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Abstract:-in the first part there are created and justified  new 2D with respect to spatial coordinates 
nonlinear dynamical mathematical models  von Kármán-Mindlin-Reissner(KMR) type systems of 
partial differential equations  for anisotropic porous, piezo, viscous  elastic prismatic shells.  
Truesdell-Ciarlet unsolved( even in case of isotropic elastic plates) problem about physical soundness 
respect to von Kármán system is decided. There is find also new dynamical summand (tt∂ ΔΦ Φ  is 
Airy stress function) in the another equation of  von Kármán type systems too. Thus the corresponding 
systems in this case contains Rayleigh-Lamb wave processes not only in the vertical, but also in the 
horizontal direction. For comlpleteness we also lead 2D Kirchhoff-Mindlin-Reissner type models for 
elastic plates of variable thickness.  
Then if KMR type systems are 1D one respect to spatial coordinates at first part for numerical solution 
of corresponding initial-boundary value problems we consider the  finite-element method  using new 
class of B-type splain-functions. The exactness of such schemes depends from differential properties 
of unknown solutions: it has an arbitrary order of accuracy respect to a mesh width in case of 
sufficiently smoothness functions and Sard type best coefficients characterizing remainder proximate 
members on less smoothing class of admissible solutions.  
Corresponding dynamical systems represent evolutionary equations for which the methods of 
Harmonic Analyses are nonapplicable. In this connection for Cauchy problem suggests new schemes 
having arbitrary order of accuracy and based on Gauss-Hermite processes. This processes are new 
even for ordinary differential equations. 
 

              Key-Words: - Elasticity, Poro-viscosity, Plate, Physical soundness, Finite-difference scheme, Gauss  
              quadrature  and Hermite interpolation formula,Mesh width. 

 
 
 

 
 

1. Nonlinear dynamical  
mathematical models of  von   
Kármán-Mindlin- Reissner type  
systems  
 
One of the most principal objects in development of 
mechanics and mathematics is a system of nonlinear 
differential equations for elastic isotropic plate 
constructed by von Kármán. This system with 
corresponding boundary conditions represents the 
most essential part of the main manuals in elasticity 

theory. In spite of this in 1978 Truesdell expressed an 
idea about neediness of “Physical Soundness”of von 
Kármán system. This circumstance generated the 
problem of justification of von Kármán  system. 
Afterwards this problem is studied by many authors, 
but with most attention it was investigated by Ciarlet 
[1].In particular, he wrote:“the von Kármán equations 
may be given a full justification by means of the 
leading term of a formal asymptotic 
expansion”[1,p.368]. This result obviously is not 
suffice for a justification of “Physical Soundness” of 
von Kármán system as representations by asymptotic 
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expansions is dissimilar: leading terms are only 
coefficients of power series without any physical 
meaning. 
Based on the [2], the method of constructing such 
anisotropic inhomogeneous 2D nonlinear models of 
von Kármán--Mindlin-Reissner(KMR) type for  
binary mixture of poro,piezo and viscous elastic thin-
walled structures with variable thickness is  given, by 
means of which terms take quite determined 
“Physical Soundness”. The corresponding variables 
are quantities with certain physical meaning: 
averaged components of the displacement vector, 
bending and twisting  moments, shearing forces, 
rotation of normals, surface efforts. In addition the 
corresponding equations are constructed taking into 
account the conditions of equality of the main vector 
and moment to zero. By choosing parameters in the 
isotropic case from KMR  type system (having a 
continuum power) the system as one of the possible 
models is obtained. The given method differs from 
the classical one by the fact, that according to the 
classical method, one of the equations of von Kármán 
system represents one of Saint-Venant’s compatibility 
conditions, i.e. it‘s obtained on the basis of geometry 
and not taking into account the equilibrium equations. 
This remark is essential for dynamical problems. 
Further for isotropic and generalized transversal 
elastic plates in linear case from KMR the unified 
representation for all 2D BVP (considered in terms of 
planar expansions and rotations) is obtained. So  
this report is devoted to problems of constructing the 
KMR type 2D BVP with respect to spatial variables 
for binary mixture of viscous-porous-elastic and 
piezo-electric and electrically conductive elastic thin-
walled structures. At first will be introduced the 
nonlinear dynamic 3D (with respect to spatial 
variables) mathematical model for porous, piezo and 
viscous elastic media. At last we shall report the new 
iterative methods and numerical schemes for solving 
the corresponding BVP for 2D nonlinear systems of 
differential equations of KMR  type. 
Below we consider some simple (for obviousness) 
cases arising in the nonlinear problems of continuum 
mechanics and typical for seismology and structural 
mechanics too. 
Using methodology of [2], from ch.1 (in the case 
when thin-walled structure is an elastic isotropic 
homogeneous plate with constant thickness) we have 
the following nonlinear systems of PDEs of  KMR 
type: 

( )( )
( ) ( )

( )
( ) ( )−+∗

−

−+

−+Φ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

−
+

−

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ

−
−+

−=Δ

ααν
γ

ν
νγ

,3,33
2

33

2
3

_
2

],[
13

21212

13
2211

gghuhh

gghuD
 

( )

];[

)
1

11(

31

3
22

,

γ

ναα

−

−

+

⎟
⎠
⎞

⎜
⎝
⎛ −Δ

−
−−− ∫

uR

dzfzhzf
h

h
             (1) 

 

( )
[ ].

