear topological space
and the translation of an almost linear topology; we
give necessary and sufficient conditions which assure
that the translation of a topology is almost linear; we
describe some important hypertopologies and we ap-
ply these theorems in their cases.

Section 3 is dedicated to the results of T1 and T2-
separation and metrizability and to some examples.

2 Terminology and notations

Definition 2.1. Let L be a nonvoid set and

” + ” : L× L → L

and
” · ” : Γ× L → L

two operations onL (with Γ a field of scalars ) which
satisfy the axioms :

S1)(x + y) + z = x + (y + z), ∀x, y, z ∈ L;
S2) there exists an unique element0 ∈ L such

thatx + 0 = 0 + x = x, ∀x ∈ L;
S3)x + y = y + x, ∀x, y ∈ L;
S4)λ (µx) = (λµ)x, ∀λ, µ ∈ Γ, ∀x ∈ L;
S5)1 · x = x, ∀ x ∈ L;
S6)λ (x + y) = λx + λy, ∀λ ∈ Γ, ∀ x, y ∈ L.
We say that(L,+, ·) is an almost linear space

(denoted by a.l.s.).

Let present some examples of a.l.s.
We considerX a linear normed space,w the weak

topology onX and we denote byP(X) the family of
nonvoid subsets ofX. We also denote:

Cl(X) = {A ∈ P(X);A is closed},

Pb(X) = {A ∈ P(X);A is bounded},
K(X) = {A ∈ P(X);A is a compact},
Kw(X) = {A ∈ P(X);A is w-compact},

D(X) = {A ∈ P(X);A is open}.
Except the familyKw(X), all the above classes

can be also defined ifX is a metric space.

Example 2.1. P(X) with usually operations on
subsets forms an a.l.s. Obviously we have

P(X)⊃ Pb(X) ⊃ K(X) ⊃ Kw(X),

andPb(X), K(X),Kw(X) are also a.l.s.

Definition 2.2. Let (L,+, ·) be an a.l.s.. The
structure(L,+, ·, σ) is calledalmost linear topolog-
ical space(or a.l.t.s.) if the operations

” + ” : L× L → L

and
” · ” : Γ× L → L

are both continuous in the topologyσ.

We recall some definitions from linear spaces
adjusted to almost linear spaces(L,+, ·) with real
scalars.

Definition 2.3. A subsetA ⊂ L is calledab-
sorbentif for everyx ∈ L there existsλ > 0 such that
λx ∈ A.

Definition 2.4. A subsetA ⊂ L is calledbal-
ancedif

λA ⊂ A

for anyλ ∈ R with |λ| ≤ 1 .

Definition 2.5. By the balanced involving of a set
A ⊂ L (denotedE(A)) we mean the intersection of
all balanced subsets ofL which containA.

Remark 2.1. The balanced involving of the set
A ⊂ L can be couched by the formula (valid in linear
topological spaces, too)

E(A) =
⋃

|λ|≤1

λA.

Definition 2.6. Let (L,+, ·) be an a.l.s. andk >
0. A subsetM ⊂ L is calledk-balancedif for every
λ ∈ Γ with |λ| ≤ k and everyx ∈ M we haveλx ∈
M.

This means that

λM ⊂ M,∀λ ∈ Γ with |λ| ≤ k.

(If k = 1 one obtains the definition of balanced
set. )
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Thesedefinitionshelp us in our purpose to give
some conditions for a familyV(0) to be a system of
neighbourhoods for0 in a.l.t.s..

We consider the following assertions:
(V0) 0 ∈ V for anyV ∈ V(0);
(V1) ∀V1, V2 ∈ V(0) ∃V3 ∈ V(0) such that

V3 ⊂ V1 ∩ V2;
(V2) ∀V ∈ V(0) ∃V1 ∈ V(0) such thatV1 +

V1 ⊂ V ;
(V3) ∀V ∈ V(0), V is absorbent set;
(V4) ∀V ∈ V(0) ∃V ∈ V(0) such that

E(V1) ⊂ V.

The axiom (V2) tell us that the sum is continuous
in any point(x0, y0) ∈ L × L; both the axioms (V2)
and (V4) assure the continuity of the multiplication
with scalars in any point(0, x0) ∈ Γ× L.

Following the proof from the linear topological
spaces we have:

Theorem 2.1([3], Theorem 3.1).If V(0) is a fun-
damental system of neighbourhoods of the origin in an
a.l.t.s.L, thenV(0) satisfies the axioms (V0)-(V4).

Now we give some examples of a.l.t.s.

