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Abstract: In this paper we propose a new Weighted Bootstrap with Probability (WBP). The basic idea of the 
proposed bootstrap technique is to do re-sampling with probabilities. These probabilities become the control 
mechanism for getting good estimates when the original data set contain multiple outliers.  Numerical 
examples and simulation study are carried out to evaluate the performance of the WBP estimates as compared 
to the Bootstrap 1 and Diagnostic-Before Bootstrap estimates.  The results of the study signify that the WBP 
method is more efficient than the other two methods. 
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1 Introduction 
Bootstrap method is a procedure that can be used to 
obtain inference such as confidence intervals for the 
regression coefficient estimates. The bootstrap 
method proposed by Efron with the basic idea of 
generating a large number of sub-samples by 
randomly drawing observations with replacement 
from the original dataset [4, 5]. These sub-samples 
are then being termed as bootstrap samples and are 
used to recalculate the estimates of the regression 
coefficients. Bootstrap method has been successful 
in attracting practitioners in many areas, as its usage 
does not rely on the normality assumption. Kun and 
Yan, for example, did analysis bullwhip effect in 
supply chain model using bootstrap techniques [9]. 
An interesting property of the bootstrap method is 
that it can provide the standard errors of any 
complicated estimator without requiring any 
theoretical calculations.  
  It is now evident that the presence of outliers 
have an unduly effect on the bootstrap estimates. 

Outliers are observations that are markedly different 
from the bulk of the data or from the pattern set by 
the majority of the observations. In a regression 
problem, observations corresponding to excessively 
large residuals are treated as outliers. There is a 
possibility that the bootstrap samples may contain 
more outliers than the original sample because the 
bootstrap re-sampling procedure is with replacement 
[12]. As a consequence, the variance estimates and 
also the confidence intervals are affected and thus 
resulting to bootstrap distribution break down. We 
may use robust estimator to deal with possible 
outliers, but this may not be enough since robust 
estimation is expected to perform well only up to a 
certain percentage of outliers.  
 In this paper, we propose a modification of the 
bootstrap procedure proposed by Imon and Ali [12]. 
The main idea is to form each bootstrap sample by 
re-sampling with probabilities so that the more 
outlying observations will have smaller probabilities 
of selection. We organize this paper as follows – we 
discuss and summarize several existing bootstrap 
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procedures in Section 2; in Section 3 we present the 
newly proposed bootstrap method and examine its 
performance; and finally, some conclusions are 
made in Section 4. 
 
 
2 Some Bootstrap Techniques 
In this paper, the application of bootstrap techniques 
will be applied to multiple linear regression models. 
These models are considered as they are among the 
most popular ones and widely used in various areas 
especially for forecasting or prediction [3, 8, 18]. 
 Let a general linear regression model be in the 
following form 
 

εβXY +=                                 (1) 
 

where Y is a (n x 1) vector of continuous response 
variable, X  is a ( xn p ) data matrix that includes 
the intercept,  is a (β p x 1) vector of unknown 
parameters to be estimated from the data, and ε  is 
an ( n  x 1) vector of unobservable random errors, 
normally and independently distributed with mean 
zero and constant variance . For an ith 
observation, equation (1) can be written as  

2σ

 
yi = +  x1  + … + xk +        (2) 0β 1β kβ iε

 
 It is generally well known that fixed- x  re-
sampling and random- x  re-sampling are the two 
commonly bootstrapping techniques that usually 
used for linear regression model [6, 10, 12, 23]. For 
clarity we summarize the procedures for the two 
techniques in the following sections.  
 
 
2.1 Fixed-x Re-sampling  
In the fixed- x  re-sampling, we generate bootstrap 
replications when the model matrix X  is fixed. We 
treat the fitted values  from the model as giving 
the expectation of the response for the bootstrap 
samples. The fixed-

iŷ

x  re-sampling can be 
summarized as follows: 
 
Step 1. Fit a model to the original sample of 

observations to get  and the fitted values 
= .  