2
1

2
],[

2

2

_

,33

_

3

_

3
2

∗

−+∗

Φ+

+
++Δ+

Ε
−=ΦΔ

R

f
h

gguu αα
νν

   (2)  

                                                                   

 ( )
( ) ( )( ) ],[12
13

21
3
21

3

_

33

2

,3

_

3
2

3

∗−+ Φ++−
−
+

+Δ−=Δ
+

−

uhggh

uDQhQ

ν∂
ν
γ

γ

α

ααα

 

( )

( ) ( ) [ ]γ
ν
ν

ααα

ααα

;
12

1
32,3

22 QRdzfzh

dzzfggh

h

h

h

h

+
−

−

−+

+−
−
+

+

−−+

∫

∫
.        (3)             

                                                   
 The system (1) - (3) without reminder terms R  gives 
2D system of refined theories with control parameters 
γ .By choosing γ  we got all well-known refined 
theories and from other γ  some new ones. 
Let us consider (1) equation underling the main 
members: 

[ ] [ ] [ ] [ ]( )ϕ∂∂+ϕΔ+ϕΔ′=ϕΔ′ αα ,w2,w,wD,wD  
( ( ) ( )ν−γ+=′ 13/21h4D 3 ),   . wD 2Δ
By using for simplicity the typical relations as 

1211 σ=ϕ∂ , 1212 σϕ −=∂ , 1122 σ=ϕ∂ , the last 
expression may be rewritten in the following form: 
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The calculate and analysis by these expressions of a 
symbolical determinant show that the characteristic 
form of systems type (1) and (2) may be positive, 
negative or zero numbers as well as  an arbitrary 
continuous function of x, y. Here we must remark 
that DDE )1)(21(4 νγ ++=′ , as so if   denotes 
physical dimension of value , it’s 
evident . 

}{ f
f
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 Thus, the first and second summands of (4) are 
defining the nonlinear wave processes for static 
cases. The structure of the third summand obviously 
corresponds to 2D soliton type solutions of Corteveg- 
de Vries or Kadomtsev-Petviashvili kind.  
 
Analogous three-dimensional nonlinear model for 
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anisotropic binary mixtures are presented in the 
works [3,4], which generalizes previously known 
model for poro–viscous-elastic binary mixtures. The 
constructed models together with certain independent 
scientific interest represent such form of spatial 
models, which allow not only to construct, but also to 
justify von KMR type systems as in the stationary, as 
well in nonstationary cases. Under justification we 
mean assumption of “Physical Soundness” to these 
models in view of Truesdell-Ciarlet (see for example 
details in  [1, ch.5],[5]).  As is known, even in case of 
isotropic elastic plate with constant thickness the 
subject of justification constituted an unsolved 
problem. The point is that von Kármán, Love, 
Timoshenko, Landau & Lifshits and others considered 
one of the compatibility conditions of Saint-Venant-
Beltrami as one of the equations of the corresponding 
system of differential equations. This fact was 
verified also by Podio-Guidugli   recently. 
In the presented model we demonstrated a correct 
equation that is especially important for dynamic 
problems. The corresponding system in this case 
contains wave processes not only in the vertical, but 
also in the horizontal direction. The equations has the 
following form: 
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The first dynamical equation respect to  has the 
following form: 
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The precision of the presented mathematical model is 
also conditioned by a new quantity, introduced in 
[2,ch.1] , which describes an effect of boundary layer. 
Existence of this member not only explains a set of 
paradoxes in the two-dimensional elasticity theory 
(Babushka, Lukasievicz, Mazia, Saponjan), but also is 
very important for example for process of generating 
cracks and holes (details see in [2], ch.1, par. 3.3). 
Further, let us note that in works [4] equations of (5) 
type are constructed with respect to certain 

components of stress tensor by differentiation and 
summation of two differential equations. Also other 
equations of KMR type, which differ from (5) type 
equation, are equivalent to the system, where the 
order of each equation is not higher than two.  For 
example, in the isotropic case, obviously, for 
coefficients we have  cαα λ μ= +∗ 2 , c66 2= μ , 

, c12 =
∗λ cα6 0= , , ( 122 −∗ μ+λλμ=λ ) λ  and μ  -are 

the Lame coefficients. Then the system (1.7) of [4] is 
presented in a form: 
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where the functions: τ ε ,ω =  
correspond to plane expansion and rotation. 
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For variable thickness of refined theories we have 
(see details [2],ch.II,point 4): 
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Further 
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(7-8) expressions without remainder terms  present 
2D mathematical models of Germen-Reissner type. 
They give any refined theory choosing an arbitrary 
parameter 

iR

γ .For example,if 1.0=γ we have 
Reissner’s  theory; for 5.0−=γ   (7) gives 
immediately Germen’s equation for variable 
thickness without any physical or geometrical 
hypotheses 
Using Dirichlet’s formula (for repeated integrals, 
containing ) and quadrature formula of trapezoid, 
after some calculations the last relation will take the 
form 
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We must remarked also, that unknown functions 
are defining from preliminary processes solving 
bending problem. 

αv

Thus, the system of differential equations (9) without 
remainder members present Filon’s type equations 
 
 
Thus, we intend to obtain the following  results:  
 

1. Nonlinear mathematical models for porous-
viscous-elastic and elastic (with piezo-electric and 
electrically conductive processes) binary mixtures  
will be created and justified; 
2.  Questions of solvability of stationary and thermo-
dynamical models (spatial case) will be investigated 
both in the linear and nonlinear anisotropic cases. 
3. New two-dimensional with respect to spatial 
coordinates mathematical models of  KMR type will 
be created and justified for poro-viscous-elastic 
binary mixtures when it represents a thin-walled 
structure; These models even in isotropic elastic case 
contain and justify (in sense of physical soundness) 
the well-known von Kármán system of DE for elastic 
plates;  
4. Optimal models especially for nonhomogeneous 
systems of KMR type will be created and chosen 
without contracting a class of admissible solutions 
even in  classical  case; 
5. Effective numerical methods will be constructed 
and justified; questions of convergence and error 
estimate will be studied for problems for thermo-poro 
elastic structures; 
6 .Questions of influence of new terms in the 
equation of form (5) will be investigated. Presence of 
these terms are very important, especially for seismic 
problems: in nonstationary problems these terms are 
of type tt∂ ΔΦ , in stationary problems there are of 

type 3 3q( )
2

qν + −Δ + ; 

