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Abstract: - The first-order sampling of multi-band bandpass signals with arbitrary band positions is 
considered in this paper.  Gaps between the spectral sub-bands are utilized to achieve lower sampling 
rates than the Nyquist.  The lowest possible sampling rate along with other permissible sampling rates 
is identified via a unique partition of the frequency axis.  With the complete identification of all the 
permissible sampling rates, a necessary and sufficient sampling theorem for multi-band bandpass 
signals is presented in terms of a series of csinc-interpolators. 
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1 Introduction 
Sampling theory plays an essential role in the 
advancement of digital signal processing (DSP).  
Reliable sampling of an analog signal is crucial 
for the successive phases of DSP.  In this paper, 
we will identify the optimal and all other 
permissible sampling rates for the first-order 
sampling of multi-band bandpass signals 
without any restrictions on the band positions.  
It is well-known that the Nyquist rate for the 
first-order sampling of a bandpass signal is 
twice the bandwidth if the lower frequency (or 
upper frequency) of the passband is an integral 
multiple of the bandwidth of the signal [1, 2].  
Kohlenberg studied the problem of exact 
interpolation of band-limited functions in [1], in 
which interpolation formulas for lowpass and 
bandpass signals are presented, respectively, for 
the spectrum of a multiply-periodic, amplitude 
modulated sequence of pulses.  For the case of 
bandpass signals, Kohlenberg restricted the 
sampling density at exactly twice the bandwidth 
(2W) of the signal, which is the theoretical 
minimum sampling rate for a bandpass signal.  
He further revealed that it is possible for the 
first-order sampling of a bandpass signal with 
the prescribed sampling rate only if the lower 
frequency (or upper frequency) is an integer 
multiple of the bandwidth of the signal.  

Otherwise, one may use the second-order 
sampling method proposed in the paper, i.e. an 
interpolation formula built on two special 
groups of sampling points. The spacing between 
the points within each group is at1/ , and the 
points from two groups are interlaced with 
respect to each other.  A setback of 
Kohlenberg’s method is that any imperfection 
of the implementation will cause aliasing due to 
the stern precision of sampling.  Kohlenberg’s 
method was later improved in [3] through the 
addition of a guard-band in between the shifted 
spectrum components, which allows flexibility 
in the implementation.  Vaughan, et. al. [4] 
studied several bandpass sampling methods 
from the perspectives of band position, noise, 
and parameter sensitivity.  Marvasti [5] 
proposed a general interpolation formula based 
on non-uniform sampling of a bandpass signal, 
where the positions of the samples satisfy a 
nonlinear functional equation. The effective 
sampling rate can be as low as half of the 
Nyquist rate; however, the restriction on the 
sampling positions could take toll on the 
engineering implementation.  Wen, et. al. [6] 
employed a so-called periodically Nonuniform 
sampling method, considered as a higher-order 
sampling method, to a subband in a bandlimited 
signal with large bandwidth.  Lower sampling 
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rate is achieved with respect to the narrow 
subband of interest.  Sampling theory is closely 
tied up with the interpolation and extrapolation 
of signals. In [7], a series of subband predictive 
filter banks are proposed to accurately 
extrapolate wide-band bandlimited signals.  In 
particular, a wide-band signal is decomposed 
into narrow passbands (in addition to the 
baseband), and a predictive filter is designed for 
each passband.  All the predictive filters are 
adopting the same sampling frequency, i.e. 
twice the highest frequency of the original 
signal. However, since the bandwidth of the 
passbands is narrow, it is shown in this paper 
that much lower sampling rate can be achieved 
while maintaining the validity of prediction.  In 
this paper, we focus on the permissible 
sampling rates for multi-band (two or more 
isolated subbands) bandpass signals.  Detailed 
discussions on the first-order sampling of 
single-band bandpass signals can be found in 
[8].  The interpolation formula for bandpass 
signals in [8] was extended to one that adapts to 
both low pass and bandpass signals [9].  A 
simple band-embedding approach is introduced 
by Brown [2] to restore the integral positioning 
constraints so that the sampling rate can be 2W, 
where W is the bandwidth of the bandpass 
signal with a guard-band.  Brown’s approach 
may lead to over-sampling if the bandwidth of 
the signal is slightly mismatched with the cutoff 
frequency.  And, it is almost impossible to 
implement Brown’s method for the multi-band 
bandpass signals.  A spectrum arrangement 
approach for the sampled signal is proposed in 
[10], where the original spectrum is extracted 
from the replicas of the original signal under 
normal or inverse placement of the spectrum.  
The authors consider both the right-shift and 
left-shift of the spectrum to obtain the 
permissible sampling frequencies.  However, 
the effectiveness of the spectral placement 
approach is unknown for multi-band bandpass 
signals.  A formal proof of the optimal and 
permissible sampling rates for first-order 
sampling of single-band bandpass signal is 
presented in [11].  The proof makes use of the 
symmetry of the passband and its mirror image, 
and the permissible sampling rates proposed in 
the paper are incomplete as the sampling rates 

