
 
 

 
ISSN: 1790-2769   ISBN: 978-960-474-089-5 

1

 
 
 

On One Generalization of Boundary Value Problem for Ordinary 
Differential Equations on Graphs in the Three-dimensional Space 

 
D.G.GORDEZIANI   

Department of Mathematics, Faculty of Exact and Natural Sciences, 
Tbilisi State University,  

2, University str.,0143, Tbilisi 
GEORGIA 

dgord37@hotmail.com 
 

H.V. MELADZE 
Department of Computer Sciences, 
St Andrea First Georgian University 
53-a, Chavchavadze  aven., Tbilisi   

GEORGIA 
h_meladze@hotmail.com 

 
T.D. DAVITASHVILI 

Department of Computer Sciences, Faculty of Exact and Natural Sciences, 
Tbilisi State University, 

2, University str.,0143, Tbilisi 
GEORGIA 

t_davitashvili@hotmail.com 
 
 
Abstract: - The present work is the generalization of boundary value problem for ordinary differential equations on 
graphs. This problem is investigated and correctness of the stated problem is proved in [1]. The special attention is 
given to construction and research of difference analogues. Estimation of precision is given. The formulas of 
double-sweep method type are suggested for finding the solution of obtained difference scheme. 

In this work the boundary-value problems for Poisson’s equations in the three-dimensional space on some two-
dimensional structures with one-dimensional common part is given and investigated. This technique of 
investigation can be easily applied to the more complex initial data and equations. The difference scheme for 

numerical solution of this problem is constructed and estimation of precision is given. 
Such problems have practical sense and they can be used for mathematical modeling of specific problems of 

physics, engineering, ecology and so on. 
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1 Introduction 
In the work [1] the boundary value problem for 
ordinary differential equations on graphs is 
investigated; correctness of the stated problem is 
proved. The special attention is given to construction 

and research of difference analogues, which is a little 
concern in papers of other authors. Estimation of 
precision is given; double-sweep method type 
formulas are suggested for finding the solution of 
difference scheme ([2]-[3]).   
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It’s possible to note some works, devoted to the 
theoretical investigation of boundary value problems, 
considered on graphs (see, for example, [4], [2] and 
the literature, mentioned there. Certainly, this list is 
incomplete). 

In the present work there are given some 
generalizations of the above mentioned problem: in 
the three-dimensional space on some two-
dimensional structures with one-dimensional 
common part the boundary-value problem for 
Poisson’s equation is stated and investigated. This 
technique of investigation can be easily applied to the 
more complex initial data and equations. Obviously 
such problems have practical sense  and they can be 
used for mathematical modeling of specific problems 
of physics, engineering, ecology and so on ([5]-[11]). 
Certainly, this list is incomplete. 

 
 

2 Ordinary differential equations of the 
second order on graphs 

Let us consider a graph ( )EVG ,= , where 

( )naaaV ,,, 10 …=  is a set of tops of this graph, 

0a   is a node of the graph and E  is a set of ribs of 

the graph  { }.,,, 02010 naaaaaa ⋯  Denote the rib 

iaa0  by  iΓ . On each rib introduce a local 

coordinate system with the origin in the node a0 and 
the coordinate  ( )αα lx ,0∈ ,  where  αl  is length 

of the curve  ),,2,1( n…=Γ αα . 

Let us state the following problem: find the 
functions ),,2,1)(( nxu …=ααα , which satisfies 

the differential equations 

( ) ( ) ( ) ( )

( ) ( )αααα

αααα
α

αα
αα

α

α lxnxf

xuxq
dx

xdu
xK

dx

d

,0,,1, ∈==

=−








     

(1)                  
boundary conditions 

 ( ) ,,1,)( nulu == αα
αα                 (2) 

and conditions of conjunctions 

 ,,1,),()( 00 nauau == βαβα               (3) 

 ( ) ( )
.