 
2. Generalized Factorization Method 
 
According to the article of Vashakmadze [1972] 
below for the numerical solution of BVP: 
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the method of any order of accuracy, depending on 
the order of the smooth of the unknown solution ( )tu  
will be given. These numerical schemes are created 
and published in 1972 [5] and contain as particular 
case the corresponding results presented by 
Marchuk[6,ch.2,point 2.2]. 
 Preliminarily we shall put the auxiliary formulae. 
They are generalized  and  formulae of 
[2,subsection 13.1]. Thus we suppose that 
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( )P  formulae have a form (the notation here and 
below are borrowed from [2,section 13]): 
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Now let hω  designate the net area, determined as 
follows: { 1121 ;1,,...,,0 −+ −= }== iiinn tthtttt=hω . 
As bounding points of the net hω  we shall name those 

 knots, for which or , or  it 1+≤ si 1+−≥ sni
For relation (3) for bounding points it follows that  
( ) ( ) ( ) ( ) ( )si

si
i

si
ii tukuktu +

++ += 1,1, 0 βα  

( ) ( ) ( ) ( )∑
=

++ +−
s

j

s
jj

si
ji hOtAutkkb

2

2

121,
,

( ) ( ) ( )

,  ;                                                                     1+≤ si

( ) (u )1,1,1 ktuktu sin
isi

sin
ii

−+
−

−+ += βα           (6) 

( ) ( ) ( ) ( )∑
=

+−+ +−
s

j

s
jj

sin
ji hOtAutkkb

2

2

12,1
, , 1+−≥ sni ; 

The above relations  permit to receive expressions of 
a following form: 

( ) ( ) ( )[ ] ( )si
ii

i tu
k
kuku

k
tu ++

+
+′−

+
=

11

11
1

11 1
00

1 γ
γβ

γ
α  

 

( ) ( ) ( ) ( )∑
=

++ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−
s

j

s
jjji

isi
ji hOtAutkc

k
kkb

2

2

12
,

11

11,
, 1 γ

α

                                                                 (7) 1+≤ si

( ) ( ) ( )[ ] ( )si
n

ni

n

i
i tu

k
kuku

k
tu −

+

+

+ +
+

+′+
+

=
12

12
2

12 1
11

1 γ
γα

γ
β  

 

( ) ( ) ( )

( )
∑

+−= +

+
+

++

+−≥+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

n

snj s

jjjn
n

nisi
ji

snihO

tAutkc
k

kkb

12 12

,1
12

121,
,

.1,

1 γ
γβ

,  

Here and below, in the coefficients the top indexes 
and the dependence of factors on the function ( )tk  
are omitted. In addition the designation 

( )iii tth −= +1max  is entered. A feature of the 
formulae (7) is that the right parts contain same 
expression, (from conditions (3)), as data of initial 
problem. Obviously, the approach of construction of 
the formulae of a type (7) allows generalization for 
other conditions.  
Let ( snistttt ijijii −≤≤+ )−=− +− 2 . Then the 
residual member of the formula (3) allows the 
valuation:  
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For interior knots hit ω∈  from expression (3) there 
follows: 
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If now in the formulae (8) we replace the expression 
 by Au fqu +  and then omit the remainder term, we 

shall obtain algebraic system of linear equations, the 
solution of which shall designate through  ,iu
( ).,...,n3,2i =  
The matrix appropriate to this system is a multi-
diagonal matrix depending on . For the solution of 
such  systems it’s easy applied the classical  
factorization method . 
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A system of equations concerning the values , 
received from (7), for convenience we shall rewrite 
as: 

iu

i

s

j
jijsi

i
i Fudu

k
ku ++

+
+

= ∑
=

+

2

211

11

1 γ
γβ ,  1,...,3,2 += si , (9) 

snsiFuduuu j

si

sij
jijsiisiii −+=+++= ∑

−+

+−=
+− ,...,2,

1

1
βα          

i

n

snj
jijsi

n

ni
i Fudu

k
ku ++

+
+

= ∑
+−=

−
+

+

1212

12

1 γ
γα , nsni ,...,1+−=  

where, for example, 

( )∑
=

+
+

=
s

j
jij

i

i
i tfd

k
F

2

2,111
α

γ
α , . 1+≤ si

The first  of the formulae give the following 
recurrence expression: 

s
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∑
+≠
+=

+ ++=
s

sij
ij

ijijsiii BuAuAu
2

1
, ,             (10) 1,...,3,2 += si

where  

ij

ij
ij e

e
A

−
=

1
,   ,2,...,1 sij += sij +≠ , 

( )( )11

11
, 11 γ

γβ
ke

kAA
ii

i
siii +−

+
== +                                    (11) 

∏∑∑
−

=
+

−

=

−

=

+=
1

1,

11

2

l

km
mm

i

kl
ij

i

k
ikijii AAdde , , 1

1

=⋅∏
−

=

l

km

1−> lk , 

ii

l

km
mm

i

kl
l

i

k
iki

i e

ABdF
B

−

+
=

∏∑∑
−

=
+

−

=

−

=

1

1

1,

11

2 , . 1,....,3,2 += si

Let  be the number of any internal point of the net 
area 

i
hω . Then from expressions (9-11) follows: 