are calculated as integral multiple of the optimal 
sampling rate.  Consequently, the sampling 
theorem in [11] is only a sufficient theorem, just 
like the Shannon’s sampling theorem.  As a 
matter of fact, most known results on the 
sampling of bandpass signals in the literature 
are for single-band bandpass signals, as 
mentioned above.  It is perceivable that the 
complexity of first-order sampling of bandpass 
signals increases dramatically if the signal has 
multiple passbands, unless the signal is treated 
as a lowpass signal or a single-band bandpass 
signal.  In this paper, we focus on multi-band 
bandpass signals in the most general setting.  
There are no restrictions on the band positions.  
The complete set of sampling rates for the first-
order sampling of bandpass signals is identified 
via a unique partition of the frequency axis.  As 
a result, we present a necessary and sufficient 
sampling theorem for bandpass signals.  
Moreover, it will be seen that, for most 
bandpass signals, the permissible sampling rates 
constitute continuous intervals, which allows 
substantial flexibility for engineering 
implementation so that imperfections will not 
cause contamination in the samples. 
A multi-band bandpass signal can be 
conveniently represented as a function ( )f t  
whose Fourier transform is compactly 
supported over a union of disjoint intervals 
(over the frequency axis).  Introduce 

1 1 2 2
1
[ , ], 0 ...

i i n

n

I l u l u l u l
i

ω ω ω ω ω ω ω ω
=

Φ = < < < < < < <∪ nu

]

(1) 
and 

               
1
[ ,

i i

n

I u l
i

ω ω−
=

Φ = − −∪                         (2) 

A multi-band bandpass signal satisfies the 
following condition 
            if ,                    (3) ( ) 0F ω = Iω −∉Φ ∪ΦI

where is the Fourier transform of ( )F ω ( )f t .  
The magnitude plot for a three-band bandpass 
signal in the frequency domain is given in Fig. 
1.  Classical results can be applied [11] if these 
passbands are bundled together to be treated as 
a single-band band pass signal.  However, lower 
sampling rates can be achieved if the gaps 
between the passbands are large enough to 
allow replicas of the spectrum to occupy the 
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space in between without intersecting the 
original spectrum.  It is the purpose of this 
paper to completely identify all the permissible 
sampling rates for multi-band bandpass signals 
by utilizing the gaps between the subbands.  
Closed form formulas for computing the 
sampling rates are provided.  All results are 
rigorously proved. 
 

 
Fig. 1 A three-band bandpass signal 

The rest of the paper is organized as follows.  In 
Section 2, we will explore a two-band model 
without any restrictions on the band positions 
for both bands (recall that most known results 
are on single-band bandpass signals, and the 
second band is simply a mirror image (on the 
negative side of the frequency axis) of the first 
band (on the positive side of the frequency 
axis)).  As a result of sampling, the original 
spectrum, such as the one in Fig.1, shifts to the 
right and to the left along the frequency axis at 
the stepsize of sω , the sampling frequency.  Of 
course,   the only criterion for a permissible 

sω

]

is that the replicas of the original spectrum 
do not intersect any passbands along the path 
(anti-aliasing).  Even though the complexity of 
bands’ interactions grows dramatically as the 
number of bands increases, one can always 
reduce the problem into a two-band setting.  
That is why a great deal of effort is dedicated to 
the two-band case.  After the groundwork, we 
apply the results to bandpass signals with 
arbitrary number of bands in Section 3, 
including a sampling theorem for multi-band 
bandpass signals via a series of csinc-
interpolators [9].   In section 4, a fast algorithm 
for symbolic computations of intervals is 
introduced. This algorithm makes it possible to 
implement the mathematical formulation in real 
design. There are a number of ways of measure 
the complexity of an algorithm.  Tarek [12] 
gave a systematic tutorial for the time and space 
complexity analysis of algorithms, which is 
adopted in the complexity analysis of the 

proposed fast algorithm in this paper.   Because 
of requirement of strenuous set operations for 
multi-band signals, further improvement of the 
algorithm can be explored based on the 
algorithms proposed by Guo [13] and 
implemented in Java. Closing remarks and 
further discussions are found in the Conclusion 
section.  
 
 
2 Permissible Stepsizes for Two 
Disjoint Intervals 

Hz The interactions between two passbands as they 
shift horizontally can be treated as those of two 
disjoint intervals, such as the intervals shown in 
Fig. 2.   Without loss of generality, we only 
consider the right-shift of the intervals as the 
results are identical to those of left-shift.  In this 
section, we will establish a complete set of 
permissible stepsizes for an arbitrary two-
interval system.  To set the stage, we first 
introduce the following settings: 
(i) , where [ , ] [ ,m

p qI p m q mΔ = + Δ + Δ +∈Δ R , 

, and  . m Z+ 0
[ , ] [ , ]p q p qI I= =∈ [ , ]p q

(ii) In this section, it is always assumed that the 
intervals   and [ ,  are disjoint, i.e. [ , ]a b

b
]d c

acd <<< , see Fig. 2. 
(iii) The stepsize Δ  is feasible for two intervals 

 and [ ,  if Δ satisfies the conditions: [ , ]a b ]d c

[ , ] [ , ] [ , ] [ , ]and m m
d c d c d c a bI I I Iφ φΔ Δ∩ = ∩ = , . m Z+∈

(4)    
From the sampling point of view, the stepsize 

 is still considered feasible even if  
intersects  or [ , at the end points.  
Therefore, a weaker condition than (4) is 
allowed for the definition of a feasible stepsize, 
as follows 

Δ [ , ]
m
d cI Δ

[ , ]a b ]d c

  
{ } { }[ , ] [ , ] [ , ] [ , ], and , ,m m

d c d c d c a bI I d c I I a b mΔ Δ∩ ⊂ ∩ ⊂ ∈ Z+

(5) 
 

 d  c     b   a 

Fig. 2 Two disjoint intervals [ ,  ] and [ , ]d c a b
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We first present and prove, selectively, a series 
of lemmas.  These lemmas will be used in the 
proof of the main theorem. 

