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Abstract: Lotka-Volterra system is a well-known system used as mathematical model in biology. It was proposed
as model by Alfred Lotka (1925) and Vito Volterra (1926). We are interested to study it from the mechanical
geometry point of view; more exactly we study the stability problem, the existence of periodic solutions, the Lax
formulation and numerical integration via Kahan and Lie-Trotter integrators.
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1 Introduction
Three dimensional Lotka-Volterra system of compet-
ing species has the following form:

���
��

�
� � � ��� � � � ��
�
� � � ��� � �� ��
�
� � � ���� � � 	�

(1)

It is known that the above system has a Hamilton-
Poisson realization if the following two conditions
hold:

� � � � � � �� (2)

and
	 � �� � ���
 (3)

The structure of this paper is as follows. In the second
section we consider the specific case

� � � � � � ��� � � 	 � � � ��

realizing this system as a Hamiltonian system, and
then study it from the Poisson geometry point of view.
This means that we are interested to study the Lya-
punov stability of equilibria by using energy-Casimir
type stability tests, the study of the existence of pe-
riodic solutions using the Weinstein-Moser theorem
with zero eigenvalue, Lax formulation of the system,
numerical integration problems using three methods.
Numerical simulation for all the three methods is pre-
sented, too.

The third section is dedicated to the study of the
spectral and Lyapunov stability of equilibria for the
general case of the system (1).

In the fourth section of the paper we discuss some
numerics associated with the Hamilton- Poisson geo-
metrical structure of the system.

First of all, let us recall briefly the most important
notions from Hamilton-Poisson geometry theory used
in our paper.

Definition 1 Let � be a smooth manifold and let
����� denote the set of the smooth real functions
on �
 A Poisson bracket on � is a bilinear map
from����������� into������ denoted as:

���� �� ���� � ������ �� � �����

which verifies the following properties:
- skew-symmetry:

���� � ����� �
- Jacobi identity:

�� ������� ��� ������ ��� ����� � ��

- Leibniz rule:

��� ��� � ���� �� �� � ���� 

Proposition 2 Let ��� �� a Poisson structure on�	�

Then for any�� � � ����	�� �	� the following rela-
tion holds:

��� �� �
��

�����

���� ��� ��

���

��

���



Let the matrix given by:


 � ����� ���� 
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Proposition 3 Any Poisson structure��� �� on �	� is
completly determined by the matrix
 via the relation:

��� �� � �	���
�	��


Definition 4 A Hamilton-Poisson system on �	� is
the triple ��	�� ��� �� ���� where ��� �� is a Poisson
bracket on�	� and� � ����	�� �	� is the energy
(Hamiltonian). Its dynamics is described by the fol-
lowing differential equations system:

�
� � 
 � 
�

where� � ���� ��� 


���
�


Definition 5 Let ��� �� a Poisson structure on�	�
 A
Casimir of the configuration��	�� ��� ��� is a smooth
function� � ����	�� �	� which satisfies:

����� � ���� � ����	�� �	
�


2 The Poisson geometry of Lotka-
Volterra system for the specific
case � � � � � � �� and � �

� � � � �

For the specific case � � � � � � �� and 	 � � �
� � � the system (1) takes the following form:

���
��

�
� � ��� � ��
�
� � ��� � ��
�
� � ���� ��

(4)

The dynamics �� has the following Hamilton-Poisson
realization (see [11]):

�
�	��
���

�

where


� �

�
	


� ��� ��

�� � ���
��� �� �

�
� (5)

and
� ��� �� �� � �� � � �


Remark 6 It is not hard to see that the function

� ��� �� �� � �� �� �� � � �� ��

�� �� � � �� is a Casimir of our configuration [7].

Remark 7 The phase curves of the dynamics�� are
the intersection of the surfaces:

��� � ��������

and

�� � � � � ���������

see the Figures 2.1 and 2.2.

0

2

4

6

0

2

4

6

0

2

4

6

Figure 2.1: The phase curves of the system (2)
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Figure 2.2: The phase curves of the system (2)

Proposition 8 The dynamics�� has an infinite num-
ber of Hamilton-Poisson realizations.
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Proof: An easy computation shows us that the triples:
�
�	�� �� � ���� ��	


�

where:

�
� 
��� � ��
�
�	�� �	

�� ��
�
�	�� �	

�� ��
�
�	�� �	

�
��� ����


��
� �
� � �
� �
�� �

��� �� � � ��
�
�	�� �	

�
(6)

��� � �� � ���

�	
 � �� � ���

�� �� �� � � �	� ��� �� � ��

define Hamilton-Poisson realizations of the dynamics
��� as required.

