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1 Introduction

In the last years, many authors (e.g. Dobrakov [4],
Drewnowski [5], Jiang and Suzuki [16], Li [17],
Pap [22], Precupanu [24], Sugeno [28], Suzuki [29],
Zadeh [30], Wu Congxin and Wu Cong [31], Wu
and Sun [32]) investigated the non-additive field of
measure theory due to its applications in mathe-
matical economics, statistics, theory of games etc.
Fuzzy measures have applications in biology, physics,
medicine, theory of probabilities, human decision
making, economic mathematics.

It is well-known the importance of non-additive
measure theory (such as: continuity, regularity,

extensions, decompositions, measures, integrals,

(pseudo)atoms, non(pseudo)atomicity, purely atomic-
ity) in fuzzy measures theory. Finiteness is an im-
portant point in mathematical research, due to its in-
teresting applications (for example, see Mastorakis
[19,20]). Finitely purely atomic measures where stud-
ied in literature in different variants (e.g. [1,2], [4],
[16], [20]). For instance, Chitescu [1,2], Leung [18]
established interesting results on different classical
problems concerning? spaces.

In [3], [8-10] and [21] we introduced and stud-
ied notions as (pseudo)atom, (non)(pseudo)atomicity,
purely atomicity in the set valued case. In this pa-
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per, we continue our study, obtaining results concern-
ing measurability and Gould integrability for finitely
purely atomic set multifunctions. The Gould integral
[14] was extended to the set-valued case (see [25-27],
[6,7], [11,12]) and to the non-additive case (see [13]).

2 Preliminaries

(X, ]| - |) will be a real normed spac&?y(X) the
family of all nonvoid subsets ok, P;(X) the fam-
ily of all nonvoid, closed subsets of, P,¢(X) the
family of all nonvoid, closed, bounded subsetsXof
Pyro(X) the family of all nonvoid, closed, bounded,
convex subsets ok, Py.(X) the family of all non-
void, compact, convex subsets &fandh the Haus-
dorff pseudometric ofPy(X'), which becomes a met-
ric onPyr(X).
It is known that

h(M,N) =max{e(M,N),e(N, M)},

where
e(M,N) = supd(z, N),
zeM
for everyM, N € Py(X) is the excess al/ over N
andd(z, N) is the distance from to N with respect
to the distance induced by the norm.f
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We denote|M| = h(M,{0}), for every M €
Po(X), where0 is the origin of X. We have

[M| = h(M,{0}) = sup [z|.
zeM

On Py(X) we consider the Minkowski addition
» {7 [15], defined by:

M:LN: M + N, foreveryM, N € Py(X),

whereM + N = {x + y|z € M,y € N}is the clas-
sical addition of two sets antf + N is theclosure of
M + N with respect to the topology induced by the
norm of X.
Let 7 be an abstract nonvoid s@(7") the family
of all subsets of" andC a ring of subsets df".
Byi:=1,nwemean: € {1,2,...,n}, forn €
N*, whereN is the set of all naturals aié* = N\{0}.
We also denot® . = [0, +oc0), Ry = [0, +00] and
R = [~o0, +o0], whereR is the set of all reals.

Remark 2.1. It follows from definitions that:
h([a,b],[c,d]) = max(|a — ¢|, |b — d]),

for everya,b,c,d € R, a < b, c < d (for other prop-
erties ofh, see Hu and Papageorgiou [15], Petrusel
and Mot [23]).

We now recall the definitions of finitely addi-

tive measures, countably additive measures and some

types of non-additive set functions.

Definition 2.2. Letm : C — R, be a set func-
tion, so thatn () = 0. m is said to be:

I) monotonef m(A) < m(B), for everyA, B €
C,ACB.

1) afinitely additive measurgshortly,finitely ad-
ditive) if

m(AU B) =m(A) + m(B),

foreveryA,Be C,ANB = 0.
IIl) a submeasurgin the sense of Drewnowski
[5]) if m is monotone and

m(AUB) <m(A)+m(B),

for every A, B € C, with AN B = () (or, equivalently,
foreveryA, B € ().