Lemma 2.1 If   , then the stepsize 
 is feasible, i.e. condition (4) or (5) is 

satisfied. 

Δ ≥ (b d− )
Δ

This result is analogous to the Nyquist rate. 

Lemma 2.2 If  such that m Z+∃ ∈ amc ≤Δ+

[ , ] [ , ]
n
d c a bI IΔ ∩

 
and , then   
satisfies (4) or (5) for all non-negative integer 

 . 

b≥Δ)1md ++ (

n

n m< m=
1n m= + n m>

m nΔ Δ +

pk ++

d k+ Δ ≤

Proof:  The proof is straightforward based on 
the four cases for n: (i) , (ii) n , (iii) 

, and (iv) . 1+

Lemma 2.3 If  for any , 

then  for all . 
[ , ] [ , ]
m
d c a bI I φΔ ∩ =

, ]b φ= ,m n

m Z+∈

[ , ] [d c aI I∩ Z∈

Proof: Assume there exist  with  
such that .  Consider the 
following possible cases as a result of the 
assumption:   
(i)    
Subtracting 

,k p Z+∈

φ≠

b p≤ + Δ

k p>

[ , ] [ , ]d c a bI I∩

a p c k+ Δ < + Δ
p Δ  from each of the four 

expressions in the inequalities to get the 
following inequalities                  
            ,                 
which contradicts .  Similar 
approach can be applied to prove that each of 
the following cases will reach a contradiction 
to ,                                                   
(ii)            
(iii) a p   
(iv)  

( ) ( )d k p a c k p+ − Δ ≤ < + − Δ ≤

[ , ] [ , ]
m
d c a bI I φΔ ∩ =

] [ , ]a bI I φ∩ =

d k a p b p c k+ Δ ≤ + Δ < + Δ ≤ + Δ
d k b p c k+ Δ < + Δ ≤ + Δ ≤ + Δ

a p d k c k b p+ Δ ≤ + Δ < + Δ ≤ + Δ

b

[ ,
m
d c
Δ

Therefore, the result  holds for 

all . 
[ , ] [ , ]
m n
d c a bI I φΔ Δ∩ =

,m n Z+∈

Lemma 2.4 Let [ ,  and [ ,  be disjoint 
intervals and let  and . If there 

exists 

]d c
( dc−≥

]a b
(b≥Δ)Δ )a−

m Z +∈
b≥
 such that  and c m a+ Δ≤

md Δ++ )1( Δ, then  is a feasible step size.  

The proof is immediate with Lemmas 2.1-2.3.                 
The following lemmas will allow us to partition 
the positive real line (for the stepsize) by using 
a set of points calculated from the 
integer

( )
a c

b a
⎢ ⎥−⎢

(c d )
⎥

⎢ ⎥−− +⎣ ⎦
, where is the floor 

function.  This value can be thought of as the 
capacity of the gap between the two intervals 

⎢ ⎥⎣ ⎦

[ ]ba ,  and [ ]cd ,  to accommodate the interval-
shifting through the gap without causing 
intersections. Using this value, we can partition 
the positive side of the real line, which yields 
the feasible stepsizes. 

Lemma 2.5 If  t =
( )b a
⎢

(
a c

c d )
⎥−⎢ ⎥

⎢ ⎥− + −⎣ ⎦

, then 

1t t
≤

+
b d a c− − . 

Proof: From the definition of the floor function, 

( ) (
t

b a c d
≤

− + − )
a c− . Because the quantity is 

clearly positive, we have 
1 ( ) ( )b a c d d
t a c a c

− + − −
≥ = 1b

− −
− , implying that  

1t t
b d a c− −

≤
+

.    

Lemma 2.6 Let  t =
( ) ( )d
⎢ ⎥a c

cb a
−⎢ ⎥

⎢ ⎥−− +⎣ ⎦
, then 

1
b a

t
≥ −

+
b d− and 

1
c db d

≥ −
t
−
+

. 

Proof: The above inequalities can be obtained 
as follows, 

( ) (b a c )
1 1

( ) ( )

b d b d da ct
b a

− −
≥ = − + −

−+ +
− + c d−

. 

Lemma 2.7 Let  t =
( ) ( )d
⎢ ⎥a c

cb a
−⎢ ⎥

⎢ ⎥−− +⎣ ⎦
, then 

, 0,1,

..,

..., 1
1

b d a c n t
t n t

− −
+ − −

−

.−
n

≤ =  

Proof: With , and the fact that 0,1,. 1n t=

( ) ( )c d−
a ct

b a
−

≤
− +

, one has the following 
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inequality 
( ) (

t n
b a c d

− ≤
− + − )

a c− .  With some 

manipulations, it can be shown that 
1 b d−

− 1
t n a c

≥
− −

, which implies that 

1t n b
t n a c
+ − −

≥
− −

d , hence the inequality in 

Lemma 2.7 holds. 

The result below can be deduced from Lemma 
2.7. 

