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Abstract: Asymptotics of solution and finite difference approximation of the nonlinear integro-differential equa-
tions associated with the penetration of a magnetic field into a substance is studied. Asymptotic properties of
solutions for the initial-boundary value problem with homogeneous as well as nonhomogeneous Dirichlet bound-
ary conditions are considered. The corresponding finite difference scheme is studied. The convergence of this
scheme is proven. Numerical experiments are carried out.
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1 Introduction
Many practical problems are described by integro-
differential models (see, for example, [1], [4], [5],
[8], [10], [19], [22], [29]). One of such model arise
in the study of electromagnetic field penetration into
a substance. As it is known this process is mod-
eled by Maxwell’s system of partial differential equa-
tions (see, for example, [15]). If the coefficients of
thermal heat capacity and electro-conductivity of the
substance depend on temperature, then the Maxwell’s
system can be reduced to the integro-differential
model, one-dimensional scalar analogue of which has
the following form [9]:
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where � � ��	� is a given function defined for 	 �
�����.

Principal characteristic peculiarity of the equation
(1) is connected with the appearance in the coeffi-
cient with derivative of higher order nonlinear term
depended on the integral in time.

Note that the integro-differential equation of type
(1) is complex and only special cases were investi-
gated (see, for example, [6], [7], [9], [12]-[14], [16],
[17]).

In some restrictions by modeling the same pro-
cess in [16] integro-differential model is received,
one-dimensional scalar analogue of which has the fol-
lowing form
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The existence and uniqueness of the solutions of
the initial-boundary value problems for the equations
of type (1) and (2) are studied in [6], [7], [9], [16], [17]
and in a number of other works as well. The existence
theorems, proved in [6], [7], [9], are based on Galerkin
method and compactness arguments as in [18], [27]
for nonlinear problems.

Asymptotic behavior of solution as � � � and
numerical solution of initial-boundary value problem
for equation (2) in the case ��	� � � � 	 is given
in [14]. Note That in this work asymptotic behav-
ior of solution of initial-boundary value problem with
non-homogeneous boundary condition on part of lat-
eral boundary has a power-like form.

Many authors study the finite difference approx-
imation for a integro-differential models (see, for ex-
ample, [2], [3], [11], [20], [21], [25], [26], [28], [30]).

In the present work we strengthening result given
in [14] for the solution of first initial-boundary value

WSEAS TRANSACTIONS on MATHEMATICS Temur Jangveladze, Zurab Kiguradze

ISSN: 1109-2769 467 Issue 8, Volume 8, August 2009



problem for equation (2). We also discuss finite differ-
ence scheme in the case ��	� � ��	 for the equation
(1).

The rest of the paper is organized as follows. In
the second section we will state problem and con-
sider large time behavior of solutions of first initial-
boundary value problems for equations (1) and (2). In
the third section finite difference scheme for equation
(1) is discussed. In the fourth section we conclude
with some remarks on numerical implementations. In
the fifth part of this note some conclusions are given.

2 Asymptotic behavior of solutions
as ���

In the area � � ��� �� � �����, let us consider fol-
lowing initial-boundary value problem:
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� ��� �� �� ��� �� � �� (4)
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�� ������ is a given function.
Asymptotic behavior of solution as � � � of

initial-boundary value problem (3)-(6) is investigated
in [12]. One of main result of investigations made in
this work can be stated as follows.

Theorem 1 If ��	� � �� � 	��, � � 
 � �; �� �
����� �� ���

� ��� ��, then the solution of the problem
(3)-(6) satisfies the following estimate������ ��� ��
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Here and below, �� and ��
� denote usual

Sobolev spaces, while � denotes positive constant in-
dependent of �.

If instead boundary conditions (4) following non-
homogeneous boundary condition on part of lateral
boundary is considered

� ��� �� � �� � ��� �� � �� (8)

then we derive again one of main result of [12], which
can be formulated as a following statement.

Theorem 2 If ��	� � �� � 	��, � � 
 � �; �� �
����� ��, ����� � �, ����� � �, � � ����� � �,
then the solution of the problem (3),(5),(6),(8) satisfies
the following estimates:������ ��� ��
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Now consider problem (3),(5),(7),(8). Let us in-

troduce the notation

���� �� �� ��� ��� ��
 (9)

So, instead (3),(5),(7),(8) we have following problem:
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Theorem 3 If ��	� � �� � 	��, � � 
 � �;
�� � ��

� ��� ��, then the solution of the problem
(3),(5),(7),(8) satisfies the following estimate
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Proof. Let us multiply (10) by � and integrate
over ��� ��. After integrating by parts and using the
boundary conditions (11) we get
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Since �� � 	�� � � we have
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Using Poincare-Friedrichs inequality from (13) we
obtain
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Now multiply (10) by
���

���
and integrate over

��� ��. Using again integration by parts and the bound-
ary conditions (11) we get
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From (13),(14) and (16) we find
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This inequality using initial condition (12) immedi-
ately proves Theorem 3.

