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Abstract: Examining the special model 

Lens = α exp{-β / (Age + γ)} 

which belongs to Dudzinski and Mykytowycz (1961), and was used in a study made by them to find 
the age of Oryctolagus Caniculus, which lives in Europe and is known as the European rabbit, with 
live eye lens weight, we showed that similar results can be obtained with the Gompertz and Logistic 
nonlinear regression models. We determined that the results given by the models are showing the 
goodness of fit, as a result of a statistical analysis. Furthermore we showed that adding various 
parameters to Dudzinski and Mykytowycz model will not change the results. 
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Table 1 Dry weight of eye lens and age 

Data 

No 

X(Age/Day) Y(Eye lens 

weight(mg)) 

Data 

No 

X(Age/Day) Y(Eye lens 

weight(mg)) 

Data 

No 

X(Age/Day) Y(Eye lens 

weight(mg)) 

1 15 21.66 25 98 104.30 49 285 189.66 

2 15 22.75 26 125 134.90 50 300 186.09 

3 15 22.30 27 142 130.68 51 301 186.70 

4 18 31.25 28 142 140.58 52 305 186.80 

5 28 44.79 29 147 155.30 53 312 195.10 

6 29 40.55 30 147 152.20 54 317 216.41 

7 37 50.25 31 150 144.50 55 338 203.23 

8 37 46.88 32 159 142.15 56 347 188.38 

9 44 52.03 33 165 139.81 57 354 189.70 

10 50 63.47 34 183 153.22 58 357 195.31 

11 50 61.13 35 192 145.72 59 375 202.63 

12 60 81.00 36 195 161.10 60 394 224.82 

13 61 73.09 37 218 174.18 61 513 203.30 

14 64 79.09 38 218 173.03 62 535 209.70 

15 65 79.51 39 219 173.54 63 554 233.90 

16 65 65.31 40 224 178.86 64 591 234.70 

17 72 71.90 41 225 177.68 65 648 244.30 

18 75 86.10 42 227 173.73 66 660 231.00 

19 75 94.60 43 232 159.98 67 705 242.40 

20 82 92.50 44 232 161.29 68 723 230.77 

21 85 105.00 45 237 187.07 69 756 242.57 

22 91 101.70 46 246 176.13 70 768 232.12 

23 91 102.90 47 258 183.40 71 860 246.70 

24 97 110.00 48 276 186.26    
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1 Introduction 

In their study, Dudzinski and Mykytowycz [1], 
determining that eye lens weight tends much 
less to alter than the total body weight due to 
the enviromental conditions, thought that life 
period of free living and wild European rabbit 
Oryctolagus Cuniculus, which is an important 
animal for Australia, can be an indicator of the 
age. 71 of the rabbits mentioned are chosen 
randomly and dry weight of their eye lenses 
are measured. And because they are under 
examination, beginning their ages from the 
youngest rabbit (Age / Day) the data table 

below is prepared. Similarly it will be 
someway determined if echological 
enviromental factors have an affect on the lifes 
of all the other animals which live in wild 
nature. To obtain similar data, we worked hard 
for a long time in Turkey. When we reached 
the responsible for both Government and 
Private wild animal living areas, it was 
revealed that they don’t care such information. 
Thus, applying some data to various “nonlinear 
regression models”, we thought that the results 
may be helpful to the echological studies [1]. 

 

 

 

 

The graph of Table 1 above is given below: 
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Fig.1 Graph of the Table 1 

 

For each of the rabbits simple Logistic and 
Gompertz growth curve models which were 
denoted by equations [1] and [2] have thought  

without a constant term, to use the measured 
live eye lens weight values. The mathematical 
equations belonging to the models which will 
be used are given below:
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Here, f(x): age in time {as day} x, α: 
asymptotic eye lens weight, β: a contant which 
defines the growth curve, κ: growth velocity, γ: 
a parameter about the distortion (twist) point, 
e:represents natural logarithm. 

Least squares method normal equations for 
these models are given below: 
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First of these normal equation systems is 
nonlinear to β and κ, and the latter is nonlinear 
to κ and γ. Thus there is no simple and closed-
form solution. Using iterative methods is 
needed to reach the solution.  

 

For Gauss-Newton method [2] if the initial 
vectors are taken as [200.8,12.9,-0.03] for 
logistic model and as [217.7,-2.8,-0.14] for 
Gompertz model (see Table II and III), 
Logistic model converges in iteration 11 and 
Gompertz model converges in iteration 9. The 
solution vectors are found as [α,β,κ] = 
[223.45,4.39,-0.01] for Logistic model and as 
[α,κ,γ] = [227.9,-1.98,-0.009] for Gompertz 
model.  

