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Abstract:-in the first part there are created and justified new 2D with respect to spatial coordinates
nonlinear dynamical mathematical models von Karméan-Mindlin-Reissner(KMR) type systems of
partial differential equations for anisotropic porous, piezo, viscous elastic prismatic shells.
Truesdell-Ciarlet unsolved( even in case of isotropic elastic plates) problem about physical soundness
respect to von Karman system is decided. There is find also new dynamical summand 6,A® (® is

Airy stress function) in the another equation of von Karman type systems too. Thus the corresponding
systems in this case contains Rayleigh-Lamb wave processes not only in the vertical, but also in the
horizontal direction. For comlpleteness we also lead 2D Kirchhoff-Mindlin-Reissner type models for
elastic plates of variable thickness.

Then if KMR type systems are 1D one respect to spatial coordinates at first part for numerical solution
of corresponding initial-boundary value problems we consider the finite-element method using new
class of B-type splain-functions. The exactness of such schemes depends from differential properties
of unknown solutions: it has an arbitrary order of accuracy respect to a mesh width in case of
sufficiently smoothness functions and Sard type best coefficients characterizing remainder proximate
members on less smoothing class of admissible solutions.

Corresponding dynamical systems represent evolutionary equations for which the methods of
Harmonic Analyses are nonapplicable. In this connection for Cauchy problem suggests new schemes
having arbitrary order of accuracy and based on Gauss-Hermite processes. This processes are new
even for ordinary differential equations.

Key-Words: - Elasticity, Poro-viscosity, Plate, Physical soundness, Finite-difference scheme, Gauss
quadrature and Hermite interpolation formula,Mesh width.

1. Nonlinear dynamical
mathematical models of von
Karman-Mindlin- Reissner type
systems

One of the most principal objects in development of
mechanics and mathematics is a system of nonlinear
differential equations for elastic isotropic plate
constructed by von Karmén. This system with
corresponding boundary conditions represents the
most essential part of the main manuals in elasticity
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theory. In spite of this in 1978 Truesdell expressed an
idea about neediness of “Physical Soundness”of von
Karméan system. This circumstance generated the
problem of justification of von K&rman system.
Afterwards this problem is studied by many authors,
but with most attention it was investigated by Ciarlet
[1].In particular, he wrote:*“the von Karman equations
may be given a full justification by means of the
leading term of a formal  asymptotic
expansion”[1,p.368]. This result obviously is not
suffice for a justification of “Physical Soundness” of
von Karman system as representations by asymptotic
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expansions is dissimilar: leading terms are only
coefficients of power series without any physical
meaning.

Based on the [2], the method of constructing such
anisotropic inhomogeneous 2D nonlinear models of
von Karman--Mindlin-Reissner(KMR) type for
binary mixture of poro,piezo and viscous elastic thin-
walled structures with variable thickness is given, by
means of which terms take quite determined
“Physical Soundness”. The corresponding variables
are quantities with certain physical meaning:
averaged components of the displacement vector,
bending and twisting moments, shearing forces,
rotation of normals, surface efforts. In addition the
corresponding equations are constructed taking into
account the conditions of equality of the main vector
and moment to zero. By choosing parameters in the
isotropic case from KMR type system (having a
continuum power) the system as one of the possible
models is obtained. The given method differs from
the classical one by the fact, that according to the
classical method, one of the equations of von Karman
system represents one of Saint-Venant’s compatibility
conditions, i.e. it‘s obtained on the basis of geometry
and not taking into account the equilibrium equations.
This remark is essential for dynamical problems.
Further for isotropic and generalized transversal
elastic plates in linear case from KMR the unified
representation for all 2D BVP (considered in terms of
planar expansions and rotations) is obtained. So

this report is devoted to problems of constructing the
KMR type 2D BVP with respect to spatial variables
for binary mixture of viscous-porous-elastic and
piezo-electric and electrically conductive elastic thin-
walled structures. At first will be introduced the
nonlinear dynamic 3D (with respect to spatial
variables) mathematical model for porous, piezo and
viscous elastic media. At last we shall report the new
iterative methods and numerical schemes for solving
the corresponding BVP for 2D nonlinear systems of
differential equations of KMR type.

Below we consider some simple (for obviousness)
cases arising in the nonlinear problems of continuum
mechanics and typical for seismology and structural
mechanics too.

Using methodology of [2], from ch.1 (in the case
when thin-walled structure is an elastic isotropic
homogeneous plate with constant thickness) we have
the following nonlinear systems of PDEs of KMR

type:

DA?u3 =(1—WAJ(Q§ —g§)+

2 _
2h{1—2h(1+27/)AJ[U3,CD*] + h(gef,a - geT,a)

31-v)
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0 1 2 2
—fh(zfm—(l—l_vA(h -z )f3)]dz )
+R,[us; 7]

2 *__E - - K n _ 1+_V _
AP = 2[u3,u3]+2A(g3+gg)+ TR
+R2[CD*]
Quo ~TE2h2AQ,, = DA+
h?(1+2y) ( . l .
Wﬂa 97 —9; +2h(1+v)[us, @]

h

+hlg; -9, )- [, dz

1+v " ! ' )
"oy [ 2R Q7]

The system (1) - (3) without reminder terms R gives
2D system of refined theories with control parameters
y.By choosing » we got all well-known refined

theories and from other » some new ones.