OnX we consider

S(a, ε) = {x ∈ X; ‖a− x‖ < ε}
the ball of centera ∈ X and radiusε > 0 and

B(a, ε) = {x ∈ X; ‖a− x‖ ≤ ε}
the closed ball of centera ∈ X and radiusε > 0.

Also Sε(A) is the notation forε−enlargementof
A :

Sε(A) = {x ∈ X;∃a ∈ A such that‖a− x‖ < ε}
with A ⊂ X, ε > 0.

Now we are ready to recall the definitions and the
most important informations about some hypertopolo-
gies. A lot of hypertopologies onA ⊂ P(X) (Haus-
dorff, Vietoris, proximal etc.) must be written like a
suprema of two topologies, namely a lower topology
τ− and an upper topologyτ+ :

τ = τ− ∨ τ+.

Definition 2.7. Let (X, d) be a metric space.
The Hausdorff topologyτH is defined onP(X)

by
τH = τ−H ∨ τ+

H ,

where a basic neighbourhoods of a setA0 ∈ P(X) is,
respectively:

in τ−H (lower Hausdorff topology)
U−(A0, ε) = {A ∈ P(X); A0 ⊂ Sε(A)}, with

ε > 0,

and inτ+
H (upper Hausdorff topology)

U+(A0, ε) = {A ∈ P(X); A ⊂ Sε(A0)}, with
ε > 0.

This topology is also induced by the extended-
valued semi-metricHd onP(X), where

Hd(A,B) = sup{|d(x,A)− d(x,B)|;x ∈ X}

(Hd : X → R+ ∪ {+∞} is symmetrically and sat-
isfies the triangle inequality). SoτH is the topology
of uniformly convergence onX of the distance func-
tional

A 7−→ d(x,A),

with A ∈ P(X).
Equivalently,

Hd(A,B) = max{e(A,B), e(B,A)},

where

e(A,B) = sup{d(a,B); a ∈ A}

is theHausdorff excess ofA with respect toB.

If (X, d) is a metric space, the topologyτHd
does

not depend by the metricd, but only the uniformity
induced byd, namely: if there existm,M > 0 such
that the metricsd andρ on X verify the inequalities
m · d(x, y) ≤ ρ(x, y) ≤ M · d(x, y) for all x, y ∈ X,
thenτHd

andτHρ are equivalent topologies. So on the
linear normed spacesX we have the same topology
for the equivalent norms.

Finally we note that a sequence of subsets
(An)n∈N is τ+

H−convergent toA iff e(An, A) → 0
whenn → ∞ and(An)n∈N is τ−H−convergent toA
iff e(A,An) → 0 whenn →∞.

More generally, if(Ai)i∈I is a net of nonvoid sub-
sets ofX andA ∈ P(X) is arbitrary, then the follow-
ing assertions are equivalent:

1. A ∈ τ−H − lim
i

Ai;

2. lim
i

d(ai, Ai) = 0 for all nets(ai)i∈I of A;

3. lim sup
i

e(B, Ai) ≤ e(B,A), for all B ∈
Cl(X).

Also:
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1. A ∈ τ+
H − lim

i
Ai;

2. lim
i

d(ai, Ai) = 0 for all nets(ai)i∈I with ai ∈
Ai, i ∈ I;

3. lim sup
i

e(Ai, B) ≤ e(A,B), for all B ∈
Cl(X).

The Hausdorff topology is the most known topol-
ogy onP(X). It is used for obtain the continuity of al-
gebraic operations onCl(X) (see, for instance, [11]),
as well as in the study of uniformly autocontinuous
non-additive multifunctions ([10]).

Definition 2.8. The lower Vietoris topologyτ−V
onP(X) is given by the following subbase:

V − = {A ∈ P(X);A ∩ V 6= ∅},
whereV is an open subset ofX.

τ−V is the weakest topology onP(X) such that all
the functionals

A 7−→ d(x,A)

are upper semicontinuous, for anyx ∈ X.

If (X, d) is a metric space, the topologyτ−V does
not depend by the metricd, but only the topology in-
duced byd.

If A, (Ai)i∈I is a net of closed subsets ofX, then
the following assertions are equivalent:

1. A ∈ τ−V − lim
i

Ai;

2. lim
n→∞ d(a,Ai) = 0, for all a ∈ A;

3. lim sup
i

d(Ai, B) ≤ d(A,B), for all closed

subsetsB of X;
4. e(A,B) ≤ lim inf

i
e(Ai, B), for all closed sub-

setsB of X.