Note that Theorem 3 gives exponential stabiliza-
tion of the solution of the problem (3),(5),(7),(8) in
the norm of the space ����� ��. Let us show that the
stabilization is also achieved in the norm of the space
����� ��. In particular, let us show that the following
statement takes place.

Theorem 4 If ��	� � �� � 	��, � � 
 � �; �� �
����� �� ���

� ��� ��, then the solution of the problem
(3),(5),(7),(8) satisfies the following estimates:
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where � � �����, � � �����, � � � � � � �.

To this end we need following auxiliary result.

Theorem 5 If ��	� � �� � 	��, � � 
 � �;
�� � �

���� �����
� ��� ��, then for the solution of the

problem (3),(5),(7),(8) the following estimate holds
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Proof. Let us differentiate (10) with respect to �,
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(17)

Multiply (17) by
��

��
and integrate over ��� ��. Using

the boundary conditions (11) we deduce
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Let us estimate the right hand side of the equality
(18).
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From this, using the Schwarz’s inequality we get
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Combining (18)-(20) we have
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Using Poincare-Friedrichs inequality, notation
(9), Theorem 3, restrictions on 
 and nonnegativity
of 	��� we arrive at
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After multiplying by �	
����, the last inequality gives
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So, Theorem 5 is proven.

Proof of Theorem 4. Let us estimate
���

���
in the

norm of the space ����� ��. From (10) we have
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Integrating (21) on ��� �� and using Schwarz’s in-
equality we get
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Applying Theorem 5 and taking into account the non-
negativity of 	��� we derive
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From this, taking into account the relation
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So, for the solution of the initial-boundary value
problem (3),(5),(7),(8) we have������ ��� ��
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Now let us estimate
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in the norm of the space

����� ��. Let us multiply (10) by
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and integrate

over ��� ��. Using integration by parts we get
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Taking into account boundary conditions (11) we ar-
rive at
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Now multiply (17) by
���
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scalarly and inte-

grate the left hand side by parts
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Taking into account the boundary conditions (11)
we have
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We estimate the right hand side in a similar fash-
ion to (19),(20). It is easy to see that
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Using equation (21) and Theorems 3 and 5 we
have
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From this, keeping in mind the nonnegativity of
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Thus Theorem 4 has been proven.

3 Finite difference scheme
In order to describe the finite difference method for
problem (3)-(6) (case ��	� � � � 	), on �� �
��� �� � ��� � �, where � is a positive constant, we
introduce a net whose mesh point are denoted by
���� �	� � ���� ���� where � � �� �� 


�� � � �

�� �� 


�  with � � �

 , � � �

� . The initial line is de-
noted by � � �. The discrete approximation at ���� �	�
is designed by !	

� and the exact solution to the prob-
lem (3)-(6) by� 	

� . We will use the following known
notations [24]:
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Let us correspond to the problem (3)-(6) with
nonzero right part " in (3) the following difference
scheme:
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Introduce inner products and norms:
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Multiplying (26) scalarly by !	�� � �!	��
� ,

!
	��
� , 
 
 
, !	��


���, using the discrete analogue of the
integration by parts, after simple transformations it is
not difficult to get
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Here and below � is a positive constant indepen-
dent from � and �.

The a-priori estimate (29) guarantees the stability
of the scheme (26)-(28).

The main result of this section is the following
statement.

Theorem 6 If the problem (3)-(6) has a sufficiently
smooth solution � � � ��� ��, then the so-
lution !	 � �!	
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difference scheme (26)-(28) tends to the � 	 �
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following estimate is true
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Proof. For the exact solution � � � ��� �� of
the problem (3)-(6) we have
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Solving (26)-(28) instead of the problem (3)-(6)
we have the error '	� � !	

� ��
	
� . From (26)-(28) and

(31)-(33) we get

'
	��
� � '	�
�

�

��
�
�
�� � �

	���
���

�!�
�����

�



�!	��

���� ��
� � �

	���
���

�� 	��
���� ��

�
�

	��
����

�
�

� %	� �

(34)

'
	
� � '	
 � �� (35)

'�� � �
 (36)

Multiplying (34) scalarly by '	�� � �'	��� , '	��� ,

 
 
, '	��
���, using (35), and the discrete analogue of
integration by parts we get

	'	��	� � �'	��� '	��
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���
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(37)

Taking into account the relations:
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from (37) we have
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�
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�  � �


(38)

Here ( is an arbitrary positive constant.
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Introduce the notations

�
	
� � �

	�
���

 
�!�

�����
� � �� �

�����
�
!
�

then
�
	
��� �

 
�!	��

���� �� � �� 	��
���� ��

!