Let us consider (1) equation underling the main
members:

D'Alw, o]=D"([Aw, o]+ [w, Apl+2[0,w,0,¢))
(D'=4h*@1+2y)/31-v)), DA*w.
By using for simplicity the typical relations as

019=0Cy, O0p,p=—0Cy,, 0,0=06;, the last
expression may be rewritten in the following form:
D'Alw, )=

:D'[(ElléllAW+ 2512612AW+ 522622AW)+ (4)

(611WA511 +2612WAO'12 + 622WA022) +
2(511,0011W ¢ +2517, 1 012W g + 522, 022W )l

The calculate and analysis by these expressions of a
symbolical determinant show that the characteristic
form of systems type (1) and (2) may be positive,
negative or zero numbers as well as an arbitrary
continuous function of x, y. Here we must remark
thatED' =4(1+2y)(L+v)D, as so if {f} denotes
physical dimension of value f , it’s
evident{A’w} = {A[w, D/ E]}.

Thus, the first and second summands of (4) are
defining the nonlinear wave processes for static
cases. The structure of the third summand obviously

corresponds to 2D soliton type solutions of Corteveg-
de Vries or Kadomtsev-Petviashvili kind.

Analogous three-dimensional nonlinear model for
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anisotropic binary mixtures are presented in the
works [3,4], which generalizes previously known
model for poro-viscous-elastic binary mixtures. The
constructed models together with certain independent
scientific interest represent such form of spatial
models, which allow not only to construct, but also to
justify von KMR type systems as in the stationary, as
well in nonstationary cases. Under justification we
mean assumption of “Physical Soundness” to these
models in view of Truesdell-Ciarlet (see for example
details in [1, ch.5],[5]). As is known, even in case of
isotropic elastic plate with constant thickness the
subject of justification constituted an unsolved
problem. The point is that von K&rman, Love,
Timoshenko, Landau & Lifshits and others considered
one of the compatibility conditions of Saint-Venant-
Beltrami as one of the equations of the corresponding
system of differential equations. This fact was
verified also by Podio-Guidugli recently.

In the presented model we demonstrated a correct
equation that is especially important for dynamic
problems. The corresponding system in this case
contains wave processes not only in the vertical, but
also in the horizontal direction. The equations has the
following form:

E 2 1
_E[W’ W]+%(A_Epatt](gs + 93) ;‘hV fa,a (5)

The first dynamical equation respect to w has the
following form:

(DA? + 2hpd, — 2DE 1+ v)pd, AJw =

)

2h[1—%@[u Flenlo,. ~0..) ®

_I[tf (1——A(h2—t )jg}dt

The precision of the presented mathematical model is
also conditioned by a new gquantity, introduced in
[2,ch.1] , which describes an effect of boundary layer.
Existence of this member not only explains a set of
paradoxes in the two-dimensional elasticity theory
(Babushka, Lukasievicz, Mazia, Saponjan), but also is
very important for example for process of generating
cracks and holes (details see in [2], ch.1, par. 3.3).
Further, let us note that in works [4] equations of (5)
type are constructed with respect to certain
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components of stress tensor by differentiation and
summation of two differential equations. Also other
equations of KMR type, which differ from (5) type
equation, are equivalent to the system, where the
order of each equation is not higher than two. For
example, in the isotropic case, obviously, for

coefficients we have c,, =X +2u, Cg=2u,
C, =X, Cue =0, A" =22u(h+2u)™", A and u -are

the Lame coefficients. Then the system (1.7) of [4] is
presented in a form:

* 1 £ -
(/1 + 2/1)0"11 + U, = on f,+u(2,(Us2)?
- y) g
=, (Ug; Ug,)) — 2?](/1—4-2/1)_‘[10-33'1(12
(6)
* 1 r3 -
~ poo+ (1 + 2u)a2r = o For (@, (U,
o h
_0’71(”3,1 u3,2)) 2h /1 2 J;
where the functions: t=¢, ,0=U;,~U,,

correspond to plane expansion and rotation.
For variable thickness of refined theories we have
(see details [2],ch.Il,point 4):

L 0o, (73,5, 5,0)
= 0';3 — Oy _r,]f fsdt +0, h(o-;3 + 0-;3)_ T(t - h)fadt
4 hy

h . _
- (0-33,0( h, . +03.M, )
1-v

- (hZ,ao-;B - hl,aO-(;S)
1 %, )
+Eh{(h —(t—n) At
h,
- [(ha,h+(t-n)o,n)f, dt

_h ’(2- U)(1+27/)(A033 AU;s)

31-v)
+—[ h+ )Aa;3+8a(h—h)A0;3]

4h*0 h
+

AG 5 (X, %, 1)+ R [uy (X, %,,72); 7] @)
where

Rl 1= 0l - =) hw,

+ p5p[(ho,h+ (t-1)o,n)Aa,,]

