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Abstract: - Feedback control was applied to  the steady Marangoni convection in a horizontal layer of fluid with 
variable viscosity and free-slip at the lower boundary heated from below and cooled from above. Prediction for 
the onset of convection are obtained from the analysis by numerical technique.The effects of feedback control 
are studied by examining the critical Marangoni numbers and wave numbers. It is shown that the onset of 
Marangoni convection with variable viscosity can be delayed and the critical Marangoni number can be 
increased through the use of feedback control.  
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1 Introduction 
Convection is the transfer of heat by the motion of 
or within a fluid. It may arise from the temperature 
differences either within the fluid or between the 
fluid and its boundary, other sources of density 
variations (such as variable salinity) or from the 
application of an external motive force. It is one of 
the three primary mechanisms of heat transfer, the 
others being conduction and radiation. Convection 
has a wide range of applications, including 
calculating forces and moments on aircraft, 
determining the mass flow rate of petroleum 
through pipelines and to predict weather patterns. 
Generally, convection means fluid motion caused by 
temperature difference with the temperature 
gradient pointing in any direction (Chapmen [1]).   

The study of the flow and heat transfer in an 
electrically conducting fluid has many practical 
applications in manufacturing process in industry. 
The thermal fluid flow problem have been 
extensively studied numerically, theorrtically as 
well as experimentally (see [2-4]). Rayleigh [5] was 
the first to solve the problem of the onset of thermal 
convection in a horizontal layer of fluid heated from 
below. His linear analysis showed that Benard 
convection occurs when the Rayleigh number 
exceeds a critical value. This parameter is a 
Rayleigh number (thermal or solutal) when the 
convection is induced by buoyancy effects due to 
variations in density and is a Marangoni number 
when surface-tension variations induce the 

convection. It is well-known fact that the onset of 
convection in Benard’s [6] experiment is produced 
not simply by buoyancy forces but primarily by 
variations of the surface tension with the 
temperature. The latter effect is generally referred to 
in the literature under the name of thermocapillary 
or Marangoni instability. Although these flows were 
studied by Benard in 1900, it was almost sixty years 
before the critical experiment by Block [7] and the 
elegant linear stability analysis of Pearson [8] firmly 
established that Benard cells were a manifestation of 
the surface tension variations at the free surface (by 
Ginde et al [9]). 

 In this paper, we focused on the instability of 
Marangoni convection which is induced by a 
surface tension gradient. The Marangoni instability 
arises whenever the temperature gradient across the 
layer exceeds a certain critical value.  The first 
theoretical study was done by Pearson [8] where he 
suggested there exists a surface tension when he 
observe a polygonal cellular patterns appear in a 
paint layers even the paint is on the underside of a 
plane, horizontal surface. He showed that 
thermocapillary forces can cause convection when 
the Marangoni number exceeds a critical value in 
the absence of buoyancy forces in the case of 
nondeformable free surface and no-slip boundary 
conditions at the bottom. Pearson [8] obtained the 
critical Marangoni number, Mc= 79.607 and the 
critical wave number ac= 1.9929. Linear stability 
analysis of Marangoni convection with free-slip 
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boundary conditions at the bottom was first 
investigated by Boeck and Thess [10]. For free-slip 
case, Boeck and Thess [10] obtained the critical 
Marangoni number, Mc= 57.598 and the critical 
wave number ac= 1.7003. In particular, Arifin and 
Rosali [11] extended the work of Boeck and Thess 
[10] by including magnetic field to suppress the 
onset of Marangoni convection. 

In many fluids with large Prandtl number and in 
particular, in some oils, the fluids posses a 
temperature-dependent viscosity as viscosity is 
more sensitive to temperature variations than heat 
capacity and thermal conductivity and the effects 
are important on the onset of convection. Linear and 
exponential dependence of the viscosity with respect 
to the temperature for the onset of Marangoni 
convection has been considered recently. Effect of 
an exponential viscosity law on the Marangoni 
convection in a fluid  layer with nondeformable free 
surface was studied by Selak and Lebon [12] and 
Slatchev and Ouzounov[13]. The effect of a linear 
viscosity law with deformable free surface on the 
onset of Marangoni convection was investigated by 
Cloot and Lebon [14] and Kozhoukharova et. al. 
[15]. Kozhoukharova et. al [15] found that the role 
of a variable viscosity is to promote stability of the 
fluid layer. Kozhoukharova and Rozé [16] 
determined the influence of variable viscosity effect 
and surface deformation on the convective threshold 
for the primary steady and oscillatory Bénard-
Marangoni in a fluid layer and show that the 
stability threshold for the short wavelength mode 
depends strongly on the viscosity variation while the 
long wavelength  is determined by the surface 
deformation.  