 

 

Table 2 The initial values of Gompertz model 
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Table 3 The initial values for Logistic model 

 

 

 

 

 

 

 

Thus the fitted models are 

xe
y

01.039.41

45.223
ˆ

−+
=  (Logistic Model) 

and (Gompertz Model) 

For each model the growth models constituted 
with the obtained parameter estimation results 
are given in Fig.2 and Fig.3. 

 

 

 

Fig.2 Logistic growth model for live eye lens 
weight of European rabbit 

 

 

Fig.3 Gompertz growth model for live eye lens 
weight of European rabbit 

 

The resulting residual sum of squares is 12394 
for logistic model and 8474.7 for Gompertz 
model.  
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An estimation of error variance 
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can be found as S(b) = 12394 / n - p = 71 – 3 = 
182.27 for logistic model and as 

S(b) = 8474.7 / n – p = 71 – 3 = 124.63 for 
Gompertz model. Residuals can be obtained by  

ei = yi - iŷ (i = 1,2,…,71).  

The plots of the estimated values against the 
residuals for each model are given in Fig.4 and 
Fig.5. 
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Fig.4. Estimated values versus residuals for 
Gompertz model 
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Fig.5 Estimated values versus residuals for 
logistic model 

 

The asymptotic (large-sample) [3] covariance 
matrix of the regression can be obtained by 

12 )(ˆ)var( −′= DDb eσ . Here b is the 

parameter estimates vector, 
2ˆ eσ is the error 

variance and D is the partial derivatives matrix. 

If the numeric values put on their places, for 
Logistic model 
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and for Gompertz model 
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By taking squareroots of the diagonal elements 
of these covarince matrices standart errors of 
the model parameters can be found  

assh(α) = 3.67 

sh(β) = 0.35 

sh(κ) = 0.0007 

for Logistic model and 

sh(α) = 3.34 

sh(κ) = 0.08 

sh(γ) = 0.0004 

for Gompertz model. t-values of the 
parameters are 

t(α) = 223.45/3.67 = 60.88 

t(β) = 4.39/0.35 = 12.52 

t(κ) = -0.01/0.0007 = -17.58 

for Logistic model and  

t(α) = 227.9/3.34 = 68.24 

t(κ) = -1.98/0.08 = -24.69 

t(γ) = -0.009/0.0004 = -20.07 

for Gompertz model The F-test ratio which we 
will use to test the significance of the 
regression can be found by dividing the 
residual sum of squares of the model to mean 
of error squares and it is  

S(h) = 136395/182.27 = 748.4  

for Logistic model and  

S(h) = 141435/124.63 = 1135  

for Gompertz model. The test statistics are too 
big so H0(null hypothesis) is rejected and we 
can conclude that at least one of the parameters 
of the both models is nonzero. 

%95 confidence regions for the model 
parameters can be found with the inequalities 
below: 

α - z0.025 sh(α) ≤ α ≤ α + z0.025 sh(α) 

β - z0.025 sh(β) ≤ β ≤ β + z0.025 sh(β) 

κ - z0.025 sh(κ) ≤ κ ≤ κ + z0.025 sh(κ) 

and 

α - z0.025 sh(α) ≤ α ≤ α + z0.025 sh(α) 

κ - z0.025 sh(κ) ≤ κ ≤ κ + z0.025 sh(κ) 

γ - z0.025 sh(γ) ≤ γ ≤ γ + z0.025 sh(γ). 

The value of z0.025 is 1.96 so if the numerical 
values put on their places we find 

223.45 – 1.96(3.67) ≤ α ≤ 223.45 + 1.96(3.67) 

4.39 – 1.96(0.35) ≤ β ≤ 4.39 + 1.96(0.35) 

-0.01 – 1.96(0.0007) ≤ κ ≤ -0.01 + 
1.96(0.0007) 

227.9 – 1.96(3.34) ≤ α ≤ 227.9 + 1.96(3.34) 

-1.98 –1.96(0.08) ≤ κ ≤ -1.98 + 1.96(0.08) 
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-0.009 – 1.96(0.0004) ≤ γ ≤ -0.009 + 
1.96(0.0004) 

216.2568 ≤ α ≤ 230.6432 

3.704 ≤ β ≤ 5.076 

-0.011372 ≤ κ ≤ -0.008628 

221.3536 ≤ α ≤ 234.4464 

-2.1368 ≤ κ ≤ -1.8232 

-0.009784 ≤ γ ≤ -0.008216. 