Definition 2.9. The proximal topologyτP on
P(X) is

τP = τ−V ∨ τ+
H .

A base of neighbourhoods forA ∈ P(X) in τP is
given by

Sε(A)++ ∩ S(a1, ε)− ∩ ...S(an, ε)−,

with a1, ..., an ∈ A, n ∈ N , n > 0 andε > 0.
(ForE open inX we denote

E++ = {A ∈ P(X);∃ε > 0 such thatSε(A) ⊂ E}).

Finally, τP (d) = τP (ρ) if and only if d andρ are
metrics onX which determine the same uniformity.

Definitions and details on other hypertopologies
can be found in [4]-[9], [15]-[17] and [19]-[21].

Examples 2.2. The continuity of algebraic op-
erations with respect to lower Vietoris and Hausdorff
topologies are studied, for example, in [20], paragraph
12, and [2], Propositions 3.4 and 3.7, respectively.

So the following spaces are almost linear topolog-
ical:

(P(X),+, ·, τ−V ),
(Pb(X),+, ·, τ−H ),
(Pb(X), +, ·, τ+

H ),
(Pb(X),+, ·, τH),
(Pb(X),+, ·, τP ).

BecausePb(X),K(X),Kw(X) are almost linear
subspace ofP(X), then we have also another a.l.t.s.:

(Pb(X),+, ·, τ−V ),
(K(X),+, ·, τ),
(Kw(X),+, ·, τ),
whereτ is one of the five above hypertopologies.

Remark 2.2 (see [3], p.8). IfV(0) is a family of
subsets ofL satisfying the axioms (V0), (V1), (V2),
then we can consider the family

(2.1) U(x) = {U ⊂ L; ∃V ∈ V(0) such that
x + V ⊂ U}.

If V(0) is also a fundamental system of neigh-
bourhoods of the origin inL, then we can generate
in this way onL a new topologyτ in which a funda-
mental system of neighbourhoods of a pointx is given
by the above construction.

Definition 2.10.Let σ be a topology on an a.l.t.s.
L and V(0) a fundamental system of neighbourhoods
of the origin (which verifies axioms (V1) - (V4)).
Then the topologyτ on L given by the relation (2.1)
is calledthe translation of the topologyσ.

Using the above examples we can prove that, gen-
erally, an almost linear topology and its translation are
different, as it results from:

Example 2.3. Let X be a linear normed space.
We consider the a.l.t.s.Pb(X) endowed with up-
per Hausdorff topologyτ+

H and its translationτ. For
A ∈ Pb(X), a fundamental system of neighbour-
hoods in τ+

H is formed by the set of closed balls
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{BH+(A, δ); δ > 0} ; we take

A = {a, a + ei} ,

wherea is an arbitrary fixed element ofX andei is a
unit vector of the base of the linear spaceX. For any
ε > 0 andδ > 0 we have

BH+(A, δ) * A + BH+(O, ε) :

we find the setAδ = {a + δei} such thatAδ ∈
BH+(A, δ) andAδ /∈ A + BH+(O, ε).

Indeed,

e(Aδ, A) = sup
b∈Aδ

inf
a∈A

‖a− b‖ =

= min {δ, ‖a + (δ − 1)ei‖} ≤ δ,

soAδ ∈ BH+(A, δ).
Now, if B ∈ Pb(X) is an arbitrary nonvoid sub-

set of BH+(O, ε) (with sup
b∈B

‖b‖ ≤ ε), then Aδ 6=
A + B becauseAδ has only one element andA + B
has at least two elements ( evidently,a 6= a + δei, so
A has two elements).

Let observe that the translation topologyτ of an
almost linear topologyσ might not be almost linear:

Example 2.4. Let X be a linear normed space.
We endow the familyPb(X) with the translationτ
of upper Hausdorff topologyτ+

H (or another almost
linear topology); the multiplication with scalars is not
continuos:

We consider the sets

An = {n + 1
n

tei; t ∈ [−1, 1]}

and
A = {tei; t ∈ [−1, 1]},

whereei is aunit vector of a base ofX. We takeµn =(
n

n+1

)2
ascalarsequence. ThenAn →τ A andµn →

µ = 1, butµnAn 9 µA.
In order to prove this, we remark that

An = A + Bn,

where

Bn =
{

1
n

tei; t ∈ [−1, 1]
}

verifiesthe relation

e(Bn, 0) = sup
b∈Bn

|b| = 1
n

.

If k is areal number, we denote by[k] the greatest
integer less thenk.