The importance of understanding the feedback 
control is to stabilize nonstable states or maintaining 
a state of no-motion hence we can optimizes the 
process. It may also help in gaining deeper insights 
into the dynamics of flow.  In proportional feedback 
control of Bau [17], the thermal actuators are place 
at the bottom heated surface. Sensor are used to 
detect the departure of the surface temperature of 
the fluid from its conductive and they direct the 
actuators to take action so as to suppress unwanted 
disturbances. The thermal actuators modifies the 
bottom heated surface temperature using a 
proportional relationship between upper and lower 
thermal boundaries.  Tang and Bau [18,19] and 
Howle [20] have shown that the critical Rayleigh 
number for the onset of Rayleigh- Bénard 
convection can be delayed. Or et al. [21] studied 

theoretically the use of feedback control strategies 
to stabilize long wavelength instabilities in the 
Marangoni convection.  Bau [17] has shown 
independently how such a feedback control can 
delay the onset of Marangoni convection on a linear 
basis with no-slip boundary conditions at the 
bottom. Arifin et. al [23] have shown that  a 
feedback control also can delay the onset of 
Marangoni convection with free-slip boundary 
conditions at the bottom. Very recently, effect of 
feedback control on the onset of Marangoni 
convection in rotating fluid layer with a free-slip 
bottom has been studied by Hashim and Siri [24]. In 
this study, we investigate the effects of feedback 
control on the onset of steady Marangoni convective 
instability in a horizontal fluid layer  with a 
deformable upper free surface. In so doing, we 
extend the linear stability analysis results of Arifin 
et. al [23] to include the variable viscosity. The 
linear stability theory is applied and the resulting 
eigenvalue problem is solved numerically to obtain 
a detail description of the marginal stability curves 
for the onset of Marangoni convection. 
 
 
2 Problem Formulation 
Consider a horizontal fluid layer of depth d with a 
free upper surface heated from below subject ro a 
uniform vertical temperature gradient. The fluid 
layer is bounded below by a horizontal solid 
boundary at constant temperature T1 and above by a 
free surface at constant temperature T2 which is in 
contact with a passive gas at constant pressure P0 
and constant temperature T∞. We used Cartesian 
coordinated with two horizontal x-  and y- axes 
located at the lower solid boundary and a positive z-
axis is directed towards the free surface (see Fig. 1). 
The effect of the surface deformability are measured 
by the Bond number, Bo and by the Crispation 
number, Cr. Parameter Bo estimates the effect on the 
modified static pressure by the gravity forces and Cr 
stands for the effect of the rigidity of the deformable 
surface. 
The fluid is supposed to have Newtonian density 

                          0[1 ( )]= T− − 0Tρ ρ α                  (1)

where T is the temperature of the fluid, ρ0 is its 
value at a reference temperature T0 and α is the 
positive coefficient of the thermal fluid expansion. 
We consider the kinematic viscosity to be 
temperature-dependent, that is, a linear law for the 
kinematic viscosity is selected 
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                                                (2)                       0 (v v T T= + ζ − 0 )

where v0 is viscosity at the reference temperature T0 
and 

0
/ |Tv Tζ = ∂ ∂  is assumed constant.  

 

 

 

 

 

 

Fig. 1 Problem Set-up 

The fluid motion is driven by surface tension, τ and 
it is assumed to be a linear function of the 
temperature  

                               (3) 
       

0 0= (T Tτ τ − γ − )

where τ0 is the value of τ at temperature T0 and the 
constant γ is positive for most fluids. The fluid is 
assumed to be an incompressible fluid with 
variations of viscosity satisfying the continuity 
equation together with the momentum and the heat 
equation. These equations are, respectively 
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where  are the velocity components, 

 is the temperature of the fluid, 
( , ,=iU i x y z

T 0ρ  is its density 
value at a reference temperature T , 0 0=μ ρ ν  is the 
dynamic viscosity,  is the fluid thermal diffusivity 
and the pressure inside the fluid is denoted by p.  