IV) null-additiveif m(AU B) = m(A), for every
A, B € C, withm(B) = 0.

V) null-null-additiveif m(A U B) = 0, for every
A, B e C,withm(A) =m(B) = 0.

VI) null-monotonef for every A, B € C, with
A C B, m(B) = 0impliesm(A) = 0.
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VII) o-continuousf lim m(A,) = 0, for every

n—oo

(Ap)nens C C, with A, N\, 0 (i.e., A, D A4, for
everyn € N*and () A, = 0).
n=1
VIII) countably subadditivé

m(A) <3 m(Ay),
n=1

for every sequence of pairwise disjoint sets
(An)nen+ C C,sothatd = |J A, €C.

n=1
IX) a countably additive measu(shortly count-
ably additive if

m({J An) = m(4y),
n=1 n=1

for every sequence of pairwise disjoint sets

(An)nen+ C C,sothatJ A, €C.

n=1

Definition 2.3. For a set functionn : C — R,
with m(0) = 0, we introduce the following set func-
tions:

1) the variationof m is the set functionm :
P(T) — R, definedby

mi(4) = sup(y_m(4)},

for every A € P(T), where the supremmum is
taken over all finite families of pairwise disjoint sets
{A;}",, where4; € C andA4; C A, for every
ie{l,2,...,n}.

m is said to beof finite variationonC if m(A) <
+oo, forevery A € C.

)y m : P(T) — R, definedby

m(A) = inf{m(B); A C B, B € C},
for everyA € P(T).

Remark 2.4. Letm : A — [0,4+00) be a sub-
measure of finite variation. Then:

) m(A) <m(A), foreveryA € A;

II) 7 is finitely additive onA,;

) m(A) =m(A), foreveryA € A;

IV) m is a submeasure dR(T).

V) If m is o-subadditive, them is o-subadditive
onP(T).

Remark 2.5. Supposen : A — [0,+c0) is a

submeasure of finite variation. Then the following
statements are equivalent:
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(i) m is o-subadditve.

(i) m is o-continuous.

(i) 7 is o-additive onA.

We extended (for instance, in [3], [6]) the con-

cepts of Definitions 2.2 and 2.3 to set-valued case as
follows.

Definition 2.6. Let u : C — Py(X) be a set
multifunction, with () = {0}.

(i) By || we denote the extended real valued set
function defined byu|(A4) = |u(A)|, for every A €
C.

(ii) w is said to be:

I) monotonef 1(A) C u(B),foreveryA, B € C,
with A C B.

I1) a multimeasuréf (AU B) = u(A) + u(B),
for everyA, B € C, with AN B = ).

IIl) a multisubmeasuréf 1 is monotone and

(AU B) C u(A) + u(B), foreveryA, B € C,
with ANB = () (or, equivalently, for every, B € C).

IV) null-additiveif ©(A U B) = u(A), for every
A, B € C, with u(B) = {0}.

V) null-null-additiveif (AU B) = {0}, for ev-
ery A, B € C, with u(A) = u(B) = {0}.

VI) null-monotoneif for every A, B € C, with
A C B, u(B) = {0} impliesu(A) = {0}.

VII) o-continuousf nILHSOMA")' = 0, for every
(Ap)n C C,with Ay, N\, 0.

VIII) countably subadditivé

1(A)] < 3 (A,
n=1

for every sequence of pairwise disjoint sets
(An)nen+ C C,sothatd = |J A, €C.

n=1
IX) a countably additive multimeasuighortly
countably additiviif

w(J 4) =3 n(An).

n=1 n=1

for every sequence of pairwise disjoint sets

(An)nen+ C C, so that G A, € C (that is,

Jim (ko #(Ak),

n=1

Remark 2.7. 1) If p is Ps(X)-valued, then
in Definition 2.2-11) and IlI) it usually appears the
Minkowski addition instead of the classical addition
(because the sum of two closed sets is not, generally,
a closed set).
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1) Any monotone multimeasure is, particularly,
a multisubmeasure. Any multisubmeasure is null-
additive. Any null-additive set multifunction is null-
null-additive. If 4 : C — Py(X) is monotone, then
it is also null-monotone. The converses are not gener-
ally valid, as observed in [3].

i p: A — Pr(X) is a multi(sub)measure,
then|u| is a submeasure.