β̂

iŷ )ˆ,( βixf

Step 2. Get the residuals iε = - . iy iŷ
Step 3. Draw  from *

iε iε  and attach to  to get a 

fixed-
iŷ

x  bootstrap value   *
iy

where =  + . *
iy )ˆ,( βixf *

iε
Step 4. Regress the bootstrapped values  on the 

fixed 

*
iy

X  to obtain . *β
Step 5. Repeat Step 3 and Step 4 for B times to get 

 B*1* ˆ,,ˆ ββ K

 
 
2.2 Random-x Re-sampling  
On the other hand, the random- x  re-sampling offers 
a different approach of bootstrapping. Assuming 
that we want to fit a regression model with response 

 and predictors  which forms a sample of  
observations = ( . The following summarizes 
the random-

iy ix
, ii xy

n
'
iz )

x  re-sampling procedure:  
Step 1. The bootstrap data  are 

taken independently with equal probabilities 
 from the original cases 

  

**
11 ),(,,),( nn xyxy K

n/1
,( 1y ),(,),1 nn xyx K

Step 2. Compute  for the bootstrap data set 
 

*β
(,K *

nn
* )x,y,)x,y( 11

Step 3. Repeat Step 1 and Step 2 for B  times to get 
 B** β̂,,β̂ K1

These two re-sampling methods are also known 
by other names. Some authors or researchers refer to 
the fixed- x  re-sampling as bootstrapping the 
residuals of linear regression models or bootstrap 1 
method of linear regression model. Meanwhile, the 
random- x  re-sampling is also known as the 
bootstrapping pairs or case- re-sampling or 
bootstrap 2 methods of linear regression estimate 
[6,10, 12, 15, 16]. 
 
 
2.3 Diagnostic-Before Bootstrap 
A new way of bootstrapping in linear regression was 
proposed by Imon and Ali [12]. The method is 
called Diagnostics-Before Bootstrap. In this 
procedure, the suspected outliers are identified and 
omitted from the analysis before performing 
bootstrap with the remaining set of observations. 
The bootstrap estimates of parameters involve only 
good observations. Outliers are identified using 
robust reweighted least squares (RLS) residuals as 
proposed by Rousseeuw and Leroy [14]. In order to 
compute the RLS residuals, a regression line is fitted 
without the observations identified as outliers by the 
least median square (LMS) technique [13, 14]  
 The matrix X  and Y  are partitioned as follows: 
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X
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⎣

⎡
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R

Y
Y
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where R represents the set of cases ‘remaining’ in 
the analysis and D as the set of ‘deleted’ cases. If 

 represents the vector of the estimated 
parameters after the deletion of  cases, then the 
Diagnostics-Before Bootstrap can be summarized as 
follows: 

)-(ˆ Dβ
d

 
Step 1. Fit a model to the ‘remaining’ observations 

to get  and the fitted values 
= .  

)-(ˆ Dβ
ˆ,( ( D

ix −β)D(
iŷ − ))f

Step 2. Get the residuals = - . )(ˆ D
i
−ε iy )ˆ,( )( D

ixf −β

Step 3. Draw  from  and attach to  
to get a fixed-

)*( D
i
−ε )(ˆ D

i
−ε )(ˆ D

iy −

x  bootstrap values  where 
=  + .   

*
iy

)*( D
iy − ))Dˆ, (β( Rxf i

− )*( D
i
−ε

Step 4. Regress the bootstrapped values  on 
the fixed  to get . 