2
- 1_U rl[(t h)A033’ /1]
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Further

4h 2h?
(X1 szh)_ Ao-a3(xl’x2'h)
3

= DAY, (%, %, 1)+ = h( 05+ )

2
__[ f dt_%(‘%m O-;S,Q)

h,
1+o

(0= nP ot R 0,71

20-v .
(7-8) expressions without remainder terms R, present

2D mathematical models of Germen-Reissner type.
They give any refined theory choosing an arbitrary
parameter y.For example,if y=0.1we have
Reissner’s theory; for y=-0.5 (7) gives
immediately Germen’s equation for variable
thickness without any physical geometrical
hypotheses

Using Dirichlet’s formula (for repeated integrals,
containing v) and quadrature formula of trapezoid,
after some calculations the last relation will take the
form

:UAUa(le Xy, 71)+ (/1* + ,U)aauﬁ,ﬂ(xv Xo1 h) = f,

+R,[u, ]

Here
f h(xr Xz)

Jf X, X, )t — o, + 0,

+

(8)

or

(9)

—m(@aa +05)

— ul A, (%, %, 1)+ 20 1y, (%, %, )]~ (2 + )
1007V 5 (%0, X 1)+ 0,1V 5 (X, X )+ 0 5TV (X, X, 1)

R,[u, (%%, 7)]

— o li0.-

+( + )l
A

2h(A+24)

We must remarked also, that v, unknown functions

are defining from preliminary processes solving
bending problem.

Thus, the system of differential equations (9) without
remainder members present Filon’s type equations

tav, )]
- t)"ﬂ.aﬁ ]]

)AV ]+ Pr [(
- t)Vﬂ,aﬁ]+ P [(hz

ptr[ 33a] :

Thus, we intend to obtain the following results:
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1. Nonlinear mathematical models for porous-
viscous-elastic and elastic (with piezo-electric and
electrically conductive processes) binary mixtures
will be created and justified;

2. Questions of solvability of stationary and thermo-
dynamical models (spatial case) will be investigated
both in the linear and nonlinear anisotropic cases.

3. New two-dimensional with respect to spatial
coordinates mathematical models of KMR type will
be created and justified for poro-viscous-elastic
binary mixtures when it represents a thin-walled
structure; These models even in isotropic elastic case
contain and justify (in sense of physical soundness)
the well-known von Karmén system of DE for elastic
plates;

4. Optimal models especially for nonhomogeneous
systems of KMR type will be created and chosen
without contracting a class of admissible solutions
even in classical case;

5. Effective numerical methods will be constructed
and justified; questions of convergence and error
estimate will be studied for problems for thermo-poro
elastic structures;

6 .Questions of influence of new terms in the
equation of form (5) will be investigated. Presence of
these terms are very important, especially for seismic
problems: in nonstationary problems these terms are
of type 0,Ad, in stationary problems there are of

type %A(qs* +05);

2. Generalized Factorization Method

According to the article of Vashakmadze [1972]
below for the numerical solution of BVP:

(Au+qu) = KO R) - 9(0)-ut)
= f(t)k>0,9>0,0<t<1,
u(0)-ku'(0)=a, u@)+ku'@=4, (k,>0) (2)

the method of any order of accuracy, depending on
the order of the smooth of the unknown solution u(t)
will be given. These numerical schemes are created
and published in 1972 [5] and contain as particular
case the corresponding results presented by
Marchuk[6,ch.2,point 2.2].

Preliminarily we shall put the auxiliary formulae.
They are generalized (P) and (Q) formulae of
[2,subsection 13.1]. Thus we suppose that
ut)eC’*(0.1), p=2s+1.

(P) formulae have a form (the notation here and
below are borrowed from [2,section 13]):

M)
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u(ti):
—Eb“?'l(k
s *
aip'l(k)z[t k‘l(t)dtJ :
A0)=1-a(K)

(Q) formulae are presented as fO||0WS'

u(t)= 77 ult, )t ]+ c‘” JAult,)

o (k(t)+ A7 (k)

JAul,)-R, . (t)], i=23...p-1 ()

t

©

k7 (t)dt,

t

-

Tp t

+ [dt[k(t)Ar, (t)dt, i=12,...p, (4)

bi?il(f)=

1

p— r—rl;[dtil (t)dt - ;{dt;[l }(5)

i,j=23...p-1

ci(e jdtjl (t)t,(i=12...p,j=23..,p-1)
plt—t.

L{t)=T]—-

i) gtj—ti

Now let @, designate the net area, determined as
follows: @, ={0=1t,,t,,...t ,t_, =Lh =t —t_}.

As bounding points of the net @, we shall name those
t. knots, for whichori<s+1,ori>n-s+1

For relation (3) for bounding points it follows that

u(t) = o0}« A1)

Zb'*“ K(t, JAut,)+o(h=), i<s+1;
()= Nl )+ A ) (6)
_fzzb;;lvis(k)k(t,.)Au(tj)+o(hzs+l), i>n-s+1;

The above relations permit to receive expressions of
a following form:

__ & ke Btk
)= ) 0]+ A )

e oty 0y
i<s+1 (7

[u@)+ k()] + L Kelweny )

B 1+ Ko7 1+Kyp7
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s

j=n-2s+1

%Cnﬂj k(tj)AU(tj)
1+ k27n+1 ’ ’
+O(h23*1),i >n-s+1.