Definition 2.8. For a set multifunction: : C —
Po(X), with p(0) = {0}, we considethe variation
of 11 to be the set functiom : P(T') — R, defined
by

fi(A) = sup{)_ (A},
=1

for every A € P(T), where the supremmum is
taken over all finite families of pairwise disjoint sets
{Ai}i:ﬁ, where A; € C and A; C A, for every
1e{1,2,...,n}.

w is said to beof finite variation onC if (A) <
+00, for everyA € C.

Remark 2.9.1) |u(A4)| < 1(A), foreveryA € C.

II) 7 is monotoneand super-additive of#(T").
Also (see [6,7]), if u C — PyX)is a
multi(sub)measure, themis finitely additive onC.

) ([26]) If 1 : C — Py(X) is of finite variation,
theny is Py (X )-valued.

Remark 2.10.Let i : C — Py(X) be a set mul-
tifunction, A € C and the following statements:

(i) u(A) = {0}.
(i) [1(A)| = 0.
(iii) 72(A) = 0.

Then (ix=(ii) and (iii)=-(ii).
Moreover, if . is null-monotone, then (i (iii).

Definition 2.11. Let y, v : C — Py(X). We say
that i is absolutelyv-continuous(denoted by <<
v)if v(A) = {0} = p(A) ={0}, A eC.

Remark 2.12 Let u,v : C — Po(X) be null-
monotone. The following statements are equivalent:

) << v

i) |ul << [vl;

i) o << 7.

Remark 2.13. SupposeT € C and u is a
multisubmeasure, so thatis countablyadditive and
n(T) > 0. Thenwe can generate a system of upper
and lower probabilities (with applications in statistical
inference - see Dempster [3]) in the following way:
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LetA={E C X|u~Y(E),ut'(E) € C}, where
foreveryFE C X,

B) = {t € Tlu({t}) N E # 0}

andp™H(E) = {t € T|u({t}) C E}. For everyE €
A, we definethe upper probabilityof E to be

p

o _ BN (E))

P =)
andthelower probability of £ to be
_ A(ptN(E))

P ="

We remark thatP*, P, : A — [0,1] and P,(E) <
P*(E), foreveryE € A.

One may regargi(y~'(E)) asthelargest possi-
ble amount of probability from the measyre¢hatcan
betransferred to outcomes € E andu(u*(E)) as

the minimal amount of probability that can be trans-

ferred to outcomes ¢ E.

3 Finitely purely atomic set multi-
functions

In the sequely : C — Py(X
with p(0) = {0}.

Definition 3.1. [3, 8-10] I) A setA € C is said
to be anatom (pseudo-atomrespectively) ofy if
u(A) 2 {0} and for everyB < C, with B C A, we
havey:(B) = {0} or u(A\B) = {0} (u(A) = u(B),
respectively).

) is a set multifunction,

Il) pis called
i) finitely purely (pseudo)atomitthere is a finite
disjoint family (4;),_1+ - C C of (pseudo)atoms qf

so thatl" = GIAZ.
1=

ii) purely (pseudo)atomid there is at most a
countable number of (pseudo)atos,,), C C of

w So thatu(T'\ CfJ_ol A,,) = {0} (hereC is ac-algebra).

i)  non-(pseudo)atomic if it has no
(pseudo)atoms.

Remark 3.2. Suppose: is monotone. Then the
following statements hold:

1) i is non-atomic if and only if for everyl €
C, with u(A) 2 {0}, there existsB € C such that

B C A, u(B) 2 {0} andu(4\B) 2 {0}.
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II) pis non-pseudo-atomic if and only if for every
A € C,with u(A) 2 {0}, there existd3 € C such that
B C A, u(B) 2 {0} andu(B) € ji(A).

Using Remark 2.6, we easily obtain the following
remark.