Remark 9 The above proposition tells us in fact that
the equations�� are unchanged, so the trajectories
of motion in�	� remain the same when� and� are
replaced by�	� combinations of� and�


Let us pass now to discuss the stability problem
of the equilibria of the system (2). It is not hard to see
that the equilibrium states of the dynamics (2) are:

�� � ��� �� �� �� � �	��

�� � ����� �� �� � �	��

�� � ��� ��� � �� � �	��

�� � ������ � �� � �	�


Let � be the matrix of the linear part of our system
�� i.e.

� �

�
	

�� � � �� �

� �� � ��
�� � ��� �

�
�

Then the characteristic roots of ���� �, [resp. ���� �,
resp. ���� �] are given by:

�� � �� ���� � ��

so we can conclude that the equilibrium states
�� � �� � �� are unstable.
The characteristic roots of ���� � are given by:

�� � �� ���� � ��

��

so we can conclude that:

Proposition 10 The equilibrium states�� are spec-
trally stable.

We can now pass to discuss the nonlinear stability
of the equilibrium states �� �� � �	�

�.

Proposition 11 The equilibrium states�� ,� � �	�

�
are nonlinearlly stable.

Proof. We shall make the proof using energy-Casimir
method [3]. Let

�� � � � ���� � �� � � � � ������

be the energy-Casimir function, where � � �	� � �	
is a smooth real valued function defined on �	�
 Now,
the first variation of �� is given by:

Æ�� � Æ�� Æ� � Æ� � ��
�

� Æ��

���
�

� Æ� � ��
�

� Æ��

where
�

� �
��

������



This equals zero at the equilibrium of interest if and
only if

�

����� � � �

��



The second variation of �� is given by:

Æ��� � ����
��

��Æ��� � ����
��

��Æ����

�����
��

��Æ��� � �
�

� Æ�Æ� � �
�

� Æ�Æ��

��
�

� Æ�Æ�


Choose � so that:
����
���

�

����� � � �
�

��

����� � � �
� � � � �

we can conclude that the second variation of �� at the
equilibrium of interest is positivelly defined and thus
�� is nonlinearly stable.

For the equililibrium states which are nonlinear
stable we are able to find the periodic solutions. More
exactly, we have:

Proposition 12 Near to �� � �������, � �
�	�

�, the reduced dynamics has, for each sufficiently
small value of the reduced energy, at least 1-periodic
solution whose period is close to:

 
��




Proof. Indeed, we have successively:
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(i) The restriction of our dynamics �� to the coad-
joint orbit:

�� � � � � ��� ��� � �� (7)

gives rise to a classical Hamiltonian system.

(ii) The matrix of the linear part of the reduced dy-
namics has purely imaginary roots. More ex-
actly:

���� � ��

��


(iii) �����
���� �� � !�, where

!� � �������� ��


(iv) The smooth function  � ����	�� �	� given by:

 ��� �� �� � �� � � � � �

��
���

has the following properties:
� It is a constant of motion for the dynamics ��

� 
 ��� � � �.

� 
� ��� �
���
���

� �� where

" �� #�$ ����� � � �%���	

�
��
�
	

��
�
�

�
� �
�
	

��
�
�

�
�
�
�� 


Then our assertion follows via the Moser-Weinstein
theorem with zero eigenvalue, see for details [4].

0

2

4

6

0

2

4

6

0
2

4
6

Figure 2.3: The periodic orbits for the equilibrium
states ��

A long but straightforward computation or using
MATHEMATICA leads us to:

Proposition 13 The dynamics�� has the following
formulation:

�& � �&����

where

& �

�
							


� � � � � �
�� � � � � �
�� �� � � � �
� � � � � �

� � � �� � �

� � � �� �� �

�
�������
�

� �

�
							


� �� �� � � �
��� � �� � � �
��� ��� � � � �
� � � � �� ��

� � � ��� � � �

� � � ��� �� � �

�
�������
�

� � ���� � � ��� � � ��� �� � ���

� � �� �� � �� � � �� �� � ���

� � �� � � �� � � ���� � � ��

�� � �� � ��� �� � �� � ���

�� � ��� � �� �� � � � ��

�� � ��� � ��� � � ��� � ��


Let us pass now to the numerical integration of
the equations ��

It is easy to see that for the equations ��, Kahan’s
integrator [9] can be written in the following form:
���������������������
��������������������

���� � �� � �
� �������� � �������

������� � �������

���� � �� � �
� ��

����� � �������

������� � �������

���� � �� � �
� �������� � �������

������� � �������

(8)

A long but straightforward computation or using
MATHEMATICA 7 leads us to:

Proposition 14 Kahan’s integrator (6) has the fol-
lowing properties:

(i) It is not Poisson preserving.