κ

When motion occurs, the upper free surface of 
the layer will be deformable with its position at  
                 
               (1) ( , , )= +z d f x y t

At the free surface, we have the kinematic 
condition, 

                        ∂
=

∂z
fU  (2) 
t

together with the conditions of continuity for the 
normal and tangential stresses, 
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and the heat transfer balance subjected to Newton’s 
law is of the form 
 

( )∂ 0+ − =
∂ g
Tk h T T
z

 (5) 

where gp  is the gas pressure, H is the mean 

curvature of the surface, given by , 2= ∇
2

1/ 2 d dH z
∇d  is the two dimensional Laplacian operator 

2 2 2 2/ /∂ ∂ + ∂ ∂x y , h is the heat transfer coefficient 
between the fluid and gas phases and gT  is the 
temperature of the ambient gas. 

We shall investigate the linear stability of a 
basic in which the fluid is at rest ( (0,0,0))=U , the 
temperature gradient across the layer,  
                                 0= −T T zβ   
 
where 0( ) /= − +gh T T k hdβ , the kinematic 
viscosity,  
                                    0ν = ν − ζ zβ ,  
 
and the pressure is hydostatic  
               
               2 21

0 0 2 ( ) ( )⎡ ⎤= + ρ − + −⎣ ⎦p p g a z d z dβ , 

 
where g is acceleration due to gravity.   

To simplify the analysis, we formulate the 
stability problem in dimensionless form. We choose 

, d / dκ , 2 /d κ  and (  for length, 
velocity, time, and temperature gradient 
respectively. As a results the following 
dimensionless group arises,  

)1 2 /T T d−

 
( )1 2 0/M T T d v= γ − ρ κ  (Marangoni number), 

0 /Pr v= κ  (Prandtl number),  

0 0 0/rC v

 

dρ κ τ=  ( Crispation number),   
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2
0 /oB gd 0ρ τ=  (Bond number),   

/iB hd k=  (Biot number ),  

2 ) /1= − 0ζ(Rv T dΤ ν  (Viscosity group). 
 

Our control strategy basically applies a principle 
similar to that used by Bau [17], which is as 
follows: Assumed that the sensors and actuators are 
continuously distributed and that each sensor directs 
an actuator installed directly beneath it at the same 
{x,y} location. The sensor detects the deviation of 
the free surface temperature from its conductive 
value. The actuator modifies the heated surface 
temperature according to the following rule (Bau 
[17]): 

( ) ( )1 10 1
⎛ ⎞+

= − −⎜ ⎟
⎝ ⎠

i

i i

BT x, y, ,t K T x,y, ,t
B B

,         (13) 

where K is the scalar controller gain. Equation (13) 
can be rewritten more conveniently as 

( ) ((, ,0, , ,1,T x y t K T x y t′ ′= − ))

t

0,

0

,                    (14) 

where T  is the deviation of the fluid’s temperature 
from its conductive value. The control strategy in 
equation (14), in which K is a scalar will be used to 
demonstrate that our system can be controlled. 

′

 

3  Linearised Problem 
We analyze the linear stability of the basic state by 
seeking perturbed solutions for any quantity in 
terms of normal modes in the form 

( )
( )
0( , , , ) , ,

exp[ ( ) ]x y

x y z t x y z

z i x y sφ α α

Φ = Φ +

+ +
 (15) 

where Φ0 is the value of Φ in the basic state, a = 
(αx

2+αy
2)1/2 is the total horizontal wave number of 

disturbance and s is a complex growth rate with a 
real part representing the growth rate of the 
instability and an imaginary part representing its 
frequency. 