01

b
dx

xdu
xK

x

n
=

==
∑

αα α

αα
αα                (4) 

where  
 

( ) ( )
( ) ( ) ,0],,0[

,0],,0[
1

0
1

≥∈

>=>∈

ααααα

ααααα

xqlCxq

constCxKlCxK

( ) ],0[0
ααα lCxf ∈    are the given functions and  

( )nub ,1, )( =αα   are the given numbers. 

 
Theorem 1. There exists a unique regular 

solution of problem (1)-(4), i.e. exists unique 
functions 

( ) ( ).,1],,0[[,0] 12 nlClCxu =∈ ααααα ∩ ,  

which satisfies equations (1), boundary conditions 
(2) and conditions of conjunctions (3), (4). 

The proof of this theorem see in [1]. 
 
 
3 Difference scheme for numerical 
solution of problem (1)-(4) 

On ( )n,,2,1 …=Γ αα   we introduce a uniform 

mesh with step αh : 

{
} .,1,;0

;,,2,1,0,

)0(

)()(

nlNhx

Nihix i
h

===

===

α

ω

αααα

ααααα
α α …

 

If on the mesh 
)(αωh  we substitute differential 

operator by the difference operator, we obtain the 
following difference scheme: 

 

( ) ( ) ( ) ( )αααα

αα ααααα
iiii

xx fyqyK =−)(
, ,  

        ,1,1 −= αα Ni   .,1 n=α  ,             (5) 

             

 ( ) ,,1,)( nuy N == αα
α

α               (6) 

 

 ( ) ( ) ,,1,,00 nyy == βαβα             (7)     
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( )
( ) ( )

.0
1

01
1∑

=
=

−n

h

yy
K

α α

αα
α                 (8) 

where      

( ) ( )
( ) ( )

( ) ( )
( ) .,

,,

)(
1

,

1

,

2
1−+

−

=
−

=

−
==

αα
αα

α

αα

α
α

αα
α

αα
α

α

αα
ααααα

ii
ii

x

ii

x
i

KK
h

yy
y

h

yy
yhiyy

 
      Theorem 2. There exist no more then one 
solution of the difference scheme (5)-(8) . 

Theorem 3. Let ],,0[3
αα lCu ∈ ( )n,1=α . 

Then the solution of the difference scheme (5)-(8) 
uniformly converges to the solution of the problem      
(1)-(4) at the rate of O(h), when 0→h , where   

.max
1

α
α

hh
n≤≤

=  

The proof of the theorems 2, 3  see in [1]. 
 

Remark. Let  ( ).,1],,0[3 nlCu =∈ ααα . Then  

( ) ( ) ( )
.,1,1,1

,, 0

nNi

hOhOi

=−=

=Θ=Ψ

ααα

α
α

 

where 
( ) ( )( ) ( ) ( )ααα

αα
α

ααααα
iii

xx
i uquK −=Ψ ,  

and   
( )

( ) ( )( ).01

1

1

0 αα
α α

α uu
h

Kn
−=Θ ∑

=
 

Let ( ).,1],,0[4 nlCu =∈ ααα . Then, if  

instead of condition (8) we consider the following 
approximation of the conjunction conditions: 

( )
( ) ( )

( ) ( ) ( )[ ] ,05.0

5.0

000

1

01

1

=+−

−
−

∑

∑

=

=

ααα
α

α

α

αα

α
αα

fyqh

h

yy
hK

n

n

        (9) 

Then the error of  approximation   

( )
( ) ( )

( ) ( ) ( )[ ]000

1

01

1
0

5.0

5.0

ααα
α

α

α

αα

α
αα

fyqh

h

uu
hK

n

n

+−

−
−

=Θ

∑

∑

=

=  

will  have the order O(h2). 
Indeed, 

( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )} ( ) ( ),5.0

00005.0

0

22000

1 0
0

hOhOfuqh

uKuKh

dx

du
K

n

x

=++−

−′′+′′−







−=Θ ∑
= =

αααα

ααααα

α α

α
α

α

 

 

as ( )∑
= =

=
n

x
dx

du
K

1 0

00
α α

α
α

α

  

(conjunction condition) and 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) .0

0000

0

0

000

=−−








∂
∂=

+−−′′+′′

=
ααα

α

α
α

ααααααα

α

fuq
dx

du
K

x

fuquKuK

x

 

Therefore, 

 ( ) ( ),,,1, 2
0

2 hOnhO =Θ==Ψ αα  

if  ].,0[4
αα lCu ∈  

 
So, in the case of difference scheme (5)-(7), (9) 

the following theorem is true.  