∑
−+

+=
+ ++=

1

1

si

ij
jjijsiii BuAuAu , ,       (12) snsi −+= ,...,2

where  

ij

ij
ij e

e
A

−
=

1
,   ,2,...,1 sij += sij +≠ , 

( )ii

i
siii e

AA
−

== + 1,
β  

jsii

l

km
mm

i

kl
lj

i

sik
ikijii AdAAdde ,

1

1,

11

1
−

−

=
+

−

=

−

+−=

++= ∏∑∑ ,            (13) 

ii

l

km
siimm

i

kl
l

i

sik
iki

i e

BdABdF
B

−

++
=

∏∑∑
−

=
−+

−

=

−

+−=

1

1

1,

11

1 ,

 . 1,....,3,2 += si
The values  satisfy the following 
equalities: 

nsniui ,...,1, +−=

∑
−+

+=

+=
1

1

si

ij
ijiji BuAu ,  ,              (14)  1,...,1 −+−= nsni

where  

ij

ij
ij e

e
A

−
=

1
,  

( )ii

i
siii e

AA
−

== + 1,
β                                                (15) 

jsi
n

ni
l

km
mm

i

kl
lj

i

sik
ikijii A

k
kAAdde ,

12

12
1

1,

11

1 1 −
+

+
−

=
+

−

=

−

+−= +
+

++= ∏∑∑ γ
γα

,

ii

l

km
jsi

n

n
mm

i

kl
l

i

sik
iki

i e

A
k
kABdF

B
−

+
+

++
=

∏∑∑
−

=
−

+

+
+

−

=

−

+−=

1
1

1

,
12

122
1,

11

1 γ
γα

. 
 
At last, the value  defines explicitly:   nu

 nn Bu = ,                                                              (16) 
 

ii

l

km
mm

n

kl
l

n

snk
nksn

n

nn
n

n e

ABdB
k
kF

B
−

+
+
+

+
=

∏∑∑
−

=
+

−

=

−

+−=
−

+

+

1
1

1

1,

11

112

12

γ
γα

, 

                                                                            (17) 

nsn
n

nn
l

km
mm

n

kl

n

snk
nknnnn A

k
kAAdde ,

12

12
1

1,

1

ln

1

1 1 −
+

+
−

=
+

−

=

−

+−= +
+

++= ∏∑∑ γ
γα

 

Let iα  and iβ  satisfy to following bilateral 
inequalities: 

is
β<1 ,  

2
1

1 <−+ inα , , 1,...,3,2 += si
2

4
12

3 11 hchc ii +<<− −βα
snsi

,  ,
 

0, 43 >cc
−+= ,...,2 , 

where   are constants. Obviously, it is possible 
bye the appropriate choice h  (see expressions for 

43,cc
α  

and β  from the formula (3)). 
Then from (11), (13) and (15) follows: 

( ) { }215 ,max1 ++≤
−< sisiij AAhcA , 

( )jji tfcccB max876 ++< βα ,                             (18) 

where nonnegative constants , , ,  do not 
depent on . 

5c 6c 7c 8c
h

The conditions (18) are the definition of stability of 
computing process by  formulae (11), (13) and (15) 
concerning initial data and right part accordingly. 
The stability of process (10), (12) and (14) for 
calculation of values  is also obvious, as the 
operator appropriate these expressions is an operator 
of compression. From the above stated formulae it 
follows that the method of generalized factorization is 
optimum, as the number of arithmetic operations 
necessary for calculation of approximate solution  
is directly proportional to the number of points of the 
net areas 

iu

iu

hω . 
 

3. Nonlinear Case with Newton’s 
Boundary Conditions 
We shall consider a nonlinear boundary value 
problem: 
( ) ( ) ( )( )xuxuxfxu ′=′′ ,, ,  , uM <− Mu <′ ,         (1) 
( ) ( ) ,001 α=′− uuk   ( ) ( ) ,112 β=′+ uuk 02

2
2

1 >+ kk .(2)  
 
With the basis of generalized (  and )P ( )Q  formulae 
(see [2],subsection 13.1) in this part we shall begin 
the construction of one-parametrical computing 
schemes, to an equivalent nonlinear problem (1)-(2). 
Let is given uniform or Gaussian (in a sense of 
[2,subsection 13.2]) lying in the interval [0,1]. We 
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shall make out the formulae for central knots : 1+tzx

( ) ( ) tztzttz Auuu += +++−+ 11111 2
1

2
1 , 22,...,3,2 −= kt ,      (3) 

where  

           ( ) ( )1
811

2

2
,1

+
−+−

=
+ +′′=∑ p

zzt

z

j
jzt hOubA

To these formulae we shall attach expression similar 
to the formulae (2.7)(for premilinary section): 

( ) ( )( ) 1A+12
1

1
1

1
1

2
2
1001

2
1 u

kk
kkuuk

kk
u zz +

+
+′−

+
= ++ , 

( ) =+− 112 zku                                                                 (4) 

( ) ( )( ) ( ) 12 −k122
1

1
2

1

2
2
1111

2
1

+− +
+
+

+′−
+ zk Au

kk
kkuuk

kk
, 

where  

( )1
8

2

2
,1

2

12
,1

+
−

=

+
+ +′′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=∑ p
zj

z

j
j

z
jzi hOuc

kk
xkbA  

( )
( )1

8
+
−
p
zhO

2

222
,12

2

12
,112

+−=
+

+
+− +′′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+= ∑ j

kz

zkj
jz

z
jzk uc

kk
xkbA  

The formula (3) multiplies accordingly on the 
uncertain multipliers ( )12,...,2,1 −= kiiα  and selects 
these numbers so that ratios were executed: 

( ) ( ) 1
21212121

2
1 2

2
2

2
++ +σβ

++
+

+
++

+
= kzkz kkkk

k
kkkk

ku α

 
( ) ( )( ) 111

1
21211 2[ Akkkkkkkkz ++++= −

+σ                  (5) k  

  ( ) ( ) ( )( )
k

i
i AkkkAikkk 21

1

2
12 2222 ++++++ ∑

−

=
k

) ]12 −kA , ( ) ( ) ( )(222 21

1

2
221

−

=
− ++++++ ∑

k

i
ik kkkAikkk

( ) ( ) ( )
[ ]t

zttz u
ktk

tkk
ktk

u ∑+
++

+
+

++
= +++ 11

1

1

1
1 12

2
12

α ,  

 1,                                                  (5) t  ,...,2,1 −= kt
where  

[ ]
( ) ( )