Substituting equation (15) into equation (5-7), we 
obtain the corresponding linearized equations 
involving only the z-dependent parts of the 
perturbations to take the temperature and the z-
components of the velocity denoted by T and w 
respectively, namely; 

2 2 2 1 2 2

2 2 2 2 2

( ) Pr ( )
[2( ) ( ) ]

D a w s D a w
Rv D a Dw z D a w

−− − − −

− + − =
 (16) 

                2 2( )D s T w− − + =α ,                    (17) 

subject to 

                            0sf w− = ,                             (18) 

( ) ( )( )
( ) ( )

1 2 2

2 2 2 2

Pr 3 1 1

0,

r

o

C s a Rv D Rv Dw

Rv D a w a a B f

−⎡ ⎤+ − − − +⎣ ⎦

+ + + =
 

 (19) 

         ( ) 2 2 2( ) ( )1 D w aRv M T f 0− − =− +α ,   (20) 

                          ( )iDT B T f 0+ − = ,                (21) 

at z = 1 together with 

                            2

0,
0,

=

=

w
D w

                                (22) 

at z = 0 and 

                        ( ) ( )0 1T KT 0+ = .                    (23) 

The operator /D d dz=  denotes differentiation 
with respect to z. As we only consider a steady 
convection, s is taken to be zero, . 0s =

 
 
 

4  Solution of the Linearized Problem 
Proceeding in the manner of Arifin & Rosali [11], 
we seek asymptotic solutions for  in the forms ,w T
 

( ) zw z ACeξ= ,  ( ) zT z Ceξ=              (24) 
 

where the exponent ξ  and the complex constants A 
and C are to be determined. Substituting these forms 
into the Eqs. (16) and (17) and eliminating A and C 
we obtain a sixth-order algebraic equation for ξ , 
namely 
         

2 2 2 2 2 2 2 2 2

2 2 2 2 2

( ) ( ) [2( ) ( )
( ) ( )]

a a Rv a a
z a a

ξ ξ ξ ξ ξ

ξ ξ

− − − − − +

− − = 0,

6

 

                                                                             (25) 
 
with six distinct roots, which we denote by 

1,...,ξ ξ . Denoting the values of A and C 
corresponding to ξ  for  by  and , 1,...,6i = iA iC
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respectively, we can use Eq. (16) to determine . 
We can use Eq. (19) to eliminate the free  surface 
deflection 

iA

 
1 2 2

2 2 3 2 2

3 (1 )
( ) (1 ) ( )

r

o

Pr sD w a Rv DwCf
a a B Rv D w Rv D a w

−⎧− − −⎪= ⎨+ − − +⎪⎩

⎫+⎪
⎬
⎪⎭

          

(26) 

     

 
evaluated on , leaving the six boundary 
conditions, to determine the six unknowns , 
and the general solution to the stability problem 
therefore  

1=z
61 ,...CC

 

   
6

1

( ) j z
j j

j

w z A C eξ
=

=∑ , 
6

1

( ) j z
j

j

T z C eξ
=

=∑            (27) 

The dispersion relation between , , , ,r i oM a C B B  and 
 is determined by substituting these solutions into 

boundary conditions and evaluating the resulting 
 real determinants of the coefficients of the 

unknowns, which can be written in the form 

iB

6 6×

1 2M D D= − , where the two  real 
determinants  and  are independent of M.  

66×

1D 2D
The marginal stability curves in the (a ,M ) 

plane on which Re(s) = 0 separate regions of 
unstable modes with Re(s) > 0 from those of stable 
modes with Re(s) < 0. In all the cases investigated 
in the present work M > 0 and the region above the 
marginal stability curve corresponds to unstable 
modes. Hence, the critical Marangoni number for 
the onset of convection denoted by Mc, is simply the 
global minimum of M on the marginal curves. The 
marginal stability curves are calculated by setting 
Re(s) = 0 and solving the equation D1+ MD2 = 0 for 
the values of a and M on the marginal curve. This 
procedure was implemented numerically using 
Fortran Powerstation 4.0 IMSL library. 
 