The growth curve of the model of Dudzinski 
and Mykytowycz is given in Fig.6 

 

 

 

Fig.6 Growth curve for the model of Dudzinski 
and Mykytowycz 

4 Conclusion 

If Fig.2 and Fig.3 are compared with Fig.6 the 
similarity between them can be seen clearly. 
This shows that the fitting level of Logistic and 
Gompertz models is very high and close to the 
original model. Furthermore the R2 values [2] 
are 0.96 for logistic model and 0.97 for 
Gompertz model and this values are very close 
to the R2 value of original model 0.99.  

On the other hand if the Gompertz and logistic 
models are compared with each other, for both 
its R2 value is bigger and standart values of its 
parameters are smaller, we can say that 
Gompertz model fits the data better than 
logistic model. 

 

4.1 Applying the Logistic Model to the 
Same Data With SPSS (Statistics 
Package for Social Sciences) and The 
Interpretation of the Results 

 

GET 

 FILE='C:\Program Files\SPSS\adnan-
reha.sav'. 

DATASET NAME DataSet1 
WINDOW=FRONT. 

• NonLinear Regression. 
• The Initial vector for Logistic Model 
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MODEL PROGRAM a=200.8 b=12.9 c=-0.03 . 

COMPUTE PRED_ = a / (1 + b*exp(-c*Age)). 

NLR Eyelens 

 
/OUTFILE='C:\DOCUME~1\dente\LOCALS~1\
Temp\spss3972\SPSSFNLR.TMP' 

 /PRED PRED_ 

 /CRITERIA SSCONVERGENCE 1E-8 PCON 
1E-8 . 

Nonlinear Regression Analysis 

 

[DataSet1] C:\Program Files\SPSS\adnan-
reha.sav 

 

Iteration Historyb

1791260,4 200,800 12,900 -,030

3,3E+010 21699,075 1700,536 1,023

26009472 -456,570 54,269 ,548

594946,14 319,456 4,771 ,017

594946,14 319,456 4,771 ,017

441099,41 310,569 5,134 ,016

441099,41 310,569 5,134 ,016

210324,39 291,738 5,732 ,015

210324,39 291,738 5,732 ,015

22161,922 243,014 5,560 ,013

22161,922 243,014 5,560 ,013

12559,780 224,060 4,136 ,012

12559,780 224,060 4,136 ,012

12393,828 223,565 4,391 ,012

12393,828 223,565 4,391 ,012

12393,604 223,460 4,387 ,012

12393,604 223,460 4,387 ,012

12393,602 223,454 4,388 ,012

12393,602 223,454 4,388 ,012

12393,602 223,451 4,388 ,012

12393,602 223,451 4,388 ,012

12393,602 223,450 4,388 ,012

Iteration Numbera

1.0

1.1

1.2

1.3

2.0

2.1

3.0

3.1

4.0

4.1

5.0

5.1

6.0

6.1

7.0

7.1

8.0

8.1

9.0

9.1

10.0

10.1

Residual
Sum of
Squares a b c

Parameter

Derivatives are calculated numerically.

Major iteration number is displayed to the left of the decimal,
and minor iteration number is to the right of the decimal.

a. 

Run stopped after 22 model evaluations and 10 derivative
evaluations because the relative reduction between
successive residual sums of squares is at most SSCON =
1,00E-008.

b. 

Parameter Estimates

223,450 3,670 216,126 230,774

4,388 ,351 3,689 5,088

,012 ,001 ,011 ,014

Parameter
a

b

c

Estimate Std. Error Lower Bound Upper Bound

95% Confidence Interval

 

 

Correlations of Parameter Estimates

1,000 -,088 -,597

-,088 1,000 ,734

-,597 ,734 1,000

a

b

c

a b c
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ANOVAa

1787899 3 595966,3

12393,602 68 182,259

1800293 71

298613,0 70

Source
Regression

Residual

Uncorrected Total

Corrected Total

Sum of
Squares df

Mean
Squares

Dependent variable: Eyelens

R squared = 1 - (Residual Sum of Squares) /
(Corrected Sum of Squares) = ,958.

a. 

 

We applied the same data with the SPSS 
computer program package and we obtained 
the lists below. It is obvius that there is a one-
on-one perfect similarity with Fig.3, because 
that the correlation is R = 0.97. 
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