Here and below, in the coefficients the top indexes
and the dependence of factors on the function k(t)
are omitted. In addition the designation
h=max,(t,, —t,) is entered. A feature of the
formulae (7) is that the right parts contain same
expression, (from conditions (3)), as data of initial
problem. Obviously, the approach of construction of
the formulae of a type (7) allows generalization for
other conditions.
Let t—t_ =t, —t(s+2<i<n-s). Then the
residual member of the formula (3) allows the
valuation:

i+s-1

> b ;(k)AR

j=i-s+1

_ (p+1)
M. =maxju’® (b)),

p_1(% <M, h",

For interior knots t, € @, from expression (3) there
follows:

u(t)= equ(t o)+ Bult.)

+O(h25+2)

If now in the formulae (8) we replace the expression
Au by qu+ f and then omit the remainder term, we
shall obtain algebraic system of linear equations, the
solution of which shall designate through u;,

(i=23,...,n)

The matrix appropriate to this system is a multi-
diagonal matrix depending on s. For the solution of
such  systems it’s easy applied the classical
factorization method .

A system of equations concerning the values u,,

received from (7), for convenience we shall rewrite
as:

i+s-1

- 2.0, (k)auft;)

j=i-s+1 (8)

_B +k171

= Ay du+F, i=23..,5+1,(9)
1+k171 JZ;‘ 17
i+s-1
U =l + Bl + D dju;+Fi=s+2..,n-s
j=i-s+l
i +k27"+1 .+ Zdou+F i=n-s+1..,n
1+k27/n+1 j=n—2s+1

where, for example

F = a+Zde( ), i<s+l,

1 kl 1| j=2
The first s of the formulae give the following
recurrence expression:

449 Issue 8, Volume 8, August 2009



WSEAS TRANSACTIONS on MATHEMATICS

u—AluHS+ZA,JuJ+B,,|—23 +1, (10)
j=i+l
J#i+s
where
&
A= 1 ,j—l+1 28, j#EIi+s,
Bi+ky
'A\ = 'A\,Hs =N (11)
(1—e )(1+ km)
i 1-1
e, =d, +Zd,kZA“HAnm+l, =1, k>1-1,
i-1 i—?L I—17 i
F+ ). dy BlHAw,m+1
B, = k=2 1=k m=k ,1=23,....,s+1
l-e

Let i be the number of any internal point of the net
area o, . Then from expressions (9-11) follows:

i+s-1
uizAui+s+ZlAjuj+Bj, i=s+2,..,n—-s, (12
j=i+
where
€;: .. ..
Aijz—J,j:I+l,...,28, j#i+s,
—e;
__ B
Aﬁ Aﬁws (1—9“)
i-1 i-1 1-1
ell = dlj + zdlk AIJHAnm—l +diAi—s,j ’ (13)
k=i-s+1 I=k m=k
i-1 i-1 1-1
I:i + dlk BIHAn,mA +d|B|—s
B — k=i-s+1 I=k m=k
I 1- ii ,
i=23,..,s+1.
The values u,,i=n-s+1,...,n satisfy the following
equalities:
i+s-1
uizzlAjuj+Bi, i=n-s+1..n-1, (14)
j=i+
where
A=
' 1-¢,
B
= 15
Ai Ai|+s (1 e ) ( )
i— i k
e _d + ZdlkZAleAmmﬂ MA—SM
k=i—s+1 1=k m= l+ kz n+l
= o, +K,7..
F+ Zdlkz BIH Anma t ﬁ s, |
B k=i—s+1 1=k m= + 27/n+l

! 1-e,

At last, the value u, defines explicitly:
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u, =B, (16)

a, +K,y <
Fo+on "2fmap o >d > B,
B _ n 1+k2}/n+1 k;ﬂmZ :rIT:[Amerl

" 1_eii

17
_d + ZdnkZAmHAmmﬂ Lkz}/nﬂAw—sn

k=n-s+1 1=k m= 1+ kz n+1
Let o and g satisfy to following bilateral
inequalities:

1
—<p, «a
S

n+1-i

<£, i=23,..,5+1,
2

1-ch?* < B <1l+c,h?,
i=s+2,..,n-5,
where c,,c, are constants. Obviously, it is possible

bye the appropriate choice h (see expressions for «
and g from the formula (3)).

Then from (11), (13) and (15) follows:
A; <(L-ch)max{A, A, },

i<s+1

Bi<06a+c7ﬂ+cgmjax|f(tj}, (18)

c;,C, >0,

where nonnegative constants c.,c,C,,C; do not

depenton h.

The conditions (18) are the definition of stability of
computing process by formulae (11), (13) and (15)
concerning initial data and right part accordingly.

The stability of process (10), (12) and (14) for
calculation of values u, is also obvious, as the
operator appropriate these expressions is an operator
of compression. From the above stated formulae it
follows that the method of generalized factorization is
optimum, as the number of arithmetic operations
necessary for calculation of approximate solution u;

is directly proportional to the number of points of the
net areas @, .