)*( D
iy −

RX )*(ˆ D−β
Step 5. Repeat Step 3 and Step 4 for B  times to get 

.  )(*)(1* ˆ,,ˆ DBD −− ββ K

 When outliers are present in our data, both fixed-
x  and random- x  re-sampling methods are expected 
to breakdown. This can happen as there is no 
mechanism used to control the presence of outliers 
in the bootstrap samples produced by these methods. 
Consequently, the possibility to have bootstrap 
samples with larger percentage of outliers than that 
in the original data set is high. The Diagnostics-
Before Bootstrap on the other hand accommodates 
the outliers’ influence by first identifying outliers 
based on the robust re-weighted least squares 
residuals as proposed in [14] by applying the weight 
function written in equation (4).  

 

otherw1
52>)(absif0

=
ise,

s.r,
w i

i            (4) 

 
The s in equation (4) is the robust scale estimate 
being defined as  
 

)(median)}]-(5{1[482681 2
irpn/.s +=        (5) 

 
where n is the sample size and p is the number of 
regression coefficients. Each observation would 

either receive weights “0” or “1” which depends on 
its outlyingness. Due to its crude weight assignment, 
the deletion set may not be very accurate and this 
may possibly affect its bootstrap estimates. Thus, in 
the next section, a proposed bootstrap method that is 
expected to accommodate the problem will be 
presented. 
 
 
3 Weighted Bootstrap with 

Probability (WBP)  
Many researchers use a mechanism so that the re-
sampling plan is not so much affected by the 
outlying observations. For example, Amado and 
Pires used an influence function to compute those 
selection probabilities and applied the procedure to 
obtain confidence intervals for the univariate 
location and for the correlation coefficient and 
selection of variables in two group linear 
discriminant analysis [1]. Other authors have 
addressed the problem in slightly different ways for 
different applications. Stromberg, for example 
recommended to use a 50% breakdown S-estimate 
of variability instead of the sample variance for the 
computation of the bootstrap variance estimate [21]. 
Robustifying the bootstrap method by applying 
winsorization for certain L and M estimators was 
proposed by Singh [20].  
 Our proposed bootstrap method also attempts to 
protect the bootstrap procedure against a given 
number of arbitrary outliers. We propose several 
modifications on the Diagnostic-Before Bootstrap 
procedure. Hampel’s weighting psi function will be 
used to determine the weight assigned to each 
observation. These weights are calculated from the 
least median squares (LMS) standardized residuals. 
If we let  to represent the LMS residuals (where 

, then the standardized LMS residuals 

=

ir
n, ),,i K21=

iu
)( i

i

r

a

MAD
r

iw

. The Hampel’s weighting psi 

function (as shown in equation (7) with tuning 
constants  = 1.31,  = 2.039,  = 4 is used to 
compute the weights for all cases of original sample. 
If  denotes the weight for the  observation, 
then this weight is defined as  

b c

i th

 

iw )( iu  = 
i

i

u
uψ )(

.                         (6) 
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(7) 
 

 Based on these weights, we expect that outliers 
in the original sample will receive proper weights 
according to its outlying ness. We expect that only 
the very bad outliers will receive weight “0” and be 
included in deleted set . To protect the whole 
procedure against outliers, we propose to do 
bootstrap re-sampling with probabilities. Thus, the 

observation will get the selection probability of 
 where  

D

thi
ip

ip = 
∑ 1

n

j j

i

w

w

=

                              (8) 

 

For 0 ≤ ≤ 1 and . These probabilities 
become the control mechanism whereby the bad 
observations are ascribed less importance than the 
good ones and thus attributed with lower 
probabilities for re-sampling. 

ip ni ,,21, K=

 Assigning probabilities  to 
{ }, we are now to present 
our newly proposed bootstrap method. Our proposed 
method will be called as the Weighted Bootstrap 
with Probability (WBP). For simplicity, most of the 
notations used in [8] are adopted in this paper. We 
let 

nppp ,,, 21 K

)(,),(),( 2211 nn xyx,yx,y K

R  represents the set of ‘remaining’ cases and D  
represents the set of ‘deleted’ cases. We propose 
that the remaining set R  should contain 
observations with > 0, thus allowing more 
observations to be involved in the bootstrapping 
process. The matrix 

ip

X  and  are as defined in 
equation (3).  