So, from (38) we get

	'	��	� � 	'		� � ��	'	���� 	��

�	'	���� 	� � ��	�	� 	
� � ���	 � �	� � �

�

(
	%		� � �(�	'	��	�


(39)

Using (36) the discrete analogue of Poincare’s in-
equality [24]

	'	��	� �
�



	'	���� �
�

and the relation

���	 � �	� � �
�

�
	�	��	� �
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�
	�	� 	

��

we have from (39)
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�  


(40)

From (40) we get (30) and thus Theorem 6 has been
proven.

Note that analogical theorem is hold for problem
(3),(5),(7),(8) (see, [14]). Note also, that according
to the scheme of proving convergence theorem, the
uniqueness of the solution of the scheme (26)-(28) can
be proven. In particular, assuming existence of two
solutions ! and �! of the scheme (26)-(28), for the
difference �' � ! � �! we get 	�'�	
 � �� � �
�� �� 


�  . So, �' � �.

4 Numerical implementation
remarks

We now comment on the numerical implementation
of the discrete problem (26)-(28). Note that (26) can
be rewritten as:
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then (26) becomes
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(41)

The system (41) can be written in matrix form

�

"
�

	��
#
� �

"
�

	��
#
�

�

�
�

	 � � 	 � �


The vector � containing all the unknowns
!�� 
 
 
 � !
�� at the level indicated. The vector
� is given by

�

"
�

	��
#

� �
	��
�

	���

where the �� � ��� �� � �� matrix � is symmetric
and tridiagonal with elements:

�
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���������
��������
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(42)

Newton’s method for the system is given by
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The elements of the matrix ��
$
�

	��
%

require the
derivative of ). The elements are:
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(43)

and

�)	��
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(44)

Combining (42)-(44) we have
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�� otherwise.

Let us state well known theorem (see, for exam-
ple, [23]).

Theorem 7 Given the nonlinear system of equations

+� ���� 
 
 
 � �
��� � �� � � �� �� 
 
 
 �� � �


If +� are three times continuously differentiable in a
region containing the solution ��� 
 
 
 � �
�� and the
Jacobian does not vanish in that region, then Newton’s
method converges at least quadratically.

The Jacobian is the matrix �, computed above.

The term
�

�
on diagonal ensures that the Jacobian

doesn’t vanish. The differentiability is guaranteed,
since�, is quadratic. Newton’s method is costly, be-
cause the matrix changes at every step of the iteration.
One can use modified Newton (keep the same matrix

for several iterations) but the rate of convergence will
be slower.

In the first numerical experiment we have chosen
the right hand side of equation (3) so that the exact
solution is given by

� ��� �� � ���� �� ��� ��

which satisfy homogeneous boundary conditions (4).
The parameters used are� � ��� which dictates

� � �
��. Since the method is implicit we can use
� � � and we took 100 time steps. In the Fig. 1 and
Fig. 2 we plotted the numerical solution and the exact
solutions at � � �
� (Fig. 1) and � � �
� (Fig. 2).
As it is visible from these pictures, the numerical and
exact solutions are almost identical.
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Figure 1: The solution at � � �
�. The exact solution
is solid line and the numerical solution is marked by
�.
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Figure 2: The solution at � � �
�. The exact solution
is solid line and the numerical solution is marked by
�.
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In the second experiment we have taken zero right
hand side and initial data given by

� ��� �� � ���� �� �����-��


In this case, we know that the solution will decay in
time. The parameters ���� � are as before. In Fig. 3
we plotted the initial data and in Fig. 4 we have the
numerical solution at four different times. It is clear
that the numerical solution is approaching zero for all
�.
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Figure 3: The initial data for homogeneous boundary
conditions.
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t=0.1
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Figure 4: The numerical solution at � �
�
�� �
�� �
�� �
� for homogeneous boundary condi-
tions.

The numerical experiments for problem
(3),(5),(6),(8) was carried out as well. For our
next experiment we have taken zero right hand side
and initial data given by

� ��� �� � ���� �� �����-�� � �
����


In this case, we know that the solution will ap-
proach to the steady-state solution, which in this case
is� ��� � �
����. The parameters���� � are as be-
fore. In Fig. 5 we plotted the initial data and in Fig. 6
we have the numerical solution at four different times.
It is clear that the numerical solution is approaching
steady-state solution for all �.
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Figure 5: The initial data for nonhomogeneous bound-
ary condition on part of lateral boundary.
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Figure 6: The numerical solution at � �
�
�� �
�� �
�� �
� for nonhomogeneous boundary con-
dition on part of lateral boundary.

5 Conclusion

We have experimented with several other initial data
for both inial-boundary value problems (3)-(6) and
(3),(5),(6),(8). In all cases we noticed that numerical
solutions are approaching steady-state solution as it is
shown in theoretical researches.
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