Theorem 4. Let ],,0[4
αα lCu ∈ ( )n,1=α . 

Then the solution of the difference scheme (5)-(7), (9) 
uniformly converges to the solution of the problem      
(1)-(4) at the rate of O(h2), when 0→h , where   

.max
1

α
α

hh
n≤≤

=  
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4 Variant of double-sweep  method for 
difference equations (5)-(8) 
Let us write the difference scheme (5)-(8) as a  
system of the linear algebraic equations: 
 

( )
( )

( ) ( )
( )

( )
( )

( ) ( ),1
2

2

1
1

2

1

αα
α

α

α
αα

α
α

αα
α

α
α

α
α

αα
α

α

α

ii
i

i

i
ii

i
i

fy
h

K
y

q
h

KK
y

h

K

=+×

×













+

+
−

+

−
−

−

 

                 ,1,1 −= αα Ni   .,1 n=α  

           
( ) ,,1,)( nuy N == αα
α

α  

 
( ) ( ) ,,1,,00 nyy == βαβα              (10)                                                     

( )
( ) ( )( ) .0

1

01
1

∑
=

=−
n

yy
h

K

α
αα

α

α  

Introduce the following denotations: 

( )
( )

( )
( )

( )
( ) ( ) ( )

.,

,,

0

2

1

22

1

α

α
α

α

αα
α

α

α
α

α

α
α

αα
α

α
α

α
α

h

K
m

h

KK
c

h

K
b

h

K
a

ii
i

i
i

i
i

=
+

=

==

−

−

 

,1,1 −= αα Ni   .,1 n=α      

Then the system of equations (10) can be 
rewritten in the following form:  

 

    

( ) ( ) ( ) ( )

( ) ( ) ( )ααα

αααα

ααα

αααα
iii

iiii

fyb

ycya

=+

+−
+

−

1

1

              (11) 

           

         ,1,1 −= αα Ni   .,1 n=α                           

 

  
( ) ,,1,)( nuy N == αα
α

α                     (12) 

 

  ( ) ( ) ,,1,,00 nyy == βαβα                   (13)     

( ) ( )( ) .0
1

01∑
=

=−
n

yym
α

ααα                       (14) 

Suppose, that for the solution of difference 
equation (11) the relation holds: 

 

     
( ) ( ) ( ) ( ) ,111 +++ += αααα

αααα ηξ iiii yy  

    ,1,0 −= αα Ni   .,1 n=α                        (15) 

then 

 
( ) ( ) ( ) ( ) ,1 αααα

αααα ηξ iiii yy += −            (16) 

 
Substituting expression (15) in the equation (11) 

we obtain 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ).11

1

ααααα

αααα

ααααα

αααα

ηξ iiiii

iiii

fyb

ycya

=++

+−

++

−

 

 

From this equation we define  
( )α
α
iy : 

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ).01

1

1

1
1

≠−

−
−

+

+
−

=

+

+

+

−
+

ααα

ααα

ααα

α
ααα

α
α

ααα

ααα

ααα

α
ααα

α
α

ξ

ξ
η

ξ

iii

iii

iii

i
iii

i
i

bc

bc

fb

y
bc

a
y

 

 
Comparing this equality with the  equality (16) we 

obtain: 

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ,

,

1

1

1

+

+

+

−
−

=

−
=

ααα

ααα
α

ααα

α
α

ααα

ααα
α

ααα

α
α

ξ
ηη

ξ
ξ

iii

iii
i

iii

i
i

bc

fb

bc

a

          (17) 

1,,2,1 …−−= ααα NNi ,    .,1 n=α  
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Using the boundary conditions (12) to define  

( )α
αξ N   and   

( )α
αη N , we obtain: 

 
( )α
αξ N =0,     ( ) ( )α

α
αη uN = ,     .,1 n=α           (18) 

 
Recurrent relations (17), (18) allow to define 

coefficients 

              
( )α
αξ i   and   

( )α
αη i   

( 1,,2,1 …−−= ααα NNi , .,1 n=α ),  

 

if   
( ) ( ) ( ) 01 ≠− +ααα

ααα ξ iii bc . 