 , , , , , 0,1,..., 1.
1 1

b d a c b d a c i j i j t
t i t i t j t j

φ
⎡ ⎤⎡ ⎤− − − −⎢ ⎥⎢ ⎥ ∩ = ≠ =⎢ ⎥⎢ ⎥+ − − + − −⎣ ⎦ ⎣ ⎦

−  (6)          

It will be shown later that the disjoint intervals 
in (6) contain the feasible stepsizes to prevent 
intersection between two intervals when one is 
shifted at the stepsize toward the other. 

Lemma 2.8 Let  t =
( ) ( )

a c
b a c d

⎢ ⎥−⎢ ⎥
⎢ ⎥− + −⎣ ⎦

, then 

, 1, 2,...
1

b d a c
t n t

− −
+ + +

n
n

> =  

Proof: Since ,   one has  1n ≥
( ) (

a ct n
b a c d)

−
+ >

− + −
, 

which leads to 
1 ( ) 1b a c d b d

t n a c
− −

= −
−

) (
a c

− +
<

+ −
, hence the 

inequality in Lemma 2.8. 

Lemma 2.9 Let  t =
( ) ( )

a c
b a c d

⎢ ⎥−⎢ ⎥
⎢ ⎥− + −⎣ ⎦

, then 

1
, 0⎜ ⎜=⎜ ⎜⎜ ⎜ ,

1n

a c b d b d
t n t n t

∞

=

⎛ ⎞ ⎛ ⎞− − −⎟ ⎟⎟ ⎟⎟ ⎟⎝ ⎠ ⎝ ⎠+ + +
∪ . 

Proof: For any 
1

,
n

a c b dx
t n t n

∞

=

− −⎛∈ ⎜ + +⎝ ⎠
U

⎞
⎟

k N∈

, then there 

exists (set of natural numbers), such that 
, .b dx

t k
⎞− ⎟⎜∈ ⎟⎜ ⎟⎜⎝ ⎠

a c
t k

⎛ −
+ +

  Hence, the inequalities 

0
1

a c x
t k

< <
b d b d
t k t

− − −
< <

+ + +
, which shows that 

0, .
1

x
t

⎟⎜∈ ⎟⎜ ⎟⎜⎝ ⎠+
b d⎛ ⎞−   Therefore, 

1
, 0,

1n t n t n t=

⎟⎜ ⎜⊆⎟⎜ ⎜⎟⎜ ⎜⎝ ⎠ ⎝+ + +
∪ a c b d b d∞ ⎛ ⎞ ⎛ ⎞− − − ⎟⎟⎟⎠

.  In what follows, we will 

establish 
1

, 0,
1n t n t n t=

⎟⎜ ⎜⊇⎟⎜ ⎜⎟⎜ ⎜⎝ ⎠ ⎝+ + +
∪ a c b d b d∞ ⎛ ⎞ ⎛ ⎞− − − ⎟⎟⎟⎠

.  For any 

0 ,
1

y
t

⎟⎜∈ ⎟⎜ ⎟⎜⎝ ⎠+
b d⎛ ⎞−

y ε>

, there exists such that 

.  Since  

0,ε>

0
t n

→
+

a c− →∞ as  n , with the 

same , there exists such that ε 0L> a c−
t n

ε<
+

 

whenever .  Therefore, n L> a c y
t n
−

<
+

.   Based 

on the Well-Ordering property of real numbers, 
there exists smallest positive integer M  such 
that 

1
a c

M
− −a c

t M t+ +
y< ≤

−
M >  .   If , based 

on Lemma 2.8, one has 

1

1
a c−

<
+ −

b d
t M+t M
−  .   This 

inequality leads to a c
t M

b
t

− −
< <

+ +
d

M
y  , i.e. 

, b
t M

⎛ −
+ +

a c d
t M

− ⎟⎟⎟⎝ ⎠
y ⎜∈ ⎜⎜

⎞ ;  if 1M = , with 

0,y ⎜∈ ⎜⎜ 1
d ⎞⎟⎟⎟⎝ ⎠

b
t

⎛ −
+

, one has 
1 1

da c by
t t
− −

< <
+ +

, i.e. 

,
1 1

ba c d
t t

⎛ − − ⎟⎟⎟⎝ ⎠+ +
y ⎜∈ ⎜⎜

⎞ .  Therefore, 

1n
y

∞

=
∈ ∪ ,a c b d

t n t n
⎛ − − ⎟⎟⎟⎝ ⎠+ +

⎞⎜⎜⎜
.  This proves 

1n

∞

=
∪ , b d

t n
⎛ ⎞− − ⎟⎜ ⊇⎟⎜ ⎟⎜⎝ ⎠+ +

0,
1

b d
t

⎛ −⎜⎜⎜⎝ +
a c
t n

⎞⎟⎟⎟⎠
.  Combined with 

the earlier result 
1

0,
1n

a c b d
t n t

∞

=

⎛ ⎞− − −⎟ ⎟⎟ ⎟⎟ ⎟⎝ ⎠+ + +
∪ , b d

t n
⎛ ⎞⎜ ⎜⊆⎜ ⎜⎜ ⎜⎝ ⎠

, it 

is shown that 
1

, 0d⎛ ⎞⎜ ⎜=⎜ ⎜⎜ ⎜⎝ ⎠
,

1n

a c b b d
t n t n t

∞

=

⎛ ⎞− − −⎟ ⎟⎟ ⎟⎟ ⎟⎝ ⎠+ + +
∪ . 