Y

 Let  to denote the vector of the estimated 
parameters after the deletion of  cases and the 

.is estimated by fitting a linear model to the 
remaining observations only, namely the  and 
the . The following steps describe the WBP 
procedure: 

)D-(β̂
d

)D-(β̂

Y
RX

R

 
Step 1: Fit original data with LMS. Apply Hampel’s 

weighting function to identify outliers based 
on the LMS residuals. Fit a model to the 
‘remaining’ observations (with  > 0 ) to 

get  and the fitted values 
= .  

iw
)-(ˆ Dβ

,( ixf)-(ˆ D
iy )ˆ )-( Dβ

Step 2: Get the residuals  = - . )-(ˆ D
iε iy )ˆ,( )-( D

ixf β
Step 3: Draw  from  by re-sampling with 

probabilities as shown in equation (8). 
Attach  to  to get a fixed-

)-*( D
iε

-*( D
iε

)-(ˆ D
iε

)-(ˆ D
iy) x  

bootstrap values  where  = 
 + . 

*
iy

)D-

)-*( D
iy

)ˆ, )-( Dβ( iRxf *(
iε

Step 4: Regress the bootstrapped values  on 

the fixed  to get . 

)-*( D
iy

RX )D-*(β̂
Step 5: Repeat Step 3 and Step 4 for B  times to get 

.  )D-(B*)D-(2*)D-(1* ˆ,,ˆ,ˆ βββ K

In this study, re-sampling with probability in Step 3 
above was done by making use of the available S-
Plus procedure called “sample”.  
 
 
3.1 Examples using real data sets 
It is generally known that least squares estimates are 
very sensitive to the outliers, thus can lead to 
misleading inference. Similarly, as we mentioned 
earlier, not all existing bootstrapping techniques can 
remain efficient when outliers are present. We will 
assess the goodness of our proposed bootstrap 
method, compared to the Bootstrap 1 and 
Diagnostics-Before Bootstrap. Bootstrap 2 is not 
included as its performance was already found to be 
very poor [12]. Two real data sets namely the 
Hawkins-Bradu-Kass data and the Stackloss data 
that commonly used by other researchers for 
validating their robust methods, were used as 
numerical examples. It was reported that the first ten 
observations in Hawkins-Bradu-Kass data set are 
outliers [12]. Meanwhile, Stackloss data set consists 
of 4 outliers [14].  
 For each bootstrap method, 5000 bootstrap sub-
samples were drawn. Least squares estimates for 
each sub-sample were computed. For simplicity, let 
the term  represents the estimate of the B*β̂ thB  

bootstrapped sample and  is the vector for 
estimate from the original sample. To check for the 
stability of the bootstrapped estimates, we 
constructed 95% confidence intervals for the 
bootstrapped regression parameters base on the 
variance of the bootstrapped re-calculated estimates. 
The 95% standard confidence intervals for  is 
defined as 

β̂

jβ

 
(  jβ̂ ±  )                               (9) *

j. sz 0250
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where  is the sample standard deviation of . 
To graphically illustrate the stability of the proposed 
bootstrap procedure, we also displayed the scatter 
plots of -  (where  and j = 1, 
2, …, p ). We expect that a bootstrap procedure is 
stable when  -  is close to zero. 