 

As 
( ) ( ) ( ) ,ααα

ααα
iii bac +≥   ,1,1 −= αα Ni   

.,1 n=α , therefore repeating the reasoning from 

[12], it can be proved, that ( ) 1<α
αξ i   and  

( ) ( ) ( ) ( )αααα
αααα ξ iiii abc ≥− +1 . 

 
Thus, we have proved that by means of recurrent 

formulas (17), (18) uniquely can be defined values of  
the coefficient 

  
( )α
αξ i , 

( )α
αη i  ( 1,,2,1 …−−= ααα NNi ,  

.,1 n=α ). 

Write out formulas (15) in case of   iα=0: 
    

  ( ) ( ) ( ) ( ),1011
αααα ηξ += yy      .,1 n=α  

 

Insert these equalities in (14) and take into 
account relations (13), then we obtain:  

 ( ) ( ) ( ) ( )( ) .0
1

0101∑
=

=−−
n

yym
α

ααααα ηξ  

As  ( ) 11 <αξ , from the last equality we obtain: 

( ) ( )
( )

( )

.,2

,

1

1

1

1

1

00
1

n

mm

m

yy
nn

n

=

−
==

∑∑

∑

==

=

α

ξ

η

α
αα

α
α

α
αα

α
       (19) 

Collect all formulas of double-sweep method  and 
write them down in order of application: 

 

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )1

1

1
,

+

+

+

−
−

=

−
=

ααα

ααα
α

ααα

α
α

ααα

ααα
α

ααα

α
α

ξ
ηη

ξ
ξ

iii

iii
i

iii

i
i

bc

fb

bc

a

 

    0,,2,1 …−−= ααα NNi ,    .,1 n=α  

 
( )α
αξ N =0,        

( ) ( )α
α

αη uN = ,     .,1 n=α  

 
( ) ( ) ( ) ( ) ,111 +++ += αααα

αααα ηξ iiii yy      

 

,1,0 −= αα Ni   .,1 n=α  

( )
( )

( )
.,1,

1

1

1

1

1

0 n

mm

m

y
nn

n

=
−

=

∑∑

∑

==

= α
ξ

η

α
αα

α
α

α
αα

α  

 
 

5 On one generalization of the problem 
(1)-(4) 

Let us consider one generalization  of problem (1)-
(4). Instead of graph let's consider n-half-planes in  
R3, which are bounded by common boundary line 

( )0,0 x=γ .  On these planes we consider the local 

coordinate systems: (x0, x1), (x0, x2),…, ( x0, xn). 
Consider the following problem:  find functions 

),,( 0 αα xxu  .,1 n=α , which satisfy the 

differential equations 
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( )

.,1,0,0

,,

00

02

2

2
0

2

nlxlx

xxf
x

u

x

u

=<<<<

=
∂

∂
+

∂
∂

ααα

αα
α

αα

 (20) 

 
boundary conditions 

     
( ) ( )

,0,,1

,,0

αα

αααα

α lxn

xaxu

≤≤=

=
                 (21) 

                            

( ) ( )
,0

,,1,,0

αα

αααα α
lx

nxbxlu

≤≤
==

              (22) 

 

( ) ( )
,0

,,1,,

00

00

lx

nxlxu

≤≤
== αϕααα               (23) 

and conjunction conditions 
                                    

( ) ( ) ,,1,,0,0, 00 nxuxu == βαβα        (24) 

                            

( ) [ ],,0,0
,

00
01

0 lx
x

xxu

x

n
∈=

∂
∂

==
∑

αα α

αα   (25) 

where   

( ) ,,1,],0[],0[

],,0[],,0[,

0
1

11
00

nllCf

lClCba

=×∈

∈∈

α

ϕ

αα

ααα
 

 
 are given functions. 
 