3. Nonlinear Case with Newton’s

Boundary Conditions
We shall consider a nonlinear boundary value
problem:

U() F (o u()u(x),
ku(0)-u'(0)=a, ku(t)+

With the basis of generalized (P) and (Q) formulae
(see [2],subsection 13.1) in this part we shall begin
the construction of one-parametrical computing
schemes, to an equivalent nonlinear problem (1)-(2).

Let is given uniform or Gaussian (in a sense of
[2,subsection 13.2]) lying in the interval [0,1]. We

-M<u, U<M, (D)
u'[)= 2, k.’ +k,” >0.(2)
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shall make out the formulae for central knots x,,,
1

1
U,n = Eu(t—l)zﬂ Eu(t+1)z+1 + At U= 2137"'72k -2 ) (3)
where

e+ O(h ‘”1)

22
A( = sz+l,ju
j=2

To these formulae we shall attach expression similar
to the formulae (2.7)(for premilinary section):

1 1 , 12k +k;
U,,= 77(k1u(0)_u (0))+ i Uy Ai’

2k+k, 2 k+k K,
Uiakt)zn = 4
11 , 12k +k,
2k 4+ k, (k2u(l)_u (1)) 2 k4 k, u(Zk—Z)z+l + Ay,
where

2z X , .
Ai :jz_zl(bulj kz k-lz-li CIJ}JJ O(th—Sl)
2kz

AZk—l = Z bz+1 T k2 XHl CZZ+1 j + O<h P+1)
Y= A W k+k, =

The formula (3) multiplies accordingly on the
uncertain multipliers e, (i=12,...,2k —1) and selects

these numbers so that ratios were executed:
2+Kk, 2+k

U= +
@1 ok + K, +kiky) 2k 1K, + KK,

)ﬂ + O-kz+l

O = (kl +k, +kk, )71[(2 + kl)(k + k1)A1 (5) v
+(2+k2)ki(2k +ik,)A +k(2+Kk )2 +k,)A,

XF.
=N

+ (2 + kl) ) (2k + ikZ)AZk—i + (2 + kl)(k + kZ)AZk—l] ,
¢ 2 +tk,

Uy, = d + U1z +34,
T2k (tk, 2k +(t+Dk, P

t=12,..k-1, (),

where
t
2{(k +k A+ (2k + ikl)A,}
Z[t] _ i=2 ,
2k +(t +1)k,

! 3 B N 2k +tk, U

ATk (t+Dk, 2K+ (t+Dk, X (5) 0,
+YE =12 k-
where

2{(k+k2)A2k1 +g(zk +ik2)A2ki}

2k + (t +1)k, ’
From expressions (5) after some calculations, follows

Z[Zk—t] _
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L - 2k +(2k —t)k, 2K + t, fio
T 2k(k +k, + k) 2k(k, +k, + Kok, ) e
t=12,..,2k -1, (6)

where
2k +tk, S 2k +tk,
Oln Z

+
Tt T ok Kk, ok + sz

2k +tk L 2k +tk2 [2k*j]
—2 +y —*= .
2k +kk, ,Z; 2k + jk, >
From the formulae (2.3) and (6) we can easily receive
expressions, similar to ( 6), appropriate to the other
net points of @, : X_y,.;(i = 2). We have:
2k +(2k — 2kx, —t +1)k,
Ute-1)z4i =
2k (k, +k, +kk,)
L2k (2kx, +t—1)k, Lo (5.4)
2K (k, +k, +kk,)

O(2k-t)zs1 =

where

2s
Oy = L= KX )0t + KX O ys + D0 0P gy
j=2
(t=23,...,2k-1i=23,..,2+1).
If we use the formulae of type:
Xy, — X 1+ xk;
u =k 2z4 + k
i k + k a k y22+1

2s
+ Z [bij _ 22+1 }1 th o
j=2

and
Xy, — X 1+ xKk,
u = k 2741 i + k
2kz+1-i k + k2 ﬂ k k

2k 1 z+1
2kz

X — X "
+ Z (b22+2i,j +k? 22O sz,j}‘j +O(th—8)
j=2(k1)z+2 k+k,

for bounding points x, and 1-x, (i=2,3,...,2),
analogously to the last formulae we will have:

i= 1+ (21— x )k, 1+ xk, fio
k, +k, +kk, k, +k, +kKk,
(5.b)
1+xk 1+(1-x
Upigiai = K 2 + ( ) LB+ Oy
L+ K, + kK, k, +Kk, + kK,
where
k + x;Kk, & 2 X000 = X
= i b k 27+1 (e 4
O-I k+k1 UZZ+1+JZZ:( ij k+k CIJ}JJ
+ O(hz"_s)
and
o _ Kk + xkk, o
2kz+1-i K+ kz 2(k-1)z+1
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2kz

X = X: "
+ Z (b22+2i,j +k? 2 sz+1,j}‘j "'O(thfs)-
j=2(k-1)z+2 k+k,

We therefore will attach the last formulae (5.a) and
(5.b) to the expressions (5) and shall name such set as
the formulae of a type (5).