Lemma 2.10 Let t =
( ) ( )

a c
c d

⎢ ⎥−⎢ ⎥
⎢ ⎥−b a− +⎣ ⎦

 and 

0,
1

b d
t

⎛ − ⎟⎟⎟⎝ ⎠+x ⎜Δ ∈ ⎜⎜
⎞ , then, xΔ is not a feasible 

stepsize for the intervals  and [ ] . [ ] dba , c,

Proof: Since 0,
1x

b d
t

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠+
Δ ∈ , from Lemma 2.9 

1

∞

=
∪ ,a c b d

t n t n
⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠+ +x

n
Δ ∈ . Therefore, 

,x ⎜Δ ∈ ⎜⎜
a c b d
t k t k

⎛ ⎞− − ⎟⎟⎟⎝ ⎠+ +

a>
( )k b

 for some integer k   ≥   1.  

This leads to the inequalities c t      
and   d t

(+ + )k xΔ

x+ + Δ <

b
(

.  We shall discuss based 
on the following two cases:                                          
(i) If , then   ( ) xc t k+ + Δ ≥
 ( ) )x xk Δ

,
d t k b cΔ < ≤

  
t+ ++ + .  Thus, the      

shifted interval ( ))( ) (x xΔd t

( ) xc t k+ + Δ <
( ) xt k b+ Δ <

k+ +

b

cΔ +

( , )a b

t k+  
intersects with the interval .                          
(ii) If , then  

, implying that the shifted 
  

< +  a c

WSEAS TRANSACTIONS on MATHEMATICS Yan Wu, Daniel F. Linder

ISSN: 1109-2769 387 Issue 8, Volume 8, August 2009



( )  ( ) , ( )x x

( , )a b

interval d t k c t k+ + Δ + + Δ intersects 
with the interval .                                
Therefore, xΔ violates condition (4) defined in 
Section 2, that is xΔ

]ba ,

is not a feasible stepsize 
for the intervals [  and [ ]cd , . 

Lemma 2.11 Let 1

0

a c
t n

−

=

⎜⎜⎜∪ ,
t

n

b d
t n

⎛ ⎞− − ⎟⎟⎟⎝ ⎠− −xΔ ∈   and 

t =
( ) (

a c⎢ −⎢
)⎢ ⎥⎣ ⎦b a c d
⎥
⎥

− + −
, then  xΔ  is not a feasible 

step size for the intervals [ ]ba ,  and [ ] . cd ,

The proof is similar to that of Lemma 2.10. 

Lemma 2.12 Let 
[

1

0

t

f
n

−

=
Δ ∈

t

), ,b d
⎤
⎥ − ∞∪1

b d
t n
⎡
⎢
− +

∪ a c
t n

− −
⎢ ⎥−⎣ ⎦

  and 

=
( ) (

a c⎢ −⎢

f

)⎢ ⎥⎣ ⎦

),b d− ∞

b a c d
⎥

− + −
Δ⎥ , then  is a feasible 

stepsize for the intervals [  and [ ] .  

f

]ba ,

f

cd ,

Proof:  It is obvious that  is a feasible 
stepsize if Δ ∈ .  Thus, we only 

consider 

Δ

[
1

0 t n

−

=
,

1
−t

n

b d
− +

∪fΔ ∈
a c
t n

⎡ ⎤−⎢ ⎥
⎢ ⎥−⎣ ⎦

.  Then  

,
1

b d−
− +f t k

Δ ∈
a c
t k

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 for some , 0,1,..., 1k t= −

or 
1 f

b d a
t k

≤
−

( )k+ − Δ

b≥

c−
t k− +

−
≤ Δ

( 1− + Δ

,  implying the 

inequality     and  
.  According to Lemma 2.4, 

 is a feasible stepsize for the intervals 

fc t a≤

) fd t k+

fΔ [ ]ba ,  
and [ ] . cd ,

Lemma 2.12 also reveals that 
1+

−
t

db is the 

smallest feasible stepsize for the intervals [ ]ba ,  
and [ ] . cd ,

Lemma 2.13 Let t =
( ) ( )

a c
b a c d

⎢ −⎢
⎢ − + −⎣ ⎦

⎥
⎥
⎥
, then                                  

0
, ,

1
a c
t n
⎛ −
− −

, , 0,1,..., 1
1

k

n

b d b d b d b d k t
t n t n t t k=

⎞ ⎡ ⎞− − −⎟ ⎟⎜ ⎢∪ = = −⎟ ⎟⎜ ⎟ ⎟⎜ ⎢⎝ ⎠ ⎠+ − + −⎣
∪ .        a c

t n
⎡ ⎤− −⎢ ⎥
⎢ ⎥−⎣ ⎦

(7) 

Proof:  The proof is done by mathematical 
induction. 

(i)If , it is obvious that 0k =

, , ,
1 1

b d a c
t t

⎡ a c b d b d b d
t t t t

⎤ ⎛ ⎞ ⎡ ⎞− − − −⎟ ⎟⎜⎢ ⎥ ⎢∪ =⎟ ⎟⎜ ⎟ ⎟⎜⎢ ⎥ ⎢⎝ ⎠ ⎠+ +
− −

⎦ ⎣
. 