Remark 3.3. Let u : C — Py(X) be monotone
with (@) = {0}, A € C and the following state-
ments:

(i) Ais an atom ofu.

(i) Ais an atom of u|.

(i) Ais an atom ofz.

Then(i)<(ii) < (iii).

Remark 3.4. Letu, : C — Py(X) be set mul-
tifunctions, so thap(0) = v(0) = {0}. If p < v and
A € Cis an atom ol Wlth u(A) 2 {0}, thenAis an
atom ofy, too.

Example 3.5.
) Let T = {a,b,c},C = P(T)andy : C —
Po(R) defined by

f{oy, a=0
“(A)_{[o,u, A#0

for every A € C. Let A = {a,b}. There is
B = {a} C A, sothatu(B) = [0,1] 2 {0} and
w(A\B) = u({b}) = [0,1] 2 {0}. So, A is not an
atom ofu. We prove thatd is a pseudo-atom of. In-
deed, foreven € C, E C A, we haveu(FE) = {0},
for E = 0 andu(E) = [0,1] = u(A) for E # 0,
which shows thatl is a pseudo-atom of.

) Let T = {a,b},C = P(T)andp : C —
Po(R) defined by

{0}, A=0orA={a}

{178}7 A= {b}
{0,7,9}, A={a,b}

u(A) =

foreveryA € C.

We observe thal’ is not a pseudo-atom @f be-
cause there i8 = {b} C T, so thatu(B) # {0} and
w(B) # u(T). We now prove thaf” is an atom ofy.
LetEeC,ECT.

We have the following situations:

() E =0 = u(E) = {0},

(i) E =T = p(T\E) = u(0) = {0}.

(iii) £ ={a} = u(E) = {0}.

(V) E = {b} = u(T\E) = u({a}) = {0}.

So,T is an atom ofu.

Proposition 3.6. Let x : C — Py(X) be mono-
tone withu(0) = {0} and A € C. If Ais an atom of

i, thenfi(A) = [u(A)].
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Proof. According to Remark 2.5-1), itis sufficient
to prove thatu(A) < |u(A)|. Let{B;}?, C C a

partition of A. Thatis,A = |J B; and{B;}], are

=1
mutually disjoint. We may have the following cases:

) u(B;) = {0}, foreveryi € {1,2,...,n}. Then
D (B =0 < |u(A)].
=1
II) There is an unique, € {1,2,...,n}, let
sayiy = 1, such thatu(B;) 2 {0} andu(B2) =
w(Bs3) = ... = pu(By) = {0}. Itfollows |u(B1)| > 0

n
and ) |u(B;)| = 0. Sinceyp is monotone, we have
1=2

Bi C Ay = pu(B1) € p(A) = [u(B1)] < [u(A)].

This implies
D Iu(Bi) = [(B1)| < |u(A)].
=1

) Supposex(B1) 2 {0} andu(Bz) 2 {0}
Since A is an atom ofy, it resultsu(A\By) = {0}.
But B, C A\B; andp is monotone. Sou(Bs) =
{0}, a contradiction.

Finally, we have

D (B < |u(4)],
i=1

for every partition{ B; }" , of A.
It follows @(A) < |u(A)| and the proof is
finished. O

Remark 3.7. Supposeu : C — Py(X) is mono-
tone and null-additive andl € C is an atom ofyu.
If {B;}], € C is a partition of A, then there is

an uniqueip € {1,2,...,n}, let sayig = 1, such
thati(B1) = pu(A) andu(Bz) = p(Bs) = ... =
:LL(Bn) = {0}

Indeed, we may have the following situations:
) u(B;) = {0}, for everyi € {1,2,...,n}.
Sincey is null-additive, we have

u(A) = p(B1U...UB,_1) =

=p(B1U...UBp_2)=...=u(B1) = {0},

false.

II) Supposeu(B;) 2 {0}. Asin the case Il from
the proof of Proposition 3.4, it resulig By) = {0},
which is false.