For anyε > 0 there exists a positive integernε =[
1
ε

]
+ 1 suchthat for everyn ≥ nε we have

Bn ∈ BH+(0, ε),

that implies

An ∈ A + BH+(0, ε).

SoAn →τ A.

Now let ε0 ∈ (0, 1) be fixed. For everyn ∈ N,
n 6= 0, we have

µnAn * µA + BH+(0, ε0) :

otherwise, let beCn ∈ Pb(X) with

Cn ∈ BH+(0, ε0)

such that
µnAn = µA + Cn,

that is

{
n + 1

n
tei; t ∈ [−1, 1]

}
=

= {tei; t ∈ [−1, 1]}+ Cn.

If c ∈ Cn then

ei + c ∈ µA + Cn

is anelement ofµnAn, so

ei + c =
n

n + 1
tei.

Then

e(Cn, 0) = sup
t∈[−1,1]

∣∣∣∣
n(t− 1)− 1

n + 1
ei

∣∣∣∣ =

=
2n + 1
n + 1

> 1,

a contradiction with the hypothesis

Cn ∈ BH+(0, ε0)

(ε0 < 1).

If we are interested by the almost linearity of the
translation of an almost linear topology onL we need
to introduce some new axioms:
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(V3’) ∀V ∈ V(0), ∀λ0 ∈ Γ, ∀x0 ∈ L ∃δ > 0
such that∀λ ∈ Γ with |λ− λ0| < δ we haveλx0 ∈
λ0x0 + V ;

(V4’) ∀V ∈ V(0), ∀k > 0, ∃V1 ∈ V(0) such
that∀λ ∈ Γ with |λ| ≤ k we haveλV1 ⊂ V.

The axiom(V3’) represents the continuity in the
topology given by the construction (2.1) of the appli-
cationλ 7→ λx0 in everyλ0 ∈ Γ , for anyx0 ∈ L.

The axiom (V4’) assures that, for everyk > 0, ev-
ery neighbourhood of the origin contains ak-balanced
neighbourhood.

In fact the system (V1), (V2), (V3’) and (V4’)
gives a necessary and sufficient condition which as-
sures that the translationτ of an almost linear topol-
ogy onL is almost linear, as we can see in:

Theorem 2.3 ([3], Theorem 3.2).Let be(L,+, ·)
an almost linear space.

(i) If the translation of a topologyσ on L is
almost linear, then any fundamental system of neigh-
bourhoods of the origin in the topologyσ verifies the
axioms (V1), (V2), (V3’) and (V4’).

(ii) If a nonvoid familyV(0)⊂ P(L) satisfies
the conditions (V1), (V2), (V3’) and (V4’), then the
familyx+V(0) forms a fundamental system of neigh-
bourhoods ofx in an almost linear topology.

Finally we give some sufficient conditions for the
almost linearity of the translation topology; we use for
this the continuity of the multiplications with scalars
in other points than the origin ofΓ × L. We express

these conditions by the following assertions:

(A3) ∀x0 ∈ L, ∀V ∈ V(0), ∀µ0 ∈ Γ ∃δ > 0
and∃W ∈ V(0) such that∀µ ∈ Γ with |µ− µ0| < δ
we haveµx0 + W ⊂ µ0x0 + V ;

(A4) ∀V ∈ V(0), ∀λ0 ∈ Γ ∃λ > 0 and
∃W ∈ V(0) such that∀λ ∈ Γ with |λ− λ0| < δ
we haveλW ⊂ V ;

(A5) ∀x0 ∈ L, ∀V ∈ V(0) ∃δ > 0 ∃U ∈
V(0) such that∀λ ∈ Γ with |λ− 1| < δ we have
λx0 + U ⊂ x0 + V.

The conditions (A3) and (A5) are effectively re-
lated to the translation topology, while hypothesis
(A4) refers to the initial topology ofL.

In fact the assertion (A3) is a formulation of the
idea that any neighbourhoods ofµ0x0 in translation
topology is also neighbourhood for the pointsµx0

”sufficiently close”.

(A4) represents the continuity of the multiplica-
tion with scalars in the point(λ0, 0) ∈ Γ× L and the
axiom (A5), in the point(1, x0) ∈ Γ× L.

Proposition 2.4 ([3], Proposition 3.2). Let
(L,+, ·) be an a.l.s. andV(0)⊂ P(L) a nonvoid fam-
ily. Then, the conditions (V1), (V2), (V3), (A4) and
(A5) are equivalent with (V1), (V2), (A3) and (A4). If
V(0) is a fundamental system of neighbourhoods of
the origin for a topology inL, then both groups of
axioms assure the almost linearity for the translation
topology.