(ii) It does not preserve the Casimir� of our Poisson
configuration��	��
�.
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(iii) It does not preserve the Hamiltonian� of our
system��


We shall discuss now the numerical integration of
the dynamics �� via the Lie-Trotter integrator, see for
details [23] and [28]. For the beginning, let us observe
that the Hamiltonian vector field '� splits as follows:

'� � '��
�'��

�'��



where
�� � �� �� � �� �� � �


Following [23], we obtain the Lie-Trotter integrator:
�������
������

���� � ��
����
����

���� � ��
����
����

���� � ��
����
����

(9)

Now, a direct computation or using MATHE-
MATICA 7 leads us to:

Proposition 15 Lie-Trotter integrator (7) has the fol-
lowing properties:

(i) It preserves the Poisson structure
.

(ii) It preserves the Casimir� of our Poisson confi-
guration��	��
�.

(iii) It doesn’t preserve the Hamiltonian� of our sys-
tem (2).

(iv) Its restriction to the coadjoint orbit���� (��,
where

�� � ���� �� �� � �	����� � �����
�
and(� is the Kirilov-Kostant-Souriau symplec-
tic structure on�� gives rise to a symplectic in-
tegrator.

Proof. The items (i),(ii), (iv) hold because ��� � �
�� � � are flows of some Hamiltonian vector fields,
hence they are Poisson one. Item (iii) is essentially
due to the fact that:

������� �� �� � �� )


Remark 16 If we make a comparison with the 4th-
step Runge-Kutta method we can see that Lie-Trotter
integrator and Kahan’s integrator give us a good ap-
proximation of our dynamics. In fact, Kahan’s inte-
grator provides the same results as Runge-Kutta 4th-
step. However, Kahan’s integrator and the Lie-Trotter
integrator have the advantage to be easier imple-
mented, see Figures 2.3, 2.4 and 2.5.
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Figure 2.3: The 4th-step Runge-Kutta

Figure 2.4: Kahan integrator
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Figure 2.5: Lie-Trotter integrator

3 The Poisson geometry of Lotka-
Volterra system for the general
case

Let us recall that the three dimensional Lotka-Volterra
system of competing species has the following form,
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see [6]: ���
��

�
� � � ��� � � � ��
�
� � � ��� � �� ��
�
� � � ���� � � 	�

(10)

It can be readily verified that, if conditions (2) and (3)
hold, the equations (10) have the following Hamilton-
Poisson realization (see [20]):

�
�	��
��

�

where


 �

�
	


� ��� ����

���� � ���
����� �� �

�
� (11)

and

� ��� �� �� � ���� � ��� � 	�� � � ��� ��

�� �� � � �


Remark 17 It is not hard to see that the function

� ��� �� �� � ���� ����� � � �� ��

�� �� � � �� is a Casimir of our configuration (see
[7]).

Remark 18 The phase curves of the dynamics (10)
are the intersection of the surfaces:

���� � ��� � 	�� � � ��� � � ��������

and

���� ����� � � �� � � ���������

�� �� � � �� see the Figures 3.1 and 3.2.
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Figure 3.1: The phase curves of the system (10)
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Figure 3.2: The phase curves of the system (10)

4 Stability problems for the system
(10)

In this section we analyze the stability properties of
the equilibrium states of the Lotka-Volterra system
(10), with the assumption that the conditions (2) and
(3) hold. The equilibrium states of the Lotka-Volterra
system are given by the following family:

� � ������������������� � �	�


Let � be the matrix of the linear part of our system
���� i.e.