1) There exists an uniqu&) € {1,2,...,n}, let
sayip = 1, such thatu(B;) 2 {0} andpu(B2) =
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w(Bs3) = ... = u(B,) = {0}. SinceA is an atom of
w, it follows p(A\By) = {0}.
By the null-additivity ofy, it results

(A) = p(Br U (A\B1)) = u(B1),

as claimed.
The same result is valid for a null-additive mono-
tone set functiomn : A — [0, +00).

Remark 3.8. 1) Let 4 : C — Py(X) be mono-
tone. The following statements are equivalent:

i) w is (finitely) purely atomic;

ii) |u] is (finitely) purely atomic;

i) z is (finitely) purely atomic.

) [3] If wis null-additive, then any atom ¢f is,
particularly, a pseudo-atom @f. Consequently, any
null-additive, (finitely) purely atomic set multifunc-
tion is (finitely) purely pseudo-atomic.

M If p: C — Py(X) is a multimeasure, then
A € C is an atom ofu if and only if it is a pseudo-
atom. Consequently, in this cageis (finitely) purely
atomic if and only if it is (finitely) purely pseudo-
atomic.

V) If u C — Po(X) is finitely purely
(pseudo)atomic, then it is also purely (pseudo)atomic.

Theorem 3.9.Letm : C — R, be a finitely ad-
ditive set function angk : C — Py (L>(m)) defined
by u(A) = [0,N4], for everyA € C, whereX 4 is the
characteristic function ol and

[f, 9] = {ulu € L2(m), f <u<g},

for everyf,g € L£>*(m) so thatf < g. Theny is
countably additive if and only ifn is finitely purely
atomic.

Proof. Letv : C — L>(m), defined for every
A € Cbyv(A) = N4. We observe that(()) = 0 and

V(AU B) = xauB = xa + x5 = v(4) + v(B),

for every disjoint setsl, B € C. So,v is finitely addi-
tive. Then, by [1,2]y is countably additive if and only
if m is finitely purely atomic. We also remark that
is countably additive if and only i# is countably ad-
ditive. Indeed, let(A,,),en+ C C be a sequence of

pairwise disjoint sets such thdt] A,, € C. Denote
n=1
=xn ,forever N*andf = v « .
fn XkU " yn € f=x J 4
=1 n—
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Obsere that0 < f, < f, for eachn € N*. Using
Remark 2.1, we have

3

n=1 n=1

So, the conclusion follows.

4 Measurability and Gould integra-
bility for finitely purely atomic set
multifunctions

In what follows, without any special assumptions,
supposed is an algebra of subsets of an abstract space
T, X is a Banach spacg, : A — Pf(X) is a set
multifunction of finite variation, with:() = {0} and
f:T — Ris abounded function. We recall from [26,
27] the following notions and results.

Definition 4.1. 1) A partition of 7" is a finite fam-

ily P= {Al}z:ﬁ C A suchthatA4; N Aj =0,i#j
and|J A; =T.

i=1

Il) Let P = {A;},_15; andP' = {B;},_1; be

two partitions of 7. P’ is said to befiner than P,
denotedP < P’ (or P! > P), if for everyj = 1,m,
there exists; = 1,n sothatB; C A;,.

) The common refinemendf two partitions
P = {A;},_t; andP" = {B;} is the partition
P/\P/:{AiﬂBj}

j=1m

i=1,n"
j=1m

Olviously, PAP' > PandP AP’ > P'.

We denote byP the class of all partitions af and
if Ae Aisfixed, byP4, the class of all partitions of
A.

Definition 4.2. For a set multifunctionu : A —
Po(X), we introduce the set functigndefined by:

(A) = inf{(B); AC B,B € A},

ISSN: 1109-2769 440

Alina Gavrilut, Anca Croitoru, Nikos E. Mastorakis, Gabriel Gavrilut

foreveryA C T.

Remark 4.3. Sincef: is monotonetheni(A)
n(A), for every A € A. Consequently(A)
|(A)l, for everyA € A.

Remark 4.3 implies the following result.

Proposition 4.4. Letpu : A — Py(X) be a set
multifunction. Ifzz is o-continuous ofP(T'), theny is
o-continuous oM.