( ) 1

2
111

12

22

ktk

AikkAkk
t

i
i

t

++

⎥
⎦

⎤
⎢
⎣

⎡
+++

=∑
∑
= , 

 

( ) ( ) ( ) ( ) 1

[ ] ,,...,2,1,

12
2

12
2

12
2

1

2
12

ikt

u
ktk

tkk
ktk

u

tk

ztkztk

−=∑+

++
+

+
++

=

−

++−+−
β

, (5)                                                    tk−2

where  

[ ]
( ) ( )

( ) 2

2
22122

2

12

22

ktk

AikkAkk
t

i
ikk

tk

++

⎥
⎦

⎤
⎢
⎣

⎡
+++

=∑
∑
=

−−
− , 

From expressions (5) after some calculations, follows  

( )
( ) ( ) 1

2121

1

2121

2
1 2

2
2

22
++ +

++
+

+
++
−+

= tztz kkkkk
tkk

kkkkk
ktkku σβα , 

 12,...,2,1 −= k ,t                                               (6)    
where 

[ ]∑
−

=
++ ∑

+
+

+
+
+

=
1

1

1
1

1

1
1 2

2
2
2 k

tj

j
kztz jkk

tkk
kkk
tkk σσ , 

 

( )
[ ]∑

−

=

−
++− ∑

+
+

+
+
+

=
1

2

2

2
1

2

2
12 2

2
2
2 k

tj

jk
kzztk jkk

tkk
kkk
tkk σσ . 

From the formulae (2.3) and (6) we can easily receive 
expressions, similar to ( 6), appropriate to the other 
net points of ( ) ( zix izth ≠+−1: )ω . We have: 

( )
( )
( ) α

2121

2
1 2

1222
kkkkk

ktkxkku i
izt ++

+−−+
=+−  

( )
( ) ( ) izt

i

kkkkk
ktkxk

+−+
++
−++

+ 1
2121

1

2
122 σβ                          (5.a)  

 
where 

( ) ( ) ( ) ( ) ( )∑
=

+−+++−+− Φ++−=
s

j
hztijztiztiizt bkxkx

2

2
111111 1 σσσ  

( )1,...,3,2,12,...,3,2 +=−= zikt . 
 
If we use the formulae of type: 

12
1

1

1

12 1
+

+

+
+

+
+
−

= z
iiz

i y
kk
kxk

kk
xxku α  

( )p
zj

s

j
j

iz
ij hOuc

kk
xxkb 8

2

2
1

1

122
−

=

+ +′′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−+∑  

and 

( ) 112
2

2

2

12
12

1
+−

+
−+ +

+
+

+
−

= zk
iiz

ikz y
kk
kxk

kk
xxku β  

( )
( )p

zj

kz

zkj
jz

iz
jiz hOuc

kk
xxkb 8

2

212
,12

2

122
,22 −

+−=
+

+
−+ +′′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

++ ∑  

for bounding points  and , 
analogously to the last formulae we will have: 

ix ix−1  ( )zi ,...,3,2=

( )
i

ii
i kkkk

kx
kkkk
kxu σβα +

++
+

+
++
−+

=
2121

1

2121

2 111 ,                         

                                                                          (5.b) 
( )

ikz
ii

ikz kkkk
kx

kkkk
kxu −+−+ +

++
−+

+
++

+
= 12

2121

1

2121

2
12

111 σβα , 

where 

( )p
z

j

s

j
ij

iz
ijz

i
i

hO

uc
kk

xxkb
kk
kkxk

8

2

2 1

122
12

1

1

−

=

+
+

+

′′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−+
+

+
= ∑σσ

 

and 

( ) 112
2

2
12 +−−+ +

+
= zk

i
ikz kk

kkxk σσ  
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( )
( )p

zj

kz

zkj
jz

iz
jiz hOuc

kk
xxkb 8

2

212
,12

2

122
,22 −

+−=
+

+
−+ +′′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

++ ∑ . 

We therefore will attach the last formulae (5.a) and 
(5.b) to the expressions (5) and shall name such set as 
the formulae of a type (5). 
The formulae of type (5) are difference analogue of 
Green’s function any arbitrary (fixed) degree of 
exactly concerning ordinates of unknown solution 
(compare with Berezin, Zgidkov [7] or Schröder[8] 
To (5) should add the difference formulae respect 
derivatives of first order if the right hand function  
depends of . 

f
( )xu′

It is evident that for these purposes use of the 
formulae of numerical differentiation there is 
inconvenient. However, if to take advantage 
generalized (Q) formulae (2.4) for the points 

 and (6) (at ( ) ( )12,...,2,11 +=+− zix izi 1,1 +−= kkt ), for 
the derivative we receive the following expressions: 

( ) ( ) [ ]f
kkkk

kku izkzk +−+− ′+
++
−

=′ 1
2121

21
11 σαβ                          (7) 

where 

( )
2121

1
2

kkkkizk ++
=′ +−σ  

          

{× ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+++++ −

−

=
−∑ 12

1

2
22221 22

2
1

k

k

i
ikk AkkAikkAkk  

 

 ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+++++− ∑

−

=
1

1

2
1112 22

2
1 AkkAikkAkkk

k

i
ik } 

  . ( ) ( )1
1

2

2
,

−
+−

=

+′′− ∑ p
jzk

z

j
ji hOyck

The construction of the one-parameter schemes will 
be completed, if to expressions of a type (6) and (7) 
we attach two Cauchy (initial) problems: 
( ) ( ) ( )( xuxxfxu 11 ,, )λ=′ , 11 ≤≤ xl , 
( ) γ=11 lu ,  , ( ) 111 +−= zkxl
( ) ( ) ( )( xuxxfxu 11 ,, )μ=′ , , 02 ≥≥ xl
( ) δ=21 lu ,  . ( ) 112 ++= zkxl

 
Now we return to study the problem (1)-(2) and 
introduce the following values: 

( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
+++

++
+=

2121

2
12

21
2121

1 4
4

1
8
1

kkkk
kkkk

kkkk
ω , 

( ) {( 2121
2121

2 ,max2
2

1 kkkk
kkkk

+
++

=ω }) ,            (8) 

( )2121

21
2 42

1
kkkk

kk
++

−=′ω , { }22 ,max ωωω ′= . 

The following theorem is true: 
 
Theorem 1.  Let the function ( ) ( )( )xuxuxf ′,,  be 
continuous with respect to x , satisfy a Lipschitz’s 
condition relative to  and u  with constant  and u ′ L
L′  respectively; in addition, let one of two conditions 
be executed: 
( ) 1<′+ LLω , 121 <′+ LL ωω .                                  (9) 

At these restrictions the initial problem has the 
unique solution which can be constructed by an 
iterative method. 
The proof  of this theorem coincides with the scheme 
of the proofs of the theorems 13.2 and 13.3 [2]. 
Now in the formulae of th type (6) and (7), we omit 
the remainder terms. We get the expressions for 
construction of the initial table. The Cauchy problem 
we shall replace by the multistage methods . We shall 
name the resulting system as the difference scheme. 
Following theorem is true: 
 
Theorem .2.  For the problem (1)-(2) let one of 
conditions (9) be true. Then: 
1) the difference scheme has a unique solution and 
the iteration method converges; 
2) as in the case of the uniform grid ( )7,5,3=p , as 
in the case of Gaussian grid ( )3>p  convergence of 
the solution of the algebraic analogue to the solution 
of a problem (1)-(2) and its derivative has ( )1−p -
degree respect h . 
Proof this theorem is similar to the proof of the 
theorem 13.2 [2]. 
The following theorem is true: 
 
Theprem 3. The number of arithmetic operations 
which is necessary for the calculation of approximate 
solution ( )xu  and its derivative ( )xu′  has the order 

kk ln⋅ . 
A proof of this theorem is based on the specific 
character of sums 1+tzσ . If we calculate 1+kzσ , then 

1+tzσ  kt ≠∀   will be calculated, as it is contained in 

1+kzσ  as subsums. 
The practical convenience of a generalized 
factorization method constructing algebraic analogue 
is the following: in difference from other high 
accuracy methods (Tichonov, Samarski [1961]; 
Volkov [1971]) is not present necessity to make up 
the table of multiple integrals or derivatives from of 
initial data. 
 
 
4. Numerical realizations of some 
difference schemes for boundary 
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value problems for second order 
ordinary differential equations 
 
Let us consider boundary value problem for II order 
linear ordinary differential equations when the main 
part has self-conjugate form:  
 

( ) ( ) ( )( ) ( ) ( ) ( )

,10,0,0

,

<<≥>

=⋅−′=+−

tqk

tftutqtutk
dt
dquAu

   (1)   

( ) ( ) ,001 α=′− uuk  ( ) ( ) ,112 β=′+ uuk     (2 ) ( ,0≥αk )
Denote by ( )

⎭
⎬
⎫

⎩
⎨
⎧ =−⋅==== + n

hihttttt innh
1,1,1,,...,,0 121ω  

a network, when  is arbitrary integer. Using 
methodology of previous points we have the 
following high order difference schemes, 
corresponding to (1)-(2) boundary value problems:  

n

 
( ) ( ) mp

mmp
mim

mmp
mimi ukuku +

++
++

++
++ ×+×= 1,

1
1, βα  

( )∑
−

=
+++ ⋅++

1

2

p

j
mjmjmj uqf

( ) ( ) ( )( )kk mjmp ++× ,γk mmp
mimjmi

++
+++ −× 1,

, βγ  ,         (3) 

where p  is arbitrary parameter defining class of 
difference schemes and exactness of approximation, 

, ,  (km )mp
mi

++
+

1,α ( )kmmp
mi

++
+

1,β ( )kmjmi ++ ,γ  are known 
coefficients 

( )
( )

( )∫

∫
+

+

+

+=
mp

m

mp

mi

t

t

t

t

xk
dx

xk
dx

1

++
+

mp
mi

1,α m k , ( )
( )

( )∫

∫
+

+

+

+=+

mp

m

mi

m

t

t

t

tm k

1

1+
+

mp
mi

xk
dx

xk
dx

1,β , 

( ) ( ) ( )∫ ∫
+

+

+

mi

m

t

t

x

mj dl
xk

1 0

1 τ++ =mjmi ,γ dxτk  .            (4) 

 

Below we consider the case when in the schemes (3) 
the main parameter . Thus we got the concrete 
algorithms by which we created a package of applied 
program. It was using for operations for numerical 
realizations of some typical nontrivial examples. 