Theorem 5. There exists no more then one 
regular solution of  problem  (20)-(25). 

Proof. It is sufficient to prove that the 
homogeneous problem with the homogeneous 
boundary conditions corresponding to the problem 
(20)-(25) has only trivial solution. Consider this 
problem: 

.,1,0

,0,0 002

2

2
0

2

nlx

lx
x

u

x

u

=<<

<<=
∂

∂
+

∂
∂

ααα

α

αα
        (26) 

 

    
( )

,0

,,1,0,0

αα

αα α
lx

nxu

≤≤
==

               (27) 

 

           
( )

,0

,,1,0,0

αα

αα α
lx

nxlu

≤≤
==

              (28) 

 

        
( )

,0

,,1,0,

00

0

lx

nlxu

≤≤
== ααα               (29) 

 

( ) ( ) ,,1,,0,0, 00 nxuxu == βαβα     (30) 

 

( ) [ ].,0,0
,

00
01

0 lx
x

xxu

x

n
∈=

∂
∂

==
∑

αα α

αα  (31) 

 
Multiply the equation (23) on function  

),( 0 αα xxu  and integrate it at first on the interval  

[ ]αl,0   with respect to variable  x0 and then on the 

interval  [ ]αl,0  with respect to variable xα. Further 

sum up these equalities by α from 1  to  n: 
 

( ) 0,
10 0

002

2

2
0

20

=














∂

∂
+

∂

∂
∑ ∫ ∫

=

n l l

dxdxxxu
x

u

x

u

α
ααα

α

αα
α

.                             (32) 
To change the left hand-side of this equality first 

we need to be sure in the fairness of the following 
equalities (thereat take into account  conditions (27)-
(31)): 

( )

( ) ( )∑ ∫

∑ ∫ ∫

∑ ∫ ∫

=

=

=

=














∂
∂

+

+














∂
∂

−=

=
∂

∂

n
l

l

n l l

n l l

dxxxu
x

xxu

dxdx
x

u

dxdxxxu
x

u

1
00

00
0

10 0
0

2

10 0
002

2

0

0

0

,
,

,

α
αα

α

αα

α
α

α

α

α
ααα

α

α

α

α

α
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             ∑ ∫ ∫
=















∂
∂

−=
n l l

dxdx
x

u

10 0
0

2
0

α
α

α

α
α

. 

 
Analogously: 
 

    

( )

( ) ( ) =














∂
∂

+

+














∂
∂

−=

=
∂

∂

∑ ∫

∑ ∫ ∫

∑ ∫ ∫

=

=

=

0

0

0

0
1 0

0
0

0

10 0
0

2

0

10 0
002

0

2

,
,

,

l
n l

n l l

n l l

dxxxu
x

xxu

dxdx
x

u

dxdxxxu
x

u

α
ααα

αα

α
α

α

α
ααα

α

α

α

α

                         .
10 0

0

2

0

0

∑ ∫ ∫
= 














∂

∂
−=

n l l

dxdx
x

u

α
α

α
α

 

Taking these equalities into account, from the (32) 
we obtain: 

0
10 0

0

22

0

0 0

=






























∂
∂

+














∂

∂
∑ ∫ ∫

=

n l l

dxdx
x

u

x

u

α
α

α

αα . (33) 

From the last equation we obtain, that 
( ) ( )

0
,

,0
, 0

0

0 =
∂

∂
=

∂

∂

α

αααα

x

xxu

x

xxu
, i.e. 

( ) ( ).,1,0 nconstxxu =≡ ααα   Taking  into 

account boundary conditions (27)-(29), we obtain 
that ( ) .0,0 ≡αα xxu  

The theorem is proved. 

Introduce the denotation  
 

( ) ( )
n

llll

,1

],,0[],0[,,0,0 00

=

×=Ω×=Ω

α
αααα

 . 