Definition 4.5. 1) f is said to bey-totally-
measurable o7, A, n) if for everye > 0 there exists
a partitionP. = {A;}._g— of T' suchthat:

i=0,n

i) (Ap) < e and

it) sup |f(t) — f(s)] = osc(f, Ai) <e,
t,s€A;

for everyi = 1, n.

II) fissaid to be:-totally-measurable o8 € A
if the restrictionf| s of f to B is u-totally measurable
on (B, Ap,ug), whereAp = {ANB; A € A} and

B = M|AB'

Remark 4.6. If f is u-totally-measurable off’,
thenf is pi-totally-measurable on every € A.

Definition 4.7. [26, 27] For a bounded function
f:T — R we denote

oru(P) =">_ f(t:i)pu(As)
=1

(or, if there is no doubty ;(P), o, (P) or o(P)), for
every P = {A;} € P andeveryt; € A;,i =
1, n.

1) f is said to beu-integrable onT if the net
(0(P)) pe(p,<) Is convergent ifPy(X), h), whereP
is ordered by the relatioh < ” given in Definition
4.1.

If (o0(P))pe(p,<) is convergent, then its limit is
called thantegral of f onT with respect tq:, denoted
by [ fdu.

) If B € A, f is said to beu-integrable on
B if the restrictionf|z of f to B is u-integrable on

(B,AB,,LLB)-

Remark 4.8.[26, 27]1) f is u-integrable ori if
and only if there exists a sétc P, ¢(X) such that for
everye > 0, there exists a partitio®. of T, so that
for every other partition of", P = {A;} with

i=1n

=1n’
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P > P. andevery choice of points; € A;,7 = 1,n,
we have
h(o(P),I) <e.

) If p is Pr(X)-valued, then [, fdu €
Pre(X).

III) According to [13], if m : A — R, is a sub-
measure of finite variation an: 7" — R is bounded,
then f is m-totally-measurable if and only if is m-
integrable.

Theorem 4.9.Supposé€T’, p) is a compact metric
space 5 is the Borely-ring generated by the compact
subsets ofl’, f : T'— R is continuous oi¥" and i :

B — P¢(X) is finitely purely atomic, null-additive
and monotone. Thehis u-totally-measurable on ev-

ery atomA;,: = 1,p (wheeT = ,61141')-
1=

Proof. Sinceu is monotone and null-additive, by
Theorem 5.2-[3], there is an uniqug € A; so that
uA\{ar)) = {0}. )

Consider an arbitrary partitiofB;, Bo, ..., B, }
of A;. According to Remark 3.7, we may suppose that
1(B1) = p(Ar) andu(Bs) = ... = u(B,) = {0}

Sincef is continuous iruy, then for every > 0,
there isd. > 0 so that for everyt € A;, with
p(t,a1) < 6, we havef(t) — f(a1)| < 5.

Let B. = {t € Ai;p(t,a1) < 6.} C A1 We
observe thaB, € B. Becaused; is an atom, we have
u(B-) = {0} or pu(A1\Bz) = {0}.

I. If u(B-) = {0}, then sincen; € B., we get
u({ar}) = {0}. Butp(4;\{a1}) = {0}, sou(A) =
{0}, a contradiction.

I If u(A1\B:) = {0}, then

u(BI\B.) = ... = n(B,\B.) = {0}.

The partition P4, = {B., Bi\B,..., B,\B:} as-
sures thei-totally-measurability off on A;.

We make similar considerations for any,i =
2,p. [l

Proposition 4.10. Letx : A — Ps(X) be a
multi(sub)measure andl, B € A. Thenf is p-
totally-measurable oM U B if and only if it is p-
totally-measurable onl and B.

Proof. According to Remark 4.6, thi part is
straightforward. For thenly if part suppose first
that A N B = (. By the u-totally-measurability of
fon A and B, there areP? = {A;},_g5 € Pa
and PP = {Bj},_y, € Pp satisfying condition
(M). Sincef is additve on A, then PAYE =
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{AO U By, A4, ..., Ay, By, ..., Bq} € Paup also sat-
isfies condition(M ), so f is u-totally-measurable on
AU B.