The formulae of type (5) are difference analogue of
Green’s function any arbitrary (fixed) degree of
exactly concerning ordinates of unknown solution
(compare with Berezin, Zgidkov [7] or Schréder[8]
To (5) should add the difference formulae respect
derivatives of first order if the right hand function f
depends of u'(x).

It is evident that for these purposes use of the
formulae of numerical differentiation there is
inconvenient. However, if to take advantage
generalized (Q) formulae (2.4) for the points

Xtz (i =1.2,...,22 +1) and (6) (at t=k -1,k +1), for
the derivative we receive the following expressions:
k.S —k,x
Ui =7 — 2=+ Ol ] (7)
Tk tkk, Y
where
o .2
(Bt =y bk, +kik,

x{kl[;mzm DTS RPN

i=2

k[; (2+k,) Ak+§ (2k +ik,)A + k+k)A1}}

kzcljyk 1z+] (hp )

The constructlon of the one-parameter schemes will
be completed, if to expressions of a type (6) and (7)
we attach two Cauchy (initial) problems:

U (%)= (x A(x)uy(x)), L <x<1,

ul(l) 7ok = Xk-1)z41
ur(x)= £ (x, (x) s (x)), I, 2 x>0,
U1(|2)= S, =Xy

Now we return to study the problem (1)-(2) and
introduce the following values:

2
w1=1+; 4+k +k +M
8 4k, +k, +kk,) k, +k, + kK,
1
= (kk, +2max{k, k 8
@, 2(k1+k2+k1k2)(12+ max{ 1) 2})1 (8)
o1 Kik, _ :
e e S G
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The following theorem is true:

Theorem 1. Let the function f(x,u(x)u’(x)) be

continuous with respect to x, satisfy a Lipschitz’s
condition relative to u and u’ with constant L and
L" respectively; in addition, let one of two conditions
be executed:

o(L+L)<l, oL+a,l <1. ©)
At these restrictions the initial problem has the
unique solution which can be constructed by an
iterative method.

The proof of this theorem coincides with the scheme
of the proofs of the theorems 13.2 and 13.3 [2].

Now in the formulae of th type (6) and (7), we omit
the remainder terms. We get the expressions for
construction of the initial table. The Cauchy problem
we shall replace by the multistage methods . We shall
name the resulting system as the difference scheme.
Following theorem is true:

Theorem .2. For the problem (1)-(2) let one of
conditions (9) be true. Then:

1) the difference scheme has a unique solution and
the iteration method converges;

2) as in the case of the uniform grid (p=357), as
in the case of Gaussian grid (p >3) convergence of
the solution of the algebraic analogue to the solution
of a problem (1)-(2) and its derivative has (p—l)—
degree respect h.

Proof this theorem is similar to the proof of the

theorem 13.2 [2].
The following theorem is true:

Theprem 3. The number of arithmetic operations
which is necessary for the calculation of approximate
solution u(x) and its derivative u'(x) has the order
k-Ink.

A proof of this theorem is based on the specific
character of sums o,,,. If we calculate o,,,,, then

o, Vt=k will be calculated, as it is contained in
Oy,,; s subsums.

The practical convenience of a generalized
factorization method constructing algebraic analogue
is the following: in difference from other high
accuracy methods (Tichonov, Samarski [1961];
Volkov [1971]) is not present necessity to make up
the table of multiple integrals or derivatives from of
initial data.

4. Numerical realizations of some
difference schemes for boundary
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value problems for second order
ordinary differential equations

Let us consider boundary value problem for Il order
linear ordinary differential equations when the main
part has self-conjugate form:

—(Au+qu)=—=
k>0,0>00<t<l,

ku(0)-u'(0)=e, kU()+U() B k,20) (2)
Denote bYa)—{O bty by =1t =h-(i- ),h:i}

a network, when n is arbitrary integer. Using
methodology of previous points we have the
following  high  order  difference  schemes,
corresponding to (1)-(2) boundary value problems:

U - ap+m 1+m(k)><ul+m +ﬂ'p+m’l+m(k)xup+m

1+m I+m I+m

LN

+ (f1+m+qj+m' J+m)
i

><(7/i+m,j+m( ) ﬂlg:nmhm( )X7p+m,j+m(k))’ (3)

where p is arbitrary parameter defining class of
difference schemes and exactness of approximation,
a_p+m,1+m(k), 'p+m'l+m(k)7 7/i+m,j+m(k) are known

1+m I+m

=

.
N

coefficients
b dx

k(x k(x
ap )= g )
T_dx pj Jdx
Yim (X) tm k(X)
tiim 1 X
Viem, j+m (k)= T I'+m (T)d rdx (4)
)= [l

Below we consider the case when in the schemes (3)
the main parameter p=5. Thus we got the concrete
algorithms by which we created a package of applied
program. It was using for operations for numerical
realizations of some typical nontrivial examples.