*
js

β̂

B
j
*β̂

B*
j jβ̂

B*
jβ̂

,50002,1,= KB

jβ̂
 
 For all the bootstrapping techniques discussed 
earlier, the estimate of  is defined as  jβ
 

∑
5000

15000
1

=

=
B

B*
j

*
j β̂β̂ = ∑

5000

1

-

5000
1

=B

)D(B*
jβ̂     (10) 

Hence, the  residual for each bootstrap method 
can be written as 

thi

 
** ˆˆ βε T

iii xy −=                   (11) 
 
Figure 1 - Figure 3 exhibit the plots of ( - ) 

versus ( - ) for Hawkins-Bradu-Kass data. 
Plots for other regression coefficients are not 
displayed here due to space constraint, however 
their results are consistent.  These figures show that 
the proposed bootstrap procedure is the most stable 
estimates followed by the Bootstrap 1 and the 
Diagnostic-Before bootstrap estimates. The plot of 
Figure 3 clearly indicates that the WBP estimates is 
the most stable even with the presence of multiple 
outliers, evidenced by the values of the bootstrap 
biases which are close to zero. On the other hand, 
the Diagnostic-Before bootstrap and the Bootstrap 1 
method fail to provide stable estimates as can be 
observed from Figure 1 and Figure 2. 

B*
0β̂ 0β̂

B*
1β̂ 1β̂

 Bootstrapped residual estimates for Hawkins-
Bradu-Kass data are presented in Table 1. For 
comparison purpose, we also include least squares 
(LS) and re-weighted least squares (RLS) residuals. 
Many authors generally agree that for this data set, 
the robust RLS can generate estimates that most 
likely to be very close to the error true values [12, 
14]. In this respect, we would expect that the more 
robust method would be the one with residuals 
closest to the RLS residuals. From Table 1, it 
reveals that the WBP method is appreciably the 
most robust method since its residuals are very close 
to the RLS residuals. The performance of the OLS 
and Bootstrap 1 are fairly close and not 
encouraging. Their residuals are very far from the 
RLS residuals. It is interesting to note here that both 
the proposed and the Diagnostic-before bootstrap 
methods can easily detect and identify all the 10 

outliers in the given data set. Unfortunately, both the 
least squares and Bootstrap 1 method not only fail to 
identify the correct outliers but suffer masking 
problem.  
 
 

-4 -2 0 2 4

-4
-2

0
2

4

Bootstrap1

 
Figure 1: Plots of ( - ) versus ( - ) for  B*

0β̂ 0β̂
B*

1β̂ 1β̂
Hawkins-Bradu-Kass data using Bootstrap1 method. 
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Diagnostic-before Bootstrap

 

Figure 2: Plots of ( - ) versus ( - ) for B*
0β̂ 0β̂

B*
1β̂ 1β̂

Hawkins-Bradu-Kass using Diagnostic-before  
Bootstrap method. 

 
 
 

-4 -2 0 2 4
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W eighted Bootstrap with Probability (W BP) 

 

Figure 3: Plots of ( - ) versus ( - ) for B*
0β̂ 0β̂

B*
1β̂ 1β̂

Hawkins-Bradu-Kass using Weighted Bootstrap  
with Probability method. 
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Table 1: Bootstrap Residuals for Hawkins-Bradu-
Kass Data  

i LS BOOT1 DIAG WBP RLS 
1 3.380 3.383 8.393 9.740 9.739 
2 3.995 3.998 8.833 10.185 10.183 
3 3.003 3.006 9.057 10.405 10.405 
4 2.561 2.564 8.302 9.656 9.655 
5 3.061 3.065 8.757 10.108 10.107 
6 3.436 3.438 8.652 9.997 9.996 
7 4.513 4.515 9.451 10.797 10.796 
8 3.837 3.840 9.033 10.382 10.381 
9 2.709 2.713 8.414 9.768 9.767 

10 3.039 3.043 8.749 10.104 10.103 
11 -7.831 -7.827 -1.416 -0.063 -0.064 
12 -9.372 -9.367 -1.555 -0.204 -0.202 
13 -6.118 -6.116 -0.721 0.626 0.623 
14 -3.802 -3.803 -1.557 -0.205 -0.215 
15 -0.661 -0.661 -1.839 -0.499 -0.503 
16 0.867 0.866 -0.878 0.461 0.456 
17 0.646 0.647 -1.422 -0.067 -0.073 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
70 0.473 0.474 -0.488 0.866 0.861 
71 0.016 0.016 -1.122 0.225 0.221 
72 0.138 0.139 -1.419 -0.065 -0.071 
73 0.441 0.442 -0.750 0.607 0.602 
74 -0.390 -0.389 -2.076 -0.719 -0.725 
75 -0.347 -0.345 -0.879 0.478 0.474 