⎣

(ii) Assume (7) is true for , then  1k −

U
k

n nt
db

nt
ca

nt
ca

nt
db

0

,,
1=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−
−

∪⎥⎦
⎤

⎢⎣
⎡

−
−

−+
−

1

0
, ,

1

, ,
1

k

n

b d a c a c b d
t n t n t n t n

b d a c a c b d
t k t k t k t k

−

=

− − − −⎡ ⎤ ⎛ ⎞= ∪ ∪⎜ ⎟⎢ ⎥+ − − − −⎣ ⎦ ⎝ ⎠
− − − −⎡ ⎤ ⎛∪⎜ ⎟⎢ ⎥+ − − − −⎣ ⎦ ⎝

U

⎞
⎠

 

, ,
1 ( 1) 1

,

b d b d b d a c
t t k t k t k

a c b d
t k t k

⎡ ⎞− − − −⎡ ⎤= ∪ ∪⎟⎢ ⎢ ⎥+ − − + − −⎣ ⎦⎣ ⎠
− −⎛ ⎞

⎜ ⎟− −⎝ ⎠

, ,
1

b d a c a c b d
t t k t k t k
− − − −⎡ ⎤ ⎛ ⎞= ∪ ⎜ ⎟⎢ ⎥+ − − −⎣ ⎦ ⎝ ⎠

,
1

b d b d
t t k
− −⎡ ⎞= ⎟⎢ + −⎣ ⎠

.           

Lemma 2.14 Let t =
( ) ( )

a c
b a c d

⎢ ⎥−⎢ ⎥
⎢ ⎥− + −⎣ ⎦

, then  

1

0
, , ,

1 1

t

n

b d a c a c b d b d b d
t n t n t n t n t

−

=

⎡ ⎤ ⎛ ⎞ ⎡ ⎞− − − − −⎟⎜⎢ ⎥ ⎢∪ =⎟⎜ ⎟⎜⎢ ⎥ ⎢⎝ ⎠+ − − − − +
⎟− ⎟⎟⎠⎣ ⎦ ⎣

∪  (8)                

 
The identity (8) is a direct result of Lemma 
2.13.  
The preceding lemmas allow us to decompose 
the positive half of the real number line into 
subintervals from which feasible non-feasible 
step sizes for the interaction between two 
disjoint intervals are clearly indicated.  Lemma 
2.10 shows that no feasible step sizes exist in 
the interval 

⎟
⎠
⎞

⎜
⎝
⎛

+
−

1
,0

t
db .  Lemma 2.14 implies 

that the interval 
⎟
⎠
⎞

⎢⎣
⎡ −

+
− db

t
db ,
1

 contains all 

feasible step sizes (less than b ).  Finally, all 
real numbers in the interval

d−
[ )∞− ,db , are 

feasible stepsizes. It is illustrated in Fig. 3 how 
the positive real line (frequency axis) is 
decomposed into feasible and non-feasible 
regions. 
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Fig. 3  Partition of the number line with the 

feasible and non-feasible intervals 

Now, we are ready to present the feasible 
stepsize theorem for two arbitrary disjoint 
intervals followed by a more general result for 
any number of disjoint intervals. 

Theorem 2.1 The stepsizeΔ f is a feasible 
solution for the intervals  and [  if and 
only if 

[ cd , ] ]ba,

[− −
∪ ), ,∞

1

0 1

t

f
n

b d b d
t n

−

=

⎡ ⎤
⎢ ⎥Δ ∈ −
+ −

∪

t

a c
t⎢ ⎥−⎣ ⎦n

, where 

=
( ) ( )b a c d
⎢ ⎥
⎢ ⎥− + −⎣ ⎦

a c⎢ ⎥− .  

Proof: Since the interval 
⎟
⎠
⎞

⎜
⎛  contains no 

feasible step sizes by Lemma 2.10, and the 
intervals 

⎝ +
−

1
,0

t
db

U
1

,
−

=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−
−t

n nt
db

nt
ca

0

 contain none of the 

feasible stepsizes by Lemma 2.11, and Lemmas 
2.12 and 2.14 conclude that the only feasible 
stepsizes belong to the 
intervals [ )

0
, ,

1n
b d

t n t n=
⎢ ⎥ ∪ − ∞
⎢ ⎥+ − −⎣ ⎦

∪
1t b d a c− ⎡ ⎤− −

n

n

. 

 
 
3 Sampling Theorem for Multi-Band 
Bandpass Signals 
We are ready to extend Theorem 2.1 to the most 
general case.  The next theorem gives a closed 
form formula that identifies all feasible 
stepsizes for arbitrary number of disjoint 
intervals.  To set the stage, we introduce some 
symbols and set notations on the operations of 
intervals to extend the result in Theorem 2.1.  
Let  and 

so that the 
set 

, , 1,2,..., ,i i iα β ∈ =\

2 2 ... nα β α β< < < < <1 10 α β≤ <

{ }[ ,Ω= ], 1,2,...,i i i nα β = consists of disjoint 
intervals.  Furthermore, introduce a new set S 
obtained from a cross product between Ω  and 
itself, i.e.                                                                                    
                

                                     { }{ }[ , ],[ , ] , , , {1,2,..., }i i j jS i j iα β α β=Ω×Ω= < ∈j n                         

                                                                        (9) 

Clearly, the cardinality of set S is 
⎛⎜⎜⎜⎜

, i.e. 
2
n⎞⎟⎟⎟⎟⎝ ⎠

( 1)
2 2
n n nS

⎛ ⎞ −⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜⎝ ⎠
. 