Let in (3): when m=0, i=2; if m=01,...,n-4,
i=3 and if m=n-4, i=4. For m=0 and
m=n-4 (3) is written for boundary points, and for
other m _ for midpoints . Thus we have the algebraic
system of linear (n—1) equations of (n—1) unknown
values with five diagonal matrix. For simplicity if we
introduce the values
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00,0, —1=C,, G50, 5 =0d,,

A0y 00=€, Boo=X,

- (fzbz,o,z + f3byos + f4b2,o,4)_ ax (0‘2,0)E 9z

Uyb;0, =Dy, A3y, —1=cC;,

Au0;04 =03, Bsp =65,

- (fzbs,o,z + f3bs 05+ fubsgs )_ ax (0‘3,0 ) =03,

A5 =8, Oiybyi s, =y,

Gibsi 55 —1=Cy Oubsiga=di, Bsis =6,
_(f2+mb3,m,2 + fonbams + f4+mb3,rn,4)E g;i=4..,n-2
Qzpg =gy Uoobsng, =By,
qn—le,n—4,3 -1=c,,, ans,n74,4 =d,,,
~(foobanao + Foabynas+ fubsnaa)=Bx(Bons)= 00
Aoy =Y, U0, ., =4,

qn—1b4,n—4,3 =b,, qnb4,n—4,4 -1=c,,

~(fobanaz + FraBanas+ Fubanas)=Bx(Bens)=0,

where

U =i " (K), fim =B (),
bi,m,j = 7/i+m,j+m (k)_ ﬁi?mm'hm (k)X 7/5+m,j+m (k)'

the system (3) will the following form:
U,xC,+U;xd, +uU,xe, +U;x X =0,
U,xb, +us;xcy+U, xd, +U; xe, =0,

Ui, X8 + Uy x by +U; x ¢ + Uy, xd; +U;,, <€ =0
i=4,..,n-2 (5)
un—3 x an—1 + un—2 X bn—l + un—l x Cn—l + un x dn—l = gn—l

un—3><Y-{_un—Zxan-{_un—lxbn—'_unxcn zgn’

or
c, d, e X 0 0 u, g,
3 C3 d3 3 0 0 u3 gB
a‘4 b4 C4 d 4 0 0 u4 g4 (6)
a; by ¢ 0 0 Us 95
N =

0 0 0 ) © G dn—z €2 U, Oh2

O bnfl Cn—l d n-1 un—l g n-1
0 0 0 - Y a b ¢ u, g,

Using the corresponding representations of [1], ch.3,
p.14, the system (5) was solving evidently by stable
schemes.

For control of quality of above algorithms and created
the standard program package below we reduce tables
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of some typical test examples for n=10 and for
n=100.

5. Standard package program (SPP)
SPP are divided into 3 main parts.

In the first part entering parameters are functions
k(t),q(t), f(t) and numbers «, B, k,, k,, n. These
values are defining in SPP as functions or from file
income.in. Here also are entering functions by which

we compute (4) type integral sums. «; ., B,

coefficients are preserved in alfabeta.out file,
numbers b, ., keep in bimj.out file. Matrix of system

(5) is preserved in abcdef .out file. In the second part

Tamaz S. Vashakmadze

Problem 2: k(t)=¢™, q(t)=¢', f(t)=¢*, a=-1,
P =-2.71828182845905.

Approximate solution Exact solution Error
u(t) =—e'

u[1]=-1.00000000000 | -1.00000000000 | 0.00000000000
u[2]=-1.10517091807 | -1.10517091807 | 0.00000000000
u[3]=-1.22140275815 | -1.22140275815 | 0.00000000000
u[4]=-1.34985880757 -1.34985880757 | 0.00000000000
u[5]=-1.49182469763 | -1.49182469764 | 0.00000000000
u[6]=-1.64872127070 -1.64872127069 | 0.00000000000
u[7]=-1.82211880038 | -1.82211880039 | 0.00000000000
u[8]=-2.01375270747 | -2.01375270746 | 0.00000000000
u[9]=-2.22554092848 | -2.22554092849 | 0.00000000000
u[10]=-2.45960311115 | -2.45960311115 | 0.00000000000
u[11]=-2.71828182845 | -2.71828182845 | 0.00000000000

Problem 3. k(t)=¢' +1, q(t)=2-€', f(t)=¢",
a=1, f=2.71828182845905.