� �

�
	

�� � � � � �� �

� �� � �� � ��

�� � ��� � � 	

�
�

Then the characteristic polynom of ��� � is:

*���� ����� ����� � ��� �����

���� ���� ������� *��


Its roots are given by:

*� � ��

*��� � �

��

where

� � ���������� � ��� ��������

���� ���� ������

so we can conclude that the equilibrium states � are
spectral stable if one of the following conditions hold:
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1. � + �� � � ��� + �� � � ��� � + ��

2. � + �� � � �� � + �
�

�
�
� � + � + �����

��
��

�

� � � ������ � �� ����

���� � �� ���� �����
�

3. � + �� � � �� � + � + �
�
� � + � + ���

� + � ������ � �� ����

���� � �� ���� �����
�

4. � + �� � � �� � + � + �
�
� �� + � + � �

�
�

� + � + � ������ � �� ����

���� � �� ���� �����
�

5. � + �� � + �� �
�
� � +

�
�
�
�

� + � +
�����

�� ��
�

� + � ������ � �� ����

���� � �� ���� �����
�

6. � + �� � + � + �� � + �
�

�
�
�

� + � +
�����

�� ��
�

� � � ������ � �� ����

���� � �� ���� �����
�

7. � + �� � + � + �� � + �� � � ��� � + ��

8. � + �� � + � + �� � + � +
�

�
�
�

� + � + ���

� + � ������ � �� ����

���� � �� ���� �����
�

9. � + �� � + � + �� � + � +
�

�
�
� �� + � +

� �
�
�

� + � + � ������ � �� ����

���� � �� ���� �����
�

10. � + �� � + � + ��
�

�
�
+ � + �

�
�

������

�� ��
+ � + ���

� + � ������ � �� ����

���� � �� ���� �����
�

11. � + �� � + � + ��
�

�
�
+ � + �

�
�

�� + � + ��

�
�

� + � + � ������ � �� ����

���� � �� ���� �����
�

12. � + �� � � �� � + �� � � �� � + ��

13. � + �� � � �� � � �� � + � + � �
�
�

� + � + � ������ � �� ����

���� � �� ���� �����
�

14. � � �� � + �� � + �� � + � + � ���
��

��
�

� � � ��� ����

���� ���� �����
�

15. � � �� � + �� � + �� � � ��� � + ��

16. � � �� � � �� � + �� � � �� � + ��

17. � � �� � + �� � + �
�
� � � ��� � + ��

18. � � �� � + �� � � �
�
� � � ������

����
� � + ��

19. � � �� � + �� �
�
+ � + �� � � � �

�
� � + ��

20. � � �� � � �� � + �� � � � �
�
� � + ��

21. � � �� � + �� � + �
�
�

��

�
+ � + ������

�� ��
�

� � � ������ � �� ����

���� � �� ���� �����
�

Let us begin the nonlinear stability analysis using
Arnold stability test for the case ���


Proposition 19 If:

� + �� � � ��� + �
�
�

�
�� + ��� � �� (12)

then the equilibrium states� are nonlinearly sta-
bles.

Proof. To study the nonlinear stability of the equilib-
ria � we are using the Arnold stability test (see [2],
[3]). To do that, let � � ����	�� �	� be defined by:

� � � � %�

where % � �	 is a real parameter.
Then, we succesively have the following:
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(i) ����
 � � � if and only if

% � ����


(ii) Let " � #�$���� � i.e.

" � �%��

�
��
�
	

� ���

���
���

�
�

�
� �
�
	


���
��

�
�

�
�
�
�� 


(iii) ����� �� � �" �" is positively defined if
the following condition holds:

� + �� � � ��� +

�
��

�
�� + ��� � ��


Hence, from the Arnold stability test we con-
clude that the equilibrium states � are nonlin-
earlly stable if the conditions (12) hold.

5 Numerical integration of the equa-
tions (10)

In this section we discuss the numerical integration
of the equations (10) via Kahan integrator, Lie-Trotter
integrator and Runge-Kutta 4th steps intgrator. Nu-
merical simulations via MATHEMATICA 7 are pre-
sented for each case, too.

Kahan integrator of the Lotka-Volterra system
(10) is given by:
���������������������
��������������������

���� � �� � �
� ���

����� � ������� � ������

������� � ��� � ������

���� � �� � �
� ��

����� � ������ ��������

�������� � ��� � ������

���� � �� � �
� ���

���,� �������� � ������

������� � 	�� � 	�����
(13)

After some long but straightforward computa-
tions, we get the following proposition which shows
the incompatibility of the Kahan integrator with the
Poisson geometric structure of the Lotka-Volterra sys-
tem.