For other details on the a.l.s., a.l.t.s. and the trans-
lation of an almost topology see [3].

3 Separation and metrizability

In the sequel, our purpose is to characterize the sepa-
rations T1 and T2 on the a.l.t.s.

Theorem 3.1.LetL be an a.l.s.,σ a topology on
L that satisfies the axioms (V0) – (V2) and its trans-
lation τ . Then,(L, τ) is a T1 separate space if and
only if one of the following equivalent properties is
fulfilled:

(3.1) If x, y ∈ L such as, for anyV ∈ V(0)
there existsv ∈ V having the property:x = y + v,
thenx = y;

(3.2)
⋂

V ∈V(0)

V = {0}, whereV(0) is an ar-

bitrary fundamental system of neighbourhoods of the
origin.

Proof. One can use the fact that a topological
spaceL is a T1 separate space if and only if the sin-
gletons are closed sets.

This is similar with the following condition:
∀x ∈ L and∀y ∈ L such as, forV ∈ V(0)

one has
(y + V ) ∩ {x} = ∅ =⇒ y = x,

from where the (3.1) form derives.
This is also equivalent to:
(3.3) If x, y ∈ L for whichx ∈ y+

⋂
V ∈V(0)

V ,

thenx = y.
Obviously, (3.2) implies (3.3).
Conversely, leta ∈ ⋂

V ∈V(0)

V ( a nonvoid set: con-

tains0).
Then,x = y + a andx = y, i.e.,x = x+ a; from

the uniqueness of element0, postulated by axiom S2,
Definition 2.1, it follows thata = 0. ¥
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Theorem3.2. If τ is the translation of a topology
on an a.l.s.L, then(L, τ) is a T2 separate space if
and only if the following condition is fulfilled:

(3.4) If x, y ∈ L such as for any neighbour-
hood V ∈ V(0) there existsv1, v2 ∈ V , such as
x + v1 = y + v2, thenx = y.

Proof. Let x, y ∈ L. If x 6= y, then there isV1,
V2 ∈ V(0) such as(x + V ) ∩ (y + V ) = ∅ . From
the axiom (V1), forV1 andV2, there existsV ∈ V(0)
such asV ⊂ V1 ∩V2. Then,(x+V )∩ (y +V ) = ∅ .

Rephrasing, according to the converse’s contrary,
it follows that, ifx, y ∈ L such as(x+V )∩(y+V ) 6=
∅ , for anyV ∈ V(0), thenx = y, i.e., (3.4).¥

Remark 3.1. The topological condition (3.4) al-
lows us to extract equal elements from an equality re-
lationship, without using the symmetrical elements,
thus ’supplying’ the existence axiom, for each element
of L, of its symmetric.

Thus, one can give a theorem for the metrizability
of an a.l.s.

Theorem 3.3. Let L be an a.l.s.,σ a topology
onL andU(0) = (Uk)k∈N∗ a countable, fundamental
system of neighbourhoods of the origin, in the topol-
ogyσ. If U(0) satisfies the axioms (V0) – (V2) and the
condition

(3.2)’
⋂

k∈N∗
Uk = {0}

then the spaceL with the translation topology is
metrizable.

Proof. One can closely follow the classical proof
for the metrizability of linear topological spaces (see,
for example, [18]) and adjust it using Theorem 2.3:

I) Let U1 ∈ U(0); from the axiom (V4’) there
exists a balanced neighbourhoodV1 of the origin with
V1 ⊂ U1 (see Theorem 2.3). Now, if we consider the
neighbourhoodU2∩V1 of the origin, from axiom (V2)
and Theorem 2.1 we can found the neighbourhoodW2

such that

W2 + W2 ⊂ U2 ∩ V1 ⊂ V1.

ForW2 there existsV2 balanced which verifies the re-
lation: V2 + V2 ⊂ W2. Then

V2 + V2 + V2 ⊂ V2 + V2 + V2 + V2 ⊂ W2 + W2,

so
V2 + V2 + V2 ⊂ V1.

We take back this proceeding for the neighbourhood
U3 ∩ V2 and we findV3 (balanced) such that

V3 + V3 + V3 ⊂ V2.

One can recurrently construct a fundamental sys-
tem of neighbourhoods of the origin(Vn)n∈N for the
topologyσ of L, having the following property:

(3.5) Vn+1 ∩ Vn+1 ∩ Vn+1 ⊂ Vn,
for anyn ∈ N, n > 0. All the setsVn are balanced

andVn ⊂ Un.
Denote byV(0) = (Vn)n∈N. Evidently,U(0) is

finer thanV(0) from construction. ButVn are also
neighbourhoods in the topologyσ, so V(0) is finer
thanU(0). It results thatV(0) andU(0) are equiva-
lent. Forn = 0 we putVn = L.