Let us consider the problem (20)-(25), but 
supposing that  ( ) ( ) ( ) 0000 ≡≡≡ ααα ϕ xxbxa  

and  ( )αα Ω∈ 2Lf . 

Introduce the following set of functions: 

 

( ) ( ){ ( )

( )

( ) ( ) ( ) }0,,,0

,,

,:,
~

00

2
0

20
1
0

===

Ω∈
∂
∂

∂
∂

Ω∈=Ω

αααααα

α
α

αα

ααααα

lxuxluxu

L
x

u

x

u

LuxxuH

 

 

i.e. 1
0

~
H  is Sobolev space of the first order on 

( ) ( )αll ,0,0 0 ×  and equalize to zero on the 

boundary is meant in sense of trace (see for example 
[13]). 

Let us define functions v[x0,x] on the set 

3

1

R
n

⊂Ω≡Ω
=
∪

α
α   in the following way: 

 
v[x0,x]=uα(x0,xα),  if   
 

( ) ( ) ( )
.,1

,
~

,,, 1
000

n

Hxxuxx

=

Ω∈Ω∈

α
ααααα  

 
Denote 

( ) [ ] ( ){ ( )
( ) ( ) [ ] }.,0,,1,,0,0,

,
~

,:,
~

00

1
000

1
0

ααβα

ααα

βα lxnxuxu

HxxuxxvH

∈==

Ω∈=Ω

Introduce in this space the scalar product and the 
norm induced by this product: 

 

( ) ( )

( ) ( )( ) ( ),,,,

],[],,[

1

~0201

~0201

1
0

1
0

∑
=

Ω

Ω

=

=

n

H

H

xxvxxv

xxvxxv

α
αααα α

 

( )

( ) ( )
( )

.],[],,[],[

,
~

],[],,[
21

00~0

1
021

1
0

~
1
0 Ω

=

Ω∈

Ω
H

xxvxxvxxv

Hvv

H
 

 
The generalized solution of the problem (20)-(25) 

with the homogeneous boundary conditions we call 

the function ( )Ω∈ 1
00

~
],[ Hxxv , for which the 

equality takes place: 
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[ ]
( ) ( )Ω−=

=
1
0

~00

00

],[],,[

],[],,[

HxxuxxF

xxuxxva
      (34) 

for any function  ( )Ω∈ 1
00

~
],[ Hxxu , where 

 
[ ]

,

],[],,[

1 00

00

∑ ∫
= Ω










∂
∂

∂
∂

+
∂
∂

∂
∂

=

=
n

x

u

x

v

x

v

x

u

xxuxxva

α α

α

α

ααα

α

      (35) 

 
and  F[x0,x]=fα(x0,xα),    if  
 

 ( ) .,1,,0 nxx =Ω∈ ααα  (see [6], [7]). 

 
Theorem 6. There exists a unique generalized 

solution ( )Ω∈ 1
0

~
Hv   of the problem  (20)-(25). 

Proof.  It can be easily shown, that the 
[ ]],[],,[ 00 xxuxxva  is continuous and coercive  

on ( )Ω1
0

~
H  [13]. From this, on the basis of  Lax-

Mi lgram Theorem the fairness of statement  of the 
theorem immediately follows. 

 
 

6 Difference scheme for numerical 
solution of the problem (20)-(25) 

Let’s define the meshes:  

( ){
}1,,0;1,,1

,,,

00

0000
0

−=−=
===

αα

ααααα
αω

NiNi

hixhixxx ii
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( ) ( ){ },,0,;,
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0
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α

α

γ

ωω

Nixxxx
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i

N
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= ∪

 

 

( ) ( ){ },,0,;, 0
002 αααα

αγ Nixxxx iN ==  

 

( ) ( ){ },,0,;, 00
0

003
0 Nixxxx i == ααγ  

 

( ) ( ){ },,0,;, 00004
0 Nixxxx Ni == α

ααγ  

 

( ) ∪ ∪
n

n
1

.,.,1
=

===
α

αα ωωωωα  

Introduce also the following denotations: 

( ) ( ),,00
0

, αα
αααα
iiii xxyyy ==  

( ) ( ),,1
0

1 00 α
ααα
ii xxyy ±± =  

( ) ( ),, 1
0

1 0 ±± = αα
ααα
ii xxyy  

( )( )
( )( )

( )( )
( )( ) .