 
5 Results and Discussions 
The onset of Marangoni convection comprising an 
incompressible fluid with a range of viscosity group 
with a free-slip bottom is investigated numerically. 
In each case investigated in this paper, we can 
identify the critical minima of the marginal stability 
curves in the (a, M) plane which we denote by Mc 
together with corresponding critical wave number 
ac. For a given set of parameters, the critical 
Marangoni number for the onset of convection 
defined as the minimum of the global minima of 
marginal curve. We denote this critical value by 

cM  and the corresponding critical wave number, 
.  ca
The problem has been solved to obtain a detail 

description of the marginal stability curves for the 
onset of Marangoni convection when the free 
surface is perfectly insulated ( ).  The 
crispation number , associated with the inverse 
effect of the surface tension, represents the degree 
of the free surface deformability and the behaviour 
of the marginal stability curves depends on whether 

0iB =

rC

0oB =  or 0oB ≠ . When  becomes large 
(corresponding to weak surface tension), the 
marginal curve has global minimum at zero 
wavenumber. In contrast, for small values of , 
the marginal curve has global minimum at nonzero 
wavenumber. At some transition value of , the 
marginal curve has two local minima that is one at 
zero wave number and the other at nonzero wave 
number. The range for parameters  and  
which are respectively given by 

 and 

for most fluids layers of depths 
ranging from 0.01 cm to 0.1 cm and are in contact 
with air.   

rC

rC

rC

oi BB , rC

1313 1010,1010 −−−− ≤≤≤≤ oi BB
26 1010 −− ≤≤ rC

In all cases studied, we use the value of the 
viscosity group, Rv between –0.5 and 0.5 similar to 
Kozhoukharova and Rozé [2] and the sign of Rv 
depends on the type of the fluid. If the sign of Rv is 
positive then the kinematic viscosity is an increasing 
function of the temperature. Similarly the sign of Rv 
is negative then the kinematic viscosity is a 
decreasing function of temperature. For example, 
the kinematic viscosity of silicon oil decreases when 
the temperature increase and its give the viscosity 
group,  Rv =-0.5.  From a physical perspective, if the 
kinematic viscosity is increase, the onset of 
convection is governed by a sublayer where it is 
more unstable than the full layer. If  Rv = 0, the 
viscosity of the fluid layer becomes uniform. 

Before presenting the numerical results, it is 
useful to explain the physical mechanism for the 
Marangoni stabilizing effect. When applying heat 
from below, a hot spot is formed at some point on 
the free upper surface. With increasing temperature, 
surface tension decreases and the surface tension at 
the hot spot will be smaller than at neighboring 
locations. Thus a surface traction away from the hot 
spot, giving rise to a convective current. The 
convected fluid will be replace by a warmer fluid 
rising from beneath the surface. The proportional 
feedback control acts to enhance the dissipative 
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mechanisms in the fluid. The controller senses when 
a fluid column is about to rise and the directs the 
actuator to drop slightly the heated surface 
temperature beneath the rising column. In turn, the 
rising column will carry less excess temperature 
than in the absence of the controller. As a result, the 
surface tension-induces currents will be weaker, 
allowing ample time for heat dissipation to equalize 
the surface temperature and restore the no-motion 
state (Bau [17]). 

Figure 1-5 shows the marginal stability curves 
of Marangoni number, M with wave number, a for 
Bi = 0,  Bo =0.1  and  Cr = 0  in   the  case  Rv  = -0.5,   
Rv = -0.3, Rv = 0, Rv = 0.3 and Rv = 0.5 
respectively. As controller gain, K increases, the 
marginal stability curves shift upwards and 
evidently, controller gain, K stabilzes the no-motion 
state for all wave numbers. The results of Arifin et 
al [] are also recovered in Figure 3 for the case when 
Rv = 0. When K = 0 and Rv = 0, we will recover the 
results of Pearson’s [4].  

Figure 6 shows the contribution of viscosity 
group, Rv, where we have reveal that as the 
viscosity group increase, the marginal stability 
curves shift downwards, hence shows that the 
viscosity group destabilizes the no-motion state for 
all wave number when Cr = 0, Bo = 0 and Bi = 0. In 
the case of non-deformable free surface ( 0rC = ), 
the controller can suppress the modes and maintain 
a no-motion state, but the situation is significantly 
different if the free surface is deformable.  

Figure 7 and 8 illustrate that Crispation number 
is a destabilizing factor as the marginal stability 
curves decrease as the Crispation Cr increase. When 
Cr becomes large, the long wavelength instability 
sets in as a primary one and the critical Marangoni 
number at a = 0. 