Let τ be the translation topology onL.

II) We consider the functionφ : L× L → R,
φ(x, y) = inf{ 1

2n ; x ∈ y + Vn}.
Fromthedefinition ofφ we have
(3.6) φ(x, y) ≤ 1/2n if and only if x ∈ y +

Vn.
Let x, y, u, v ∈ L andε > 0, such as

φ(x, u) ≤ ε, φ(u, v) ≤ ε, φ(v, y) ≤ ε; if
n ∈ N , 1/2n ≤ ε andx ∈ u + Vn, u ∈ v + Vn,
v ∈ Vn, then

x ∈ u + Vn ⊂ v + Vn + Vn ⊂ y + Vn + Vn + Vn;

from (3.5) we deduce thatx ∈ y + Vn−1 and 1
2n ≤ ε

(in fact, 1
2n−1 ≤ 2ε). It follows thatφ(x, y) ≤ 2ε. So

(3.7) φ(x, u) ≤ ε, φ(u, v) ≤ ε, φ(v, y) ≤ ε
=⇒ φ(x, y) ≤ 2ε.

III) We define d : L × L → R, d(x, y) =

inf
p−1∑
i=0

φ(ui, ui+1),

where infimum is considered on all the finite sys-
tems of points(ui)i=1,p for whichu0 = x andup = y.

Then, the double inequality takes place:
(3.8) 1

2 φ(x, y) ≤ d(x, y) ≤ φ(x, y), ∀x, y ∈
L.

Indeed, the right member of the inequality fol-
lows from the definition ofd (we takep = 1).

For the left member of inequality we prove that

(3.9) 1
2 φ(x, y) ≤

p−1∑
i=0

φ(ui, ui+1) for all

x, y ∈ L and anyp ∈ N.
This results using the mathematical induction

method with respect top. So we consider that (3.9)
is valid for all systems having at the mostp − 1
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points attachedof any pair of points. We denote by

s =
p−1∑
i=0

φ(ui, ui+1). If s ≥ 1/2 then the relation

(3.9) is evidently true becauseφ(x, y) ≤ 1.

Now suppose thats < 1/2. We denote byt the

biggest integer for which
t−1∑
i=0

φ(ui, ui+1) < s/2; so

t∑
i=0

φ(ui, ui+1) ≥ s/2 and
p−1∑

i=t+1
φ(ui, ui+1) < s/2.

We observe thatt ≤ p− 1 andp− 1− t ≤ p− 1. We
apply the inductive hypothesis for the pairs of points
(u0, ut) and(ut+1, up) and we found

1
2
φ(u0, ut) ≤ s

2
and

1
2
φ(ut+1, up) ≤ s

2
.

Sinceφ(ut, ut+1) ≤ s we use (3.7) foru0, ut, ut+1,
up and it follows thatφ(u0, up) ≤ s/2, i.e. (3.9).

It results thatd is a metric onL:
i) from (3.8),d(x, y) = 0 ⇔ φ(x, y) = 0;
from (3.6),x ∈ y + Vn for all n ∈ N, so x ∈

y +
⋂

n∈N
Vn.

From hypothesis
⋂

n∈N
Vn =

⋂
n∈N

Un = {0}, so

x = y.

ii) d(x, y) = d(y, x) becauseφ(x, y) = φ(y, x).
iii) Let be x, y, z ∈ L arbitrarily. All the systems

(ui)i=0,1,..,p and (vj)j=0,1,...q for the pairs of points
(x, z) and(z, y) are also systems of points for the pair
(x, y), so

d(x, y) ≤ d(x, z) + d(z, y).
IV) The topology induced by the metricd is

equivalent withτ , because the fundamental system of
neighbourhoodsx + V(0) is equivalent with the fun-
damental system of neighbourhoods{Bd(x, 1/2n);
n ∈ N}. This follows from the relation:

x + Vn ⊂ Bd

(
x, 1

2n

) ⊂ x + Vn+1, for any x ∈ L
and anyn ∈ N:

Consideru ∈ x + Vn; from (3.6) we obtain
φ(u, x) ≤ 1/2n and from (3.8) we haved(u, x) ≤
1/2n, sou ∈ Bd

(
x, 1

2n

)
.