If A and B are not disjoint, sinced U B =
(A\B) U B andp-totally-measurability is hereditary,
the statement is proved. O

Remark 4.11. Under the assumptions of Propo-
sition 4.10, let{4;}, 1, C A. Thenf is ji-totally-

measurable orﬂlAi if and only if the same ig on
1=
everyA;,i = 1,p.

By Remark 4.11 and Theorem 4.9, we immedi-
ately get:

Corollary 4.12. Supposel’ is a compact met-
ric space,f : T — R is continuous onI" and
p = B — Pp(X) is a finitely purely atomic multi-
submeasure. Thehis p-totally-measurable off'.

Theorem 4.13. Supposey : A — Py(X)
is monotone and null-additive. Iff is p-totally-
measurable orf" and A € A is an atom ofu, then
f is u-integrable onA.

Proof. First, we observe that, ifl is an atom of
pandif{A;},_15, € Pa, then, there exists only one
set, for instance, without any loss of generality, so
thatpu(Ar) 2 {0} andu(As) = ... = p(4,) = {0}
(according to Remark 3.7).

Let A € A be an atom ofu.

Sincef is p-totally-measurable oA, then for ev-
erye > 0 there exists a partitio®. = {A;}, g, of
A suchthat: ’

i) 11(Ao) < 557 (WhereM = Sug\f(tﬂ) and
te

i1) su t)— f(s)] < =5=, Vi=1,n.
) sup 170) = 1091 < 5

Let{B;},_17 {Cp},—15 € Pa betwo arbitrary
partitions which are finer thaf. and consides; €
Bj,j=1k0,€Cyp=1,s.

We prove that

k s

RS F(s)n(B).S " F(B,)(Cy) < .

j=1 p=1

We have two cases:
0}.

Suppose, without any loss of generality that
u(Br) 2 {0}, u(Cr) 2 {0} andu(Bz) = ... =
u(Br) = {0}, u(C2) = ... = u(Cs) = {0}. Then
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By C Ag andC; C Ag. Consequently

k

h(z (sj)p Zf

j=1

h(f(s1)p(B1), f(91)u(01))
( DI(B)] 4 |f(01)][u(C

(Ao) <eE.

)| <

Il. u(Ag) = {0}. Then, without any loss of gen-
erality, u(A;) 2 {0} andpu(A4;) = {0}, for every
i=2,n. SUDposﬁhatu(Bl) 2 {0} p(Ch) 2 {0}
andu(By) = ... = u(By) = {0}.1(Ca) = ... =
w(Cs) = {0}. ThenB1 C Ay andC; C A4, and,
therefore,

k
h(D " f(s)u(B;)
j=1

= h(f(s1)u(By), f(01)p(Ch)).

SinceA is an atom ofu andp(B;1) 2 {0}, then
n(A\By) = {0}, sou(C1\B1) = {0}. By the null-
additivity of u, we getu(C1) = u(B1). Then

k
A flsn Zf
j=1

h(f(s1)pu(B ),f(el) (Ch)) =
h(f(s1)p(Bu), f(01)p(B1)).

Because, generally,(aM, 3M) < |a — 8||M],
for everya, 3 € R and everyM € P;(X), we have

B)),"y  f(6p)n(Cy)) <
p=1

9

< — <7 = E.

< u(BIIf (1) = (0] S PT) o =
Therefore,(o(P))pep, is a Cauchy net in the

complete metric spac€P,¢(X),h), hencef is u-

integrable orA. O

Theorem 4.14. Suppose: : A — Ps(X) is
monotone, null-additive and finitely purely atomic. If
f T — R is u-totally-measurable off’, then f is
u-integrable onT.