,

,

,

1

1

0
1

0
1

0
0

0
0

αααα

αααα

ααα

ααα

α
α

α
α

hyyy

hyyy

hyyy

hyyy

x

x

x

x

−

+

−

+

−=

−=

−=

−=

 

Let's put in conformity to the problem (20)-(25)  
the difference scheme 

( ) αααα ω
α

∈==∆ xxxfyh ,, 0 ,          (36) 

( ) ( ) ,, 1γαα ∈= xxaxy                          (37) 

( ) ( ) 2, γαα ∈= xxbxy ,                         (38) 

( ) ( ) ,, 3γϕαα ∈= xxxy                        (39) 

( ) ( ) ,.1,,0,0, 00 nxyxy == βαβα            (40) 

.,0 4
1

γ
α

α α
∈=∑

=
xy

n

x                               (41) 

where .
00 ααα xxxxh yyy +≡∆  

It is easy to show that if initial problem (20)-(25) 

has sufficiently smooth solution, then (36) 

approximates  the equation (20) with error 

( )22
0 αhhO +  and the condition (41) approximates 

the condition (25) with error 







∑

=

n
hO

1α
α . 
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So, the scheme (36)-(41) approximates the 

problem (20)-(25) with error 







∑
=

n
hO

0α
α . 

For the numerical solution of the problem (20)-
(25) it is possible to construct the scheme with error 









∑
=

n
hO

0

2

α
α . 

For this purpose the condition (25) can be 
approximated as follows: 

     .0
2

1
00

=







−+∑

=

n

hxxx fyy
hα

ααα
α

α
     (42)    

According to (40), βα yy =  at 
( )( )0,0
0
ix ; 

therefore (42) can be rewritten as follows: 

 ,0
1

2
00

1
=−+∑

=
Fnyy

h xx

n

x
α

α
α

α
 

where 

( ) ( ) ∑
=

===≡
n

hfFnxxyy
1

0 ,,10,;
α

αα α . 

Further, for simplicity of the statemen,t we will 
consider that  

( ) ( ) 0≡⋅=⋅ αα ba , also ( ) 0, ≡⋅⋅αf .   (43) 

The problem (20)-(25) at the accepted assumptions 
(43) can be solved formally in the form of a row 

( ) ( ) ,sin,
1

0 α
π

α
π

ααα παα xkedecxxu
k

xk
k

xk
k∑

∞

=

− +=

(44) 
where  

( ) ππ
α

ππ
α

α
π

α
ϕϕ

π kk
k

kk

n

k
k

k
eeee

e
c −−

=

−
−

−
=

∑

22
12

, 

( ) ππ
α

ππ
α

α
π

α
ϕϕ

π kk
k

kk

n

k
k

k
eeee

e
d −−

=

−

−
+

−
=

∑

22
12

, 

( );,1 n=α  

kkαϕ -th coefficient of Fure row for function 

( )ααϕ x . 

It is easy to notice, that the row (44) represents 

the solution of the problem (20)-(25), if  

( ) [ ]( )1,03Cxk ∈ααϕ . 

Similarly it is possible to construct the solution 

of the scheme (36) - (41) at assumptions (43). 

It is possible to search the solution of (36)-(41) 

in the form of finite sum on mesh area ω . The 

technology of construction of the solution of 

difference scheme repeats the reasonings, applied 

when formula (44) is obtained. Simple 

generalisation of methods for estimation of 

accuracy of difference schemes for rectangular area 

in case of mixed boundary conditions [12] (the 

consideration on  one of the parties of the rectangle 

Neumann’s condition) allows to prove the 

convergence of solution of the difference scheme 

(36)-(41) to sufficiently smooth solution of initial 

problem with a speed  







∑
=

n
hO

1α
α . 

The questions of convergence for specified 

difference scheme (36)-(40)-(42) by us are not 

investigated. 
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