Figure 9 and 10 depicts directly the relation 
between the controller, K, and the critical Marangoni 
number, Mc. With the controller, K, the critical 
Marangoni number, Mc increases depending on the 
viscosity, Rv. When , MK →∞ c becomes higher 
which conclude that the fluid is becomes more 
stable compared to a smaller K 
 
 
4 Conclusion 
The effect of feedback control on the onset of 
Marangoni convection in a horizontal layer of 
electrically-conducting fluid which is free above and 
rigid below with variation viscosity and surface 
deformation is studied. The main results for all 
cases investigated in this paper reveal that the 
controller gain is a stabilizing factor, where the 

parameter K stabilizes the no-motion state for all 
wave numbers. It is shown that an increase of 
parameter K will also cause an increase of the 
critical value of the Marangoni number. We also 
considered the Crispation number, Cr and viscosity 
group, Rv in few cases and we found that fluids with 
large viscosity variable and surface defomation are 
clearly a destabilizing factor.  
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Fig. 1 : Numerically calculated values of M  and the 
corresponding values of a for different values of the 
control gain, K  in the case Bo  = 0.1,  Bi  =  0 , Cr = 
0 and 0 5Rv .= − .  

 
 
 
 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on MATHEMATICS Norihan Md. Arifin, Nurul Hafizah Zainal Abidin

ISSN: 1109-2769 378 Issue 8, Volume 8, August 2009



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 : Numerically calculated values of M  and the 
corresponding values of a for different values of the 
control gain, K  in the case  Bo  = 0.1,  Bi  = 0 , Cr = 
0 and . 0 3Rv .= −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 3 : Numerically calculated values of M  and the 
corresponding values of a for different values of the 
control gain, K in  the case Bo  = 0.1,  Bi  = 0 ,  Cr = 
0 and .  0Rv =

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 : Numerically calculated values of M  and the 
corresponding values of a for different values of the 
control gain, K  in the case  Bo  = 0.1,  Bi  = 0 , Cr = 
0 and 0 3=Rv . . 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 5 : Numerically calculated values of M  and the 
corresponding values of a for different values of the 
control gain, K  in the case Bo  = 0.1,  Bi  =  0 , Cr = 
0 and 0 5=Rv . . 
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Fig. 6 : Numerically calculated values of M  and the 
corresponding values of a different values of the 
viscosity group, Rv in the case  Bo  = 0.1,  Bi  = 0 , 
Cr = 0 and 1K = .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 : Numerically calculated values of M  and the 
corresponding values of a for different values of  
Crispation number, Cr in the case Bo  = 0.1, Bi  = 0, 

 and Rv = 0. 0K =
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Fig. 8 : Numerically calculated values of M  and the 
corresponding values of a for different values of  
Crispation number, Cr in the case Bo  = 0.1, Bi  = 0, 

1=K  and Rv = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 : Numerically calculated values of critical 
Marangoni number, Mc  and the corresponding 
values of controller gain, K for different values of 
the viscosity group, Rv  in the case Bo  = 0.1, Bi  = 0 
and Cr = 0. 
 
 

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 1

K

0

c
M

a

d

c

b

e

a. Rv  = -0.5
b. Rv  = -0.3
c. Rv  = 0
d. Rv = 0.3
e. Rv = 0.5

-100

100

300

500

700

900

1100

1300

1500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a

M

a

d

c

b

a. Cr = 0
b. Cr  = 0.0001
c. Cr = 0.001
d. Cr = 0.1

-100

0

0

0

0

0

1100

1300

1500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a
M

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a

M

e

a

d

c
b

 a. Rv = -0.5
 b. Rv = -0.3
 c. Rv = 0
 d. Rv = 0.3
 e. Rv  = 0.5

a

a. Cr  = 0
b. Cr  = 0.0001
c. Cr  = 0.001
d. Cr  = 0.1b

10

30

50

70

90

c

d

WSEAS TRANSACTIONS on MATHEMATICS Norihan Md. Arifin, Nurul Hafizah Zainal Abidin

ISSN: 1109-2769 380 Issue 8, Volume 8, August 2009



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 : Numerically calculated values of critical 
Marangoni number, Mc  and the corresponding 
values of Rv, for  different values of controller gain, 
K. in the case Bo  = 0.1, Bi  = 0 and Cr = 0.  
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