] ] ] ] Approximate solution Exact solution Error
the entering parameter is matrix of system (5) which u(t) =e'
' ' u[46]=1.5683121884748 | 1.5683121854890 | 0.0000000029858
S . i u[47]=1.5840739898717 | 1.5840739849936 | 0.0000000048781
general factorization scheme we find this inverse u[48]=1.5999941963404 | 1.5999941932168 | 0.0000000031235
matrix and construct the solution of initial system (5) u[49]=1.6160744072600 | 1.6160744021926 | 0.0000000050674
u[50]=1.6323162232362 | 1.6323162199551 | 0.0000000032811
u[52]=1.6652911984283 | 1.6652911949458 | 0.0000000034824
(using data from second part and the Corresponding u[53]=1.6820276549625 | 1.6820276497001 | 0.0000000052624
u[54]=1.6989323123795 | 1.6989323086181 | 0.0000000037613
standard program from “Matlab 6_5”) there are u[55]=1.7160068675928 | 1.7160068621851 | 0.0000000054077
t 5
formed tables and diagrams of approximate and exact Problem 4: k(t) =¢', q(t) = el ?E} , f(t)=e'-30t*,
+
solutions, an error.
. a=1, p=2.
The | and Il parts of SPP are using “Turbo Pascal
. . . . . Approximate solution Exact solution Error
7.0”, 11 part is written by “Matlab 6.5”. u(t):1+t6
1 u[45]=1.0072563879500 | 1.0072563138564 | 0.0000000740935
Problem 1. k(t)=1, q(t)=—"—, f()=1, u[46]=1.0083037950666 | 1.0083037656240 | 0.0000000294426
1+t+t U[47]=1.0094743726131 | 1.0004742968958 | 0.0000000757172
1 u[48]=1.0107792447327 | 1.0107792153285 | 0.0000000294041
a=1,p=3. u[49]=1.0122306676875 | 1.0122305904642 | 0.0000000772232
. u[50]=1.0138413164828 | 1.0138412872001 | 0.0000000292826
) ) Exact solution Error u[51]=1.0156250785456 | 1.0156250000000 | 0.0000000785456
Approximate solution | yy(t) =1+t +t u[52]=1.0175963169126 | 1.0175962878001 | 0.0000000291125
u[53]=1.0197706894134 | 1.0197706096641 | 0.0000000797492
u[1]=1.00000000000 | 1.00000000000 | 0.00000000000 u[54]=1.0221643899408 | 1.0221643611293 | 0.0000000288114
u[2]=1.11000000000 | 1.11000000000 | 0.00000000000 u[55]=1.0247949921024 | 1.0247949112963 | 0.0000000808061
u[3]=1.24000000000 | 1.23999999999 | 0.00000000000
u[4]=1.38999999999 | 1.38999999999 | 0.00000000000 o ]
u[5]=1.56000000000 | 1.55999999999 [ 0.00000000000 6. Finite-difference scheme of
u[6]=1.75000000000 | 1.75000000000 | 0.00000000000 . .
u[7]=1.96000000000 | 1.96000000000 | 0.00000000000 numerical solution Cauchy problem
o 14000000000 | 7 1308500006 | bocosoonooos | LY Gauss-Hermite processes
u =Z. . . - -
u[10]=2.71000000000 | 2.70999999999 | 0.00000000000 Ioﬁ‘:‘ us i clon3|d$_r Cauchy problem for ordinary
u[11]=3.00000000000 | 3.00000000000 | 0.00000000000 ITrerential equations
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y'(x) = £ (x y(x))

y(0)=y,, 0<x<I.

)

Below we consider the problem of numerical solution
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of (1) by finite-difference  method basing on
applications of Gauss theory of quadrature folmula
and Hermite interpolation process. By such way it’s
possible investigate Adam’s type finite-difference
schemes .

For simplicity and clearness we consider detailed the
schemes having sixth order of accuracy respect to net
step. At consideration of schemes having arbitrary
order of accuracy we investigated too the processes
connected with their numerical realizations. Gauss
quadrature formula with 3 knots in interval [0, h] has

the following form:

; h

J 1090 = 75157 (x00) +8 () + 97 (5. )]

+Eqq [ f,0,h]],

oo = D -V0B), %oy =5, %y = 2{1++/08).

h7
Bogal f:0.0]=25,00s FO6).

We also consider the following network (I = nh):
@ ={Xo01 X1 X025 X105 Xi11-+ Xon.0s Xon1 Xon 2 }

h
Xei = Xoy + kE ,

k=0,1,.....2n,i=0,12.

Hermite interpolation formula with two knots and by
ordinates and slopes as is well known has the such
form:

f(t):H (t)+R[f;t]=
Z{ (1= 232 ;(t t))+(t—t)y 35 ()

3

+ 10wy’ )16,

ast<b),
where a)s(t)zﬁ(t—ti),

a<t, <t <t, <b.

By simple calculations If t=x+a we have.

W1 (t) = a)n+1(x + a) = H(X ta—X — a) = a)n+l(x)
i

te(ah),

a)rlwl (t) = a);1+l (X)

a)rl;-v-l (t) = a)r.;+1(x)
t+t X+a—-Xx;—-a

Li@®=11:—-=11

:Lni(x)'
i |_j i xi+a—xj—a
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We must calculate H5(x0'0 + h/2) by

Y@ (xo, i =01y (x,, —h/2) = 0,1values.
Thus if H,(t) is defining in (k (k+2) ) then by

(4) the ordinates in knot pomts of the following
interval are calculated if known values we multiply

on h . We calculate also the values L,, (xo‘o + h/2).

2X20,0
LZO(XO’O o 2): ) (2X20 o—h/ 2)X0 0
2005 f
B ~0.139337,
~Josf-210.6 ) 0.9
1
L21(X0,0 + h / 2):: m
~—1.820852,
h
L,, (Xo,o +h/ 2):: ﬁ
0,0 /7*0,0
2
= ~ 2. .
Jo6 581989

h
These values must calculate on >
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