Now, if u ∈ Bd

(
x, 1

2n

)
, thend(u, x) ≤ 1/2n

and from (3.8) we deduce that1
2 φ(u, x) ≤ 1/2n, so

(see (3.6))u ∈ x + Vn+1. ¥

Remark 3.2.
(i) The metricd constructed in the proof of The-

orem 3.3 satisfies the following condition of ”semi-
invariance” to translations:

d(x + z, y + z) ≤ d(x, y), for anyx, y, z ∈ L,

as the functionφ defined above fulfils the same in-
equality: if x ∈ y + Vk, then for anyz ∈ L, one has
x + z ∈ y + z + Vk, thus

φ(x + z, y + z) ≤ φ(x, y).
(ii) The family

{
x + Bd

(
0,

1
2k

)}

k∈N∗

alsoconstitutesa fundamental system of neighbour-
hoods forx on the topologyτ . One can notice that,
if d is any metric onL, the setsx + B(0, ε) and
B(x, ε) are not necessarily comparable. But ifd
is ”semi-invariant” to translations, from the inequal-
ity d(x + u, x) ≤ d(u, 0) applied to the elements
u ∈ B(0, ε) one can find that

x + B(0, ε) ⊂ B(x, ε).
(iii) If we remove the hypothesis of T1 sep-

aration from the Theorem 3.3, then the almost linear
topology will be only semi-metrizable.

In the following, we will apply the Theorem 3.3
for the topologiesτ−H , τ+

H , τ−V and τP , in order to
find the conditions for semi-metrizability. We will de-
sign asD(X) the family of nonvoid open sets of linear
normed spaceX. Evidently, (Pb(X), τH) is semi-
metrizable; we have also a metrizability result for the
topologyτP ([7]):

(Cl(X), τP (d)) is metrizable if and only if(X, d)
is totally bounded.

For the translations of the above hypertopologies
we have:

Corollary 3.4.
(i) The translated of topologyτ−H is semi-

metrizable onPb(X).
(ii) The translated of the topologyτ+

H is semi-
metrizable onD(X).

(iii) The translated of the topologyτV is semi-
metrizableonP(X).

(iv) The translated of the topologyτP is semi-
metrizable onD(X).

Proof. (i) A fundamental systemV of neighbour-
hoods of the origin inτ−H on Pb(X) will be formed
by the sets having the form

V −
H (0;B, ε) = {A ∈ Pb(X); B ⊂ Sε(A)}

with B ∈ Pb(X) containing the origin andε > 0.
Let be the familyV ′ of the neighbourhoods for

the origin ofτ−H having the type

V −
H (0;B(0, p),

1
n

)
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with p, n ∈ N∗. The systemV ⊂ V ′ is countable and
defines the same topology asV, as: B is bounded,
then there existsp ∈ N∗ such thatB ⊂ B(0, p);
we taken = [6/ε] + 1 (where [α] is the greatest
integer less than the real numberα). Then for any
A ∈ Pb(X) having the property:B(0, p) ⊂ S1/n(A),
the following inclusion is also valid:

B ⊂ Sε(A)
(

soV −
H (0;B(0, p),

1
n

) ⊂ V −
H (0;B, ε)

)
.

(ii) For the topologyτ+
H onD(X), a fundamental

systemV of neighbourhoods of the origin is formed
by sets of the type:

V +
H (0;B, ε) = {A ∈ D(X); A ⊂ Sε(B)},

whereB ∈ D(X) with 0 ∈ B andε > 0.
For such a setB, there existsp ∈ N∗ such that

S(0, 1/p) ⊂ B, and if n = [6/ε] + 1, then for any
A ∈ D(X) such thatA ⊂ S1/n(S(0, 1/p)) , it follows
thatA ∈ Sε(B). From here, one can deduce that the
family V ′⊂ V formed by the sets of type

{A ∈ D(X);A ⊂ S1/n(S(0, 1/p))} with n, p ∈
N∗ also constitutes a fundamental system of neigh-
bourhoods equivalent toV .

(iii) Let be ε1, ε2, . . . ., εn > 0, with n ∈ N∗ and
UV − = S(0, ε1)− ∩ S(0, ε2)− ∩ ... ∩ S(0, εn)− =
S(0, ε)−, whereε = min{εj ; j = 1, n} is a funda-
mental neighbourhood of the origin inτ−V .

By choosing for everyε > 0 a n ∈ N∗ i.e., n =
[6/ε], one can obtain

S(0, 1/n)− ⊂ S(0, ε)−,
that is, the family

V ′ = {S(0, 1/n)−; n ∈ N∗}
is contained inV = {S(0, ε)−; ε > 0}; alsoV ′

represents a fundamental system of neighbourhoods
for the origin inτ−V .