a c− b d−0 

 

Theorem 3.1  Let { }[ , ], 1,2,...,i i i nα β =

1,2,..., ,i n

2 ... n nβ α β< < < <

, , 1,2,k k k kS d c a b k∈ < < < =

Ω= , 
where α β  and 

.  The set S is 
defined by (9).  An arbitrary element of S is 
given by 

The step size

, ,∈ =\

n⎛ ⎞

i i

1 1 20 α β α≤ < <

{ }],[ , ]k ka b[ ,k kd c ...,
2
⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

Δ f is a feasible solution for Ω  if 
and only if                  

[ ),b d
⎛ ⎞⎤ ⎟⎥ ⎟− ∞ ⎟⎥ ⎟⎟⎝ ⎠

2 1

1 0
,

1

k

n
t

k k k k
f k

k m k k

b d a c
t m t m

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

= =

⎡ − −⎜ ⎢⎜Δ ∈ ∪⎜ ⎢⎜ + − − k
⎣ ⎦

∩ ∪

k =

, (10)                  

where t , 1,2,..., .
2( ) ( )

k k

k k k k

na c k
b a c d

⎢ ⎥ ⎛ ⎞− ⎟⎜⎢ ⎥ ⎟= ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜− + − ⎝ ⎠⎣ ⎦
 

The proof of Theorem 3.1 is carried out by 
arguing that the feasible solution for all the 
intervals in Ω  is the intersection of the feasible 
solution intervals for each pair of intervals from 
set S.  
In order to connect the results obtained so far 
from set theory to a new sampling theorem for 
multi-band passband signals, we first derive the 
impulse response of an ideal multi-band 
bandpass filter.  Introduce an ideal bandpass 
filter Γ as                                                   ( )ω

                                     (11) 
1 if 

( )
0 otherwise

Iω
ω

⎧ ∈Φ⎪⎪Γ =⎨⎪⎪⎩
where  is defined in (1), and is defined 
in (2), which will be used in Theorem 3.2.  The 
impulse response of the ideal bandpass filter 
(11) is derived as 

IΦ I−Φ

                 
i[ , ]

1
( ) csinc ( )

i

n
i

i
t tω σ

σ
γ

π=
=∑               (12) 

where  

i[ , ]
cos( )sin( / 2)

csinc ( )
/ 2i

i i

i

t t
t

tω σ
ω σ
σ

= , 

2
il u

i
i

+
il

ω ω
ω = σ ω, and .  The lower 

ii u ω= −

b d a c
t
− b d

t
−

1
a c
t
−
− 2

b d−
t
−
+

…     
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and upper cutoff frequencies,  and , are 
also defined in (1).  The role of this ideal 
bandpass filter is to extract the original spectra 
of a multi-band bandpass signal from the 
replicas of the sampled signal.  This is done via 
a discrete convolution between the samples of 
the signal and the digital filter (12).  The 
necessary and sufficient sampling interval T 
(anti-aliasing) for such a bandpass signal is the 
reciprocal of 

ilω iuω

fΔ , which is calculated from (10) 
in Theorem 3.1, where the intervals are the 
compact supports of the passbands in the 
frequency domain.  We proceed with a new 
sampling theorem for multi-band passband 
signals as follows.  

Theorem 3.2 Suppose a signal ( )f t is 
bandpassed to Φ .  Let Ω=Φ  and 

. Let 
I I− IΦ∪

S =Ω×Ω sω and be the sampling 
frequency and sampling interval, respectively, 

and

T

2
s T

πω = .  Then, the original signal ( )f t can 

be completely determined from its 
samples ( )f lT  via the interpolation formula    

    [ , ] (i i
1

2n

l i s
( ) ( )csinc )if t f lT t lTω σ

σ
ω=

∑ ∑
∞

=−∞
−=       (13)                                                                

if the sampling frequency sω satisfies the 
following feasibility condition, 

[ )∪
2 1

1 0
, ,

k

n
t

k k k k
k k

k m k k

a c b d
t m t m

ω

⎛ ⎞
⎜ ⎟ −⎝ ⎠

= =

⎛ ⎡ ⎤− −
− ∞⎜ ⎢ ⎥⎜ −⎣ ⎦⎝

I U 1s
b d

∈
+ −

⎞
⎟⎟
⎠
  (14) 

where { }[ , , ] ,k kd c b S∈],[k k a  and  

kt = , 1,2,..., .
2
n⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠( ) )k k k k

k
b a d

⎢ ⎥
⎢ ⎥ =⎢ ⎥−⎣ ⎦

)

(
k ka c

c
−

− +

(

⎜
 

Proof: Introduce an impulse train modulated by 
the samples f lT

( )

 of the signal : )(tf

(( )
l

).f t T f l δ
∞

=−∞
∑ T= −

(

t lT

)

δ
 

According to Poisson formula, the Fourier 
transform of  is given by )(tfδ

(( ) ) jlT
s

l l
F Tf lT e Fω
δ ω

∞ ∞
−

=−∞ =−∞
∑ ∑ l+

)

ω ω= =     (15)                      

where j is the imaginary unit, and (ωF  is the 
Fourier transform of  The spectrum of 

 can be recovered from (15) by applying a 

matching ideal bandpass filter (11) to 

).(tf
)(tf

)(ωδF

).

 as 
follows: 
 ( ) ( ) ( ) ( ) ( s

l
F F Fδω ω ω ω ω

∞

=−∞
= Γ = Γ +∑ lω   (16)                  

This is true because none of the spectra 
( ),sF lω ω+  overlap with 0,l ≠ )(ωF  at the 

sampling rate sω  given by (14), which is 
guaranteed by Theorem 3.1. Therefore, taking 
inverse Laplace transform of (16) results in the 
following 

f

i

i

[ , ]
1

[ , ]
1

( ) ( ) ( ) ( ) ( )

)

).