5=p

Let in (3): when , ; if 0=m 2=i 4,...,1,0 −= nm
0=m

)1( −n

, 
 and if m  . For  and 

 (3) is written for boundary points, and for 
other  _ for midpoints . Thus we have the algebraic 
system of linear  equations of  unknown 
values with five diagonal matrix. For simplicity if we 
introduce the values 

3=i
= nm

,4−= n

( )1−

4=i
4−

m
n

 

22,0,22 1 cbq ≡− , ,  23,0,23 dbq ≡

24,0,24 ebq ≡ , X≡0,2β , 
( ) ( ) 20,24,0,2 gb43,0,23 fbf2,0,22bf ≡×−++− αα  

32,0,32 bbq ≡ , 33,0,33 1 cbq ≡− ,  

34,0,34 dbq ≡ , 30,3 e≡β , 
( ) ( ) 30,34,0,3 gb43,0,33 fbf2,0,32bf ≡×−++− αα , 

ii a≡−3,3α , iii bbq ≡−− 2,3,31 ,  

iii cbq ≡−− 13,3,3 , , iii dbq ≡−+ 4,3,31 ii e≡−3,3β , 
( ) immmmmm gbfbfbf ≡++− +++ 4,,343,,332,,32 2,...,4 −= ni  

14,3 −− ≡ nn aα , ,  12,4,32 −−− ≡ nnn bbq

13,4,31 1 −−− ≡− nnn cbq , , 14,4,3 −− ≡ nnn dbq
( ) ( ) 14,34,4,33,4,312,4,32 −−−−−−− ≡×−++− nnnnnnnn gbfbfbf ββ  

Yn ≡−4,4α , ,  nnn abq ≡−− 2,4,42

nnn bbq ≡−− 3,4,41 , , nnn cbq ≡−− 14,4,4

( ) ( ) ,4,44,4,43,4,412,4,42 nnnnnnnn gbfbfbf ≡×−++− −−−−−− ββ  
 
where  
 

( )kmm
mimi

++
+= 1,5

, αα , ,  ( )kmm
mimi

++
+= 1,5

, ββ

( ) ( ) ( )kkkb mjm
mm

mimjmijmi ++
++

+++ ×−= ,5
1,5

,,, γβγ , 
 
the system (3) will the following form: 
 

25242322 gXueuducu =×+×+×+×  

335343332 geuducubu =×+×+×+×  

iiiiiiiiiii geuducubuau =×+×+×+×+× ++−− 2112

2,...,4 −= ni                                                           (5) 

11111213 −−−−−−−− =×+×+×+× nnnnnnnnn gducubuau

nnnnnnnn gcubuauYu =×+×+×+× −−− 123 ,   

or 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
×

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
⋅⋅
⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅
⋅⋅
⋅⋅
⋅⋅

−

−

−

−

−−−

−−−

n

n

n

n

n

n

nnn

nnn

nnn

g
g
g

g
g
g
g

u
u
u

u
u
u
u

cbaY
dcb
edc

cba
dcba
edcb
Xedc

1

2

5

4

3

2

1

2

5

4

3

2

111

222

555

4444

3333

222

000
000
000

000
00
00
00

  (6) 

 
Using the corresponding  representations of [1], ch.3, 
p.14, the system (5) was solving evidently by stable 
schemes.  
For control of quality of above algorithms and created 
the standard program package below we reduce tables 
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of some typical test examples for  and for  
. 

10=n
100=n

 

5. Standard package program (SPP) 
SPP are divided into 3 main parts. 

In the first part entering parameters are functions 

 and numbers ( ) ( ) ( )tftqtk ,, ,α  ,β    . These 

values are defining in SPP as functions or from file 

. Here also are entering functions by which 

we compute (4) type integral sums. 

,1k ,2k n

mi,

inincome.

α , mi,β  

coefficients are preserved in  file, 

numbers  keep in bimj  file. Matrix of system 

(5) is preserved in  file. In the second part 

the entering parameter is matrix of system (5) which 

must be inverted by data from   file. By 

general factorization scheme we find this inverse 

matrix and construct the solution of initial system (5) 

preserving it in  file. In the third part of SPP 

(using data from second part and the corresponding 

standard program from “Matlab 6.5”) there are 

formed tables and diagrams of approximate and exact 

solutions, an error. 

outalfabeta

abcdef

.

out.

jmib ,, out.

outabcdef .

outamo.

 The I and II parts of SPP are using “Turbo Pascal 

7.0”, III part is written by “Matlab 6.5”. 

Problem 1. , 1)( =tk 21
1)(

tt
tq

++
= , 1)( =tf , 

1=α , 3=β .  

                                        
Approximate solution 
 

Exact solution     
21)( tttu ++=  

Error 

u[1]=1.00000000000 1.00000000000 0.00000000000 
u[2]=1.11000000000 1.11000000000 0.00000000000 
u[3]=1.24000000000 1.23999999999 0.00000000000 
u[4]=1.38999999999 1.38999999999 0.00000000000 
u[5]=1.56000000000 1.55999999999 0.00000000000 
u[6]=1.75000000000 1.75000000000 0.00000000000 
u[7]=1.96000000000 1.96000000000 0.00000000000 
u[8]=2.19000000000 2.18999999999 0.00000000000 
u[9]=2.44000000000 2.43999999999 0.00000000000 
u[10]=2.71000000000 2.70999999999 0.00000000000 
u[11]=3.00000000000 3.00000000000 0.00000000000 
 

Problem 2:   , tetk −=)( , tetq =)( , tetf 2)( = 1−=α , 

59057182818284.2−=β .                                                   

Approximate solution Exact solution     
tetu −=)(  

Error 

u[1]=-1.00000000000 -1.00000000000 0.00000000000 
u[2]=-1.10517091807 -1.10517091807 0.00000000000 
u[3]=-1.22140275815 -1.22140275815 0.00000000000 
u[4]=-1.34985880757 -1.34985880757 0.00000000000 
u[5]=-1.49182469763 -1.49182469764 0.00000000000 
u[6]=-1.64872127070 -1.64872127069 0.00000000000 
u[7]=-1.82211880038 -1.82211880039 0.00000000000 
u[8]=-2.01375270747 -2.01375270746 0.00000000000 
u[9]=-2.22554092848 -2.22554092849 0.00000000000 
u[10]=-2.45960311115 -2.45960311115 0.00000000000 
u[11]=-2.71828182845 -2.71828182845 0.00000000000 
 

Problem 3. ,   1)( += tetk tetq ⋅= 2)( , tetf =)( ,
1=α , 59057182818284.2=β . 