(iv) This follows from (ii) and (iii), asτP = τ−V ∨
τ+
H .¥

Now we offer a sufficient condition for a metricd,
in order to induce a topology which is almost linear.

Theorem 3.5. Let (L,+, .) be an a.l.s. andd a
semi-metric onL, satisfying the properties:

I) d(a + c, b + c) ≤ d(a, b), for anya, b, c ∈ L,
II) d(λa, λb) ≤ |λ| d(a, b), for any a, b,∈ L,

λ ∈ Γ
III) d(λa, µa) ≤ |λ− µ|·d(a, 0), for anyλ, µ ∈

Γ and anya ∈ L.
Then the topology induced onL by the semi-

metricd is almost linear.

Proof. Let x0, y0 ∈ L and(xn)n∈N∗ , (yn)n∈N∗ ⊂
L, with d(xn, x0) → 0, d(yn, y0) → 0.

We have the inequalities:
d(xn + yn, x0 + y0) ≤ d(xn + yn, x0 + yn) +

d(x0+yn, x0+y0) ≤ d(xn, x0)+d(yn, y0), sod(xn+
yn, x0 + y0) → 0.

Now, letλn, λ ∈ Γ, xn, x0 ∈ L with d(xn, x0) →
0 andλn → λ in Γ.

In this case,
d(λnxn, λ0x0) ≤ d(λnxn, λnx0) +

d(λnx0, λ0x0) ≤ |λn|·d(xn, x0)+|λn − λ0|·d(x0, 0),
henced(λnxn, λ0x0) → 0. ¥

For discuss the Theorem 3.5 we need first to give
some properties ofHd. The below proposition de-
scribes the behavior of the Hausdorff ”distance” with
respect to latticeal and algebraic operations :

Proposition 3.6. LetX be a linear normed space
over the scalar fieldΓandH the Hausdorff extended
semi-metric onP(X). Then the following assertions
hold:

(i) H(A ∪ C,B ∪ C) =
= max{sup

a∈A
min{d(a, B), d(a,C)},

sup
b∈B

min{d(b, A), d(b, C)} }
and

H(A ∪ C, B ∪ C) ≤ H(A,B),
for all A,B,C ∈ P(X).

(ii) H(A + C , B + C) ≤ H(A , B),
for all A,B,C ∈ P(X);

(iii) H(A,B) ≤ H(A−B, 0),
for all A,B ∈ P(X);

i(iv) |H(A, 0)−H(B, 0)| ≤ H(A,B),
for all A,B ∈ P(X);

(v) H(λA, µA) ≤ |λ− µ| ·H(A, 0),
for all λ, µ ∈ Γ andA ∈ P(X);

(vi) H(λA, λB) = |λ| ·H(A,B),
for all λ ∈ Γ andA,B ∈ P(X).

Proof. The conditions (i), (ii) and (vi) are prove
in [2], Proposition 4.5.

(iii) We have
e(A, B) ≤ sup

a∈A
sup
b∈B

‖a− b‖ = e(A−B, 0)

and symmetrically we founde(B,A) ≤ e(A −
B, 0).

But e(0, A−B) = inf{‖a− b‖ , a ∈ A, b ∈ B}.
It follows that

H(A−B, 0) = e(A−B, 0) ≥
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≥ max{e(A,B), e(B, A)} = H(A,B).

(iv) If a ∈ A andb ∈ B, first we take the infimum
for all a ∈ A in the formula‖a‖ − ‖b‖ ≤ ‖a− b‖ ;
second we take the supremum for allb ∈ B and we
obtainH(A, 0)−H(B, 0) ≤ e(A,B). ChangingA for
B, it implies thatH(B, 0) −H(A, 0) ≤ e(B, A) and
it results the inequality from our assertion.

(v) In order to calculateH(λA, µA) we estimate
e(λA, µA). So

e(λA, µA) ≤ sup
a∈A

‖λa− µa‖ =

= |λ− µ| · sup
a∈A

‖a‖ = |λ− µ| ·H(A, 0).

Evidently,e(µA, λA) ≤ |λ− µ| ·H(A, 0), so we ob-
tain the desired inequality.¥

Remark 3.3. The conditions of Theorem 3.5 are
consistent. As an example of distance which induces
a topology almost linear on an a.l.t.s., the conditions
I, II, III from Theorem 3.5 are fulfilled by the semi-
metricH on the familyPb(X): see Proposition 3.6.
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