( ) csinc (

2 ( )csinc (

i

i

l
n

i

l i
n

i

l i s

t t f t Tf lT

Tf lT t

f lT t

δ

ω σ

ω σ

γ γ

σ
π

σ
ω

∞

=−∞
∞

=−∞ =
∞

=−∞ =

= ∗ =

= −

= −

∑

∑ ∑

∑ ∑

t lT

lT

lT

−

 

                
 

As an illustrative example, consider a bandpass 
signal with the following band positions 
[ ] [ ]150 ,160 800 ,830kHz kHz kHz kHz∪ .  If the signal is 
taken as a bandpass signal with a single 
passband over [ ]150 ,830kHz kHz

0kHz

99kHz

, only the classical 
Nyquist rate (for lowpass signals) is applicable, 
which is calculated as 166 .  However, with 
the proposed algorithm, the lowest necessary 
and sufficient sampling rate is calculated as 

.  The difference is significant.  
Furthermore, there are other permissible 
sampling rates for this signal that can be 
computed directly from (14), for instance, any 
number in the interval [1  
represents a feasible sampling rate the above 
bandpass signal. 

98 ]kHz,200kHz

 
 
4 Fast Algorithm for Intervals 
It is observed from (14) that the interval(s) for 
feasible sampling rates are calculated from the 
intersections of different groups of intervals.  
The number of intervals could be large in (14), 
hence increase the amount of computation 
significantly.  In this section, we present a fast 
algorithm for computing the intersections 
among given intervals.  This algorithm takes 
advantage of the facts that the set of all feasible 
intervals for each pair of bands is a union of 
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disjoint intervals and the feasible intervals are 
ordered along the number line (frequency axis). 
We present the algorithm in the form of a 
pseudo-code as follows: 

Initialization: 

Let each of the sets 
1 21, 2, ,, ,...,

kn n k nI I I

, ii nI

 be a union of 
closed disjoint intervals and the intervals in each 
set are ordered, and is the i th  set containing 

 such intervals.    Thus,         in

1

2

1, 1,1 1,1 1,2 1,2 1, 1,

2, 2,1 2,1 2,2 2,2 2, 2,

, ,1 ,1 ,2 ,2 , ,

[ , ] [ , ] ... [ , ]

[ , ] [ , ] ... [ , ]

[ , ] [ , ] ... [ , ]
k

n

n

k n k k k k k n k n

I a b a b a b

I a b a b a b

I a b a b a b

= ∪ ∪ ∪

= ∪ ∪ ∪

= ∪ ∪ ∪
#

1 1

2 2

k k

n n

n n

]

⎤
⎥
⎥

 

Step 1. 

:if one of the unions is empty, then stop. 

:find the maximum value of the left endpoint of 
the first interval in each union call it L ,  max

:find the minimum value of the right endpoint 
of the first interval in each union call it R . min

Step 2. 

:If    L max R , then  is an 
intersection and is stored in F. Remove the 
interval that R  occurred in from the union it 
was contained in, and go to Step 1. 

≤

min

min [ minmax , RL

:Else remove  the interval that R min  occurred in 
from the union it was contained in and go to 
Step 1. 

The above selection process can be carried out 
by dropping the intervals from the right side 
with some minor modifications of the above 
algorithm. 
In order to estimate the complexity of the 
algorithm, let 

1 2
represent the 

number of symbolic operations on the intervals 
required for the selection process, an upper 
bound (worst case scenario) on the complexity 
of this algorithm is given as follows 

1, 2, ,{ , ,..., }
kn n k nC I I I

            (17) 
1 21, 2, ,

1
{ , ,..., } (2 1) ( 1) 1

k

k

n n k n i
i

C I I I k n
=

⎡
⎢≤ − − +⎢⎣ ⎦
∑

A program is made in MATLAB to realize this 
algorithm.  In most experiment, the number of 
operations is much less than the upper bound in 
(10) because some runs out quickly during 
the process.   

, ii nI

 
5 Conclusion 
It is investigated in this paper that, under the 
cost-effective first-order sampling regime, 
sampling rates that are lower than the Nyquist 
are achievable if the gaps between the subbands 
are sufficiently large to accommodate 
intermediate shifting of the spectrum.  Closed 
form formulas are obtained for calculating all 
feasible sampling rates based on the locations of 
the subbands.  All results are proved rigorously.  
The main formula (10) or (14) can be 
implemented via computer programming such 
as in MATLAB. 
It is well-known that theoretical minimum 
sampling rate, such as the Nyquist, is 
susceptible to any engineering imperfection in 
implementation since the margin of error is 
zero.  In this paper, the lowest sampling rate is 
identified as the left end-point of the solution 
intervals by (14).  However, more importantly, 
all other permissible sampling rates are also 
implied by (14).  The proposed sampling 
algorithm allows much more flexibility for 
implementation, hence, more practical in 
design. 
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