Proof. Sinceu is finitely purely atomic, we may
write T' = U A;, where(A;) , are disjoint atoms

of u. If f |s - totally measurable off’, then f is -
totally-measurable on every;, i = 1,n. Accord-
ing to Theorem 4.13f is u-integrable on every,,
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i € {1,2,...,n}. By the properties ofi-integrable
functions (see [25,26,27]), it resulfsis u-integrable
onlJ 4, =T. O

i=1

By Corollary 4.12 and Theorem 4.14, we imme-
diately have:

Corollary 4.15. If T is a compact metric space,
B is the Borels-ring generated by the compact sub-
sets of ', f : T — R is continuous onI’ and
p o B — Pp(X) is a finitely purely atomic multi-
submeasure, thefiis p-integrable onr.

5 L” spaces

In this section, we introducé? spaces with respect
to a submeasure of finite variation and point out that
under suitable assumptions” is a Banach space.

In the sequelA will be ao-algebra of subsets of
T andm : A — R, a submeasure of finite variation.

Theorem 5.1. (Minkowski inequality) [11] Let
f,g : T — R be m-integrable functions orfl".
Then for every € (1,00),|f|?, |g?, |f + g|P are m-
integrable oni" and

([ \r+grams < ([ 1rpams + ([ gram?.

Now, we consider? = {f : T — R; fis
bounded orff” and|f|P is m-integrable ori'}.

Theorem 5.2.[11] £? is a linear space and the
function || - || : £P — Ry, defined for every € LP

by

'c\*—‘

1] = / \fiPdm)

is a semi-norm.

Definition 5.3. We say that a propertfP) holds
m-almost everywhergshortlym — ae) if there isA €
P(T), so thatn(A) = 0 and(P) holds onT"\ A.

Theorem 5.4. Supposen is countably subaddi-
tive, A € Aisanatomofmandf : T — R a
boundedmn-integrable function. IffA fdm =0, then
f = 0m-ae onA.

Proof. Sincef is m-integrable, for any» € N*,
there is{ B! }', C A, a partition ofA, such that

|Zf

1
B”|<—

Issue 8, Volume 8, August 2009



WSEAS TRANSACTIONS on MATHEMATICS

for everyt; € B, i = 1, p,. Accordingto Remark
3.5, there is an unique let s&#}" such thatn(B}) =
m(A) andm(By) = m(By) = ... = m(B} ) = 0,
for everyn € N*.

It results|f(1)] < o
n € N*, which implies

for everyt € B} and

1

} € A\BY,

for everyn € N*. By Remarks 2.6 and 5.3,
since A\B? € A and m(A\B}) = 0, we have
m(A\B}) = m(A\B}) = 0.

This impliesm(E,) = 0, for everyn € N*.
Sincem is countably subadditive oR(7") and

{teAlf®) >0} = B,

n=1

we obtainf = 0 m-ae onA. O

Corollary 5.5. Supposem is finitely purely
atomic so thatm is countably subadditive and let
f T — R, be a boundedn-integrable function.
If [ fdm =0,thenf =0m —aeonT.

Remark 5.6. In the hypothesis of Corollary 5.5,
it results that the semi-norip- ||, introduced in Theo-
rem 5.2, becomes a norm @#, the space of all equiv-
alence classes df?, with respect to the equivalence
relation” ~ ” defined by

f~gif f=g m—aeonT.

Theorem 5.7. [11] Supposen : A — R, is
o-continuous. If for everys € N* f,, : T — R
is m-totally-measurable off” and ( f,,), is uniformly
bounded and pointwise convergesftoT — R, then
f is m-totally-measurable off.

Theorem 5.8. (Fatou lemma]11] Supposen is
o-continuous orP(T'). Let(f,), be a sequence of
uniformly bounded,m-totally-measurable functions
fn:T — R. Then

/liminffndm < lim inf/ fndm.
T " " T

Following a classical reasoning, by Theorems 5.2,
5.4,5.7,5.8 and Corollary 5.5, we get:

Theorem 5.9.[12] Letm : A — R, be finitely
purely atomic, so thatn is o-continuous orP (7).
ThenLP is a Banach space.
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Conclusion. In this paper, we obtained some
properties of finitely purely atomic set multifunctions
and some results concerning measurability and Gould
integrability of real bounded functions with respect to
a finitely purely atomic submeasure. We also pointed
out that, in this casd,” is a Banach space.
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