 
 
 

 Table 2 presents the least squares (LS) and the 
robust RLS coefficient parameter estimates from the 
original Stackloss data. Meanwhile, Table 3 - Table 
4 illustrate the least squares coefficient parameter 
estimates of the Stackloss bootstrapped sub-
samples. It is worth to mention here that the least 
squares estimates of the original sample is sensitive 
to multiple outliers, but not the robust RLS.  
 We clearly observe that the WBP again repeats 
its excellent performance. The results of Table 3 
indicate that the WBP always outperforms the other 
two bootstrap methods (see Table 4 and Table 5). 
The confidence intervals of the WBP estimates 
signify the narrowest average interval length for all 
of the regression coefficients. On the other hand, the 
confidence intervals for the Bootstrap 1 and the 
Diagnostic-Before Bootstrap give bad results. Their 
average confident lengths are prominently large.  

 
 
 
 
 

Table 2: True Coefficient Estimates obtained 
from the original Stackloss data 
Coefficient 
Parameter  

 
LS 

Robust 
RLS 

0β   -39.920 -37.652 

1β   0.716 0.798 

2β  1.295 0.577 

3β   -0.152 -0.067 
 
 
 

Table 3: 95% Confidence Intervals for 
WBP Bootstrap Estimates using 
Stackloss Data 

 
Coefficient 
Parameter  

 
WBP CI 

WBP 
 CI 

Length 

0β   (-44.088, -31.217) 12.472 

1β   (0.705, 0.890) 0.185 

2β  (0.350, 0.804) 0.454 

3β   (-0.150, 0.016) 0.166 

 
 
 

Table 4: 95% Confidence Intervals for 
Diagnostic Bootstrap Estimates using 
Stackloss Data 

 
Coefficient 
Parameter  

 
Diagnostic CI 

Diagnostic 
CI Length 

0β   (-64.555, -15.284) 49.270 

1β   (0.360, 1.071) 0.711 

2β  (0.424, 2.166) 1.742 

3β   (-0.470, 0.166) 0.636 

 
 
 

Table 5: 95% Confidence Intervals for  
Bootstrap 1 Estimates using Stackloss 
Data 

 
Coefficient 
Parameter  

 
Bootstrap1 CI 

Bootstrap1 
CI Length 

0β   (-60.230, -19.609) 40.621 

1β   (0.481, 0.951) 0.470 

2β  (0.660, 1.931) 1.271 

3β   (-0.424, 0.119) 0.543 
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3.2 Examples using simulated data 
sets 

Examples from the real data sets in Section 3.1 have 
shown that the WBP coefficient estimates are in 
general found to be the most stable bootstrapped 
estimates with the shortest confidence interval 
lengths. In this section we would further investigate 
the robustness of our proposed bootstrap method by 
conducting a simulation study. The simulation study 
was performed using a multiple linear model of 
three predictors.  
 Data sets of size  = 20, 40 and 100 with 
residual outliers = 10% and 20% were created 
based on the adapted simulation design used by 
Sebert et. al [17]. The observations for predictor 
variables were selected at random from the  
distribution. For both good and bad observations, 
their random errors were generated from . 
All outliers were placed away from the good 
observations by a distance of 10 standard deviations 
(standard deviation  = 1). 