Proposition 20 Kahan integrator (13) has the follow-
ing properties:

(i) It is not Poisson preserving.

(ii) It does not preserve the Casimir� of our Poisson
configuration��	��
�.

(iii) It does not preserve the Hamiltonian� of our
system (10).

Figure 3.3: Kahan integrator for the system (10)

We shall discuss now the numerical integration of
the dynamics ���� via the Lie-Trotter integrator, see
for details [23] and [28].

For the beginning, let us observe that the Hamil-
tonian vector field '� splits as follows:

'� � '��
�'��

�'��
�'��

�'��
�

where

�� � ���� �� � �� �� � ����
�� � 	 ���� �� � �� ���


Their corresponding integral curves are respectively
given by:

�
��

� ���
� ���
� ���

�
�� � ��

�
��

� ���
� ���
� ���

�
�� � � � �� ��

where:

�� �

�
��

� � �

� ��
��� �

� � ���
���

�
��

�� �

�
��

���
��� � �
� � �

� � ��
���

�
��
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Following [23], we obtain the Lie-Trotter integrator:

�������
������

���� � �
��
����
�������������

���� � �
�
�����
��������

���� � �
��
����
��������

(14)

Now, a direct computation or using MATHE-
MATICA 7 leads us to:

Proposition 21 Lie-Trotter integrator (14) has the
following properties:

(i) It preserves the Poisson structure
.

(ii) It preserves the Casimir� of our Poisson confi-
guration��	��
�.

(iii) It doesn’t preserve the Hamiltonian� of our sys-
tem (10).

(iv) Its restriction to the coadjoint orbit���� (��,
where

�� � ���� �� �� � �	�
�� ������

������ ��� � �����
� ��� � ���
and(� is the Kirilov-Kostant-Souriau symplec-
tic structure on�� gives rise to a symplectic in-
tegrator.

Proof. The items (i),(ii), (iv) hold because ��� � �
�� 


� are flows of some Hamiltonian vector fields,
hence they are Poisson one.

Item (iii) is essentially due to the fact that:

������� �� �� � �� )
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Figure 3.4: Lie-Trotter integrator for the system (10)
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Figure 3.5: Runge-Kutta 4 steps integrator for the
system (10)

Remark 22 If we compare with the 4th-step Runge-
Kutta method we can see that Lie-Trotter integrator
and Kahan’s integrator give us a weak approxima-
tion of our dynamics, unlike Runge-Kutta 4th steps
integrator which gives us very good results. In fact,
Kahan’s integrator provides the almost the same re-
sults like Lie-Trotter do. However, Kahan’s integra-
tor and the Lie-Trotter integrator have the advantage
to be easier implemented, see Figures 3.3-3.5. Look-
ing back to the second paragraph, where we have
studied the specific case� � � � � � �� and
� � 	 � � � �� we remember that Kahan integra-
tor and Runge-Kutta 4th steps integrator have looked
the same. Only Lie-Trotter integrator has a different
picture, still it stays close to the first two of them.
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6 Conclusion
The paper presents Lotka-Volterra system from the
mechanical geometry point of view in the general case
and in a specific case. This requests a Hamilton Pois-
son realization, presented for each of the two cases.

The specific case, when � � � � � � ��
and � � 	 � � � �� is the subject of the sec-
ond paragraph. In this case we have studied the sta-
bility problems and the existence of the periodic or-
bits arround the nonlinear equilibrium states we have
found. In addition, we have presented a comparison
between three numerical integration methods: Runge-
Kutta 4th steps, Lie-Trotter algorithm and Kahan al-
gorithm. This is a good example of a system for which
all the three methods provided almost the same results
unlike other simplier systems for which some of the
three methods have failed or have given us a weak ap-
proximation of the movement trajectory.

The general case of Lotka-Volterra system and
its Hamilton-Poisson realization are disscused in the
third paragraph.

The fourth section presents stability problems for
the studied system. We have found necessary condi-
tions for spectral and nonlinear stability of the sys-
tem’s equilibria. Due to the complexity of this condi-
tions, we have decided to analyze just one case.

Numerical integration and numerics simulation
are presented in the last paragraph. We have used
the same three methods like for the specific case � �
� � � � �� and � � 	 � � � �� but the results are
very different.

In this case, both Lie-Trotter and Kahan integra-
tors give us different results, close to each other but far
away from Runge-Kutta 4th steps result. We accredit
this results to the big number of the parameters of the
studied system.
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