  
Approximate solution 
 

Exact solution     
tetu =)(  

Error 

u[45]=1.5527072232423 1.5527072185122 0.0000000047300 
u[46]=1.5683121884748 1.5683121854890 0.0000000029858 
u[47]=1.5840739898717 1.5840739849936 0.0000000048781 
u[48]=1.5999941963404 1.5999941932168 0.0000000031235 
u[49]=1.6160744072600 1.6160744021926 0.0000000050674 
u[50]=1.6323162232362 1.6323162199551 0.0000000032811 
u[51]=1.6487212758441 1.6487212706997 0.0000000051444 
u[52]=1.6652911984283 1.6652911949458 0.0000000034824 
u[53]=1.6820276549625 1.6820276497001 0.0000000052624 
u[54]=1.6989323123795 1.6989323086181 0.0000000037613 
u[55]=1.7160068675928 1.7160068621851 0.0000000054077 

Problem 4:  tetk =)( , 6

5

1
6)(
t
tetq

t

+
⋅

= , , 430)( tetf t ⋅=

1=α , 2=β .  

Approximate solution 
 

Exact solution     

( ) 61 ttu +=  

Error 

u[45]=1.0072563879500 1.0072563138564 0.0000000740935 
u[46]=1.0083037950666 1.0083037656240 0.0000000294426 
u[47]=1.0094743726131 1.0094742968958 0.0000000757172 
u[48]=1.0107792447327 1.0107792153285 0.0000000294041 
u[49]=1.0122306676875 1.0122305904642 0.0000000772232 
u[50]=1.0138413164828 1.0138412872001 0.0000000292826 
u[51]=1.0156250785456 1.0156250000000 0.0000000785456 
u[52]=1.0175963169126 1.0175962878001 0.0000000291125 
u[53]=1.0197706894134 1.0197706096641 0.0000000797492 
u[54]=1.0221643899408 1.0221643611293 0.0000000288114 
u[55]=1.0247949921024 1.0247949112963 0.0000000808061 
 

6. Finite-difference scheme of  
numerical solution Cauchy problem 
by Gauss-Hermite  processes  
Let us consider Cauchy problem for ordinary 
differential equations 
 ( ) ( )( ),, xyxfxy =′       ,   ( ) 00 yy = lx ≤≤0 .         (1)        
Below we consider the problem of numerical solution 
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We must calculate ( )2/0,05 hxH +  by  
( ) ( ) ( ) ( ),2/2,0 =− αα hx 1,01,0,,0 =α yixy i values. 

of (1) by finite-difference  method basing on 
applications of Gauss theory of quadrature folmula 
and Hermite interpolation process. By such way it’s 
possible investigate Adam’s type finite-difference  
schemes . 

Thus if ( )tH 5  is defining in )
2

)2(;
2

( hkhk +  then by 

(4) the ordinates in knot points of the following 
interval are calculated if known values we  multiply  

on 
2
h . We calculate also the values ( )2/0,02 hxL i + . 

For simplicity and clearness we consider detailed the 
schemes having sixth order of accuracy respect to net 
step. At consideration of schemes having arbitrary 
order of accuracy we investigated too the processes 
connected with their numerical realizations. Gauss 
quadrature formula with 3 knots in interval  has 
the following form: 

],0[ h ( ) ( ) 0,00,0
2

0,0
2

0,020 2/2
22/

xhx
xhxL
−

−=+  

( )
( ) ,139337.0

9.0
6.01

6.0216.0
6.012

2

≈−=
−

−
−=  

]],,0,[

)](9)(8)(5[
18

)(

2,

2,01,00,0
0

hfE

xfxfxfhdxxf

sG

h

+

++=∫  

( )6.01
20,0 −=
hx , ,

21,0
hx =    ( )6.01

22,0 +=
hx  , 

( )ξ)6(
7

2, 504000
],0;[ fhhfE sG = .                       

( )
6.021

12/0,021 −
==+ hxL  

,820852.1−≈  

( ) ( ) 0,00,0

0,0
0,022 2/

2/
xxh

hx
hxL

−
==+  

We also consider the following network ( ):  nhl =
=hω }2,2nx,,,...,,;,,{ 1,20,21,10,12,01,00,0 nn xxxxxxx  

2,0,x ik =
hkx k +  , k =0,1,….,2n,  .2,1,0=i

.581989.2
6.0

2
≈=  

 These values must calculate on 
2
h . 

 Hermite interpolation formula with two knots and by 
ordinates and slopes as is well known has the such 
form: 

 

 ( ) ( ) [ ]tfRtHtf ;5 +=
( )
( )

=

( ) ( ) ( ) ,!6/

)(})())(1({

2
3

6

2

0

2
2

'

3

3

tf

tLytttt
t
t

y
i

iiii
i

i
i

ωξ

ϖ
ϖ

+

−+−
′
′′

−∑
= , 

 
 
 
 
 
 a )bt ≤≤  ,      

where           

 

,)()(
2

0
3 ∏

=

−=
i

itttω

.21 btt <<<

),,( bat ∈

0ta <

 
 
 
 

By simple calculations If  axt +=   we have.  

∏ ∏

∏

≠ ≠

++

++

+++

=
−−+

−−+
=

−

+
=

=

=

=−−+=+=

ji
ni

ji ji

j

ji

j
ni

nn

nn

n
i

inn

xL
axax
axax

tt
tt

tL

xt

xt

xaxaxaxt

).()(

).()(

).()(

)()()()(

''
1

''
1

'
1

'
1

111

ωω

ωω

ωωω
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