n
α

)350( ,U

)10( ,N

σ
 We now illustrate the procedure for creating 
artificial data set for the case of a multiple linear 
model with a single response and three predictor 
variables. Our approach is to randomly generate n  
regression observations. These n  observations 
include the  (clean) observation and the  
outliers (where  =  of n ). Thus altogether, 
we have  +  = n  observations. The  clean 
observations were generated according to the model  

cn

n

0n

0n

0

%α

cn cn

 
iiiii εxβxβxββy

cccc
++++= 3322110        (12) 

 
where  and . The  

and  are from and  respectively. 
The outlying observations were generated from 
the model 

cn,,,i K21=

i (U

o

530 === ββ K

) )10( ,N
ci

x
ε
n

350,

 
iiiii εtyxβxβxββy

cccc
+++++= shif3322110           (13) 

 
where . The residual outliers were 
created when the  represents the number of 
standard deviations (in this study is taken to be 10) 
the outliers are placed away from the good 
observations. For any contaminated data sets of size 

, residuals outliers are placed as the last α% 
observations.  

on,,,i K21=
yshift

n

 Using each of the bootstrap method, we 
generated 1000 bootstrapped random samples. For 

each  bootstrapped sample ( , a 
least squares bootstrapped estimate was computed 
and denoted the  bootstrapped estimate as 

thk )1000,2,1, K=k

thk
k*

jβ̂ ( 3)2,1,0,=j . Based on these re-computed 

, we calculated its standard deviation. The 
bootstrapped standard errors of the WBP procedure 
will be compared to the Bootstrap 1 and 
Diagnostics-Before Bootstrap (DIAG) standard 
errors.  

k*
jβ̂

 Table 6 - Table 8 present the bootstrapped 
estimates using the simulated data. In the 
contaminated data sets, the bad performance is 
observed for both the Diagnostic-Before Bootstrap 
and the Bootstrap 1 estimators. Their bootstrapped 
coefficient estimates are far from the true value. The 
WBP method gives very appealing results with the 
lowest values of standard errors. More serious 
consequences are observed when we increased the 
outlier percentage to 20%. Enhancing the percentage 
of outliers by more than 10% would result to 
significant increase in the bootstrap standard errors. 
In other words, we would suggest that generally, the 
reliability of these bootstrap estimates decreases as 
the percentages of outliers exceed 10%. This is 
noticeable in both the Diagnostic-Before bootstrap 
and the Bootstrap 1 estimates, but no so apparent in 
the WBP estimates.  
 Figure 4 – Figure 9 provide density plots for  
bootstrapped estimate. The plots graphically 
represent the summarized performances of the three 
bootstrap methods for data sets with 10% and 20% 
outliers. It seems that the estimates from the WBP are 
not so much affected as compared to those of the 
Bootstrap 1 and the Diagnostic-Before-Bootstrap 
methods. The advantages of the WBP over other 
methods are more apparent in data sets with big 
sample sizes and for outliers exceeding the level of 
10%. In summary, the results from the experiments 
indicate that the WBP procedure performs well in 
most of the given situations.  

3β
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Table 6 : Bootstrapped Estimates with their respective 
standard errors written in brackets for n =20  

 
Outliers = 10% 

 
Coefficient 
Parameter 

 
WBP 

 
BOOTSTRAP1 

 
DIAG 

0β  5.870 
(0.292) 

16.040 
(6.678) 

10.155 
(8.202) 

1β  5.001 
(0.024) 

4.860 
(0.551) 

5.004 
(0.648) 

2β  4.914 
(0.023) 

5.307 
(0.571) 

4.943 
(0.646) 

3β  4.964 
(0.022) 

4.107 
(0.499) 

4.983 
(0.606) 

 
Outliers = 20% 

 
Coefficient 
Parameter 

 
WBP 

 
BOOTSTRAP1 

 
DIAG 

0β  3.099 
(0.751) 

41.395 
(13.836) 

-0.554 
(20.507) 

1β  5.193 
(0.058) 

2.861 
(1.105) 

5.226 
(1.578) 

2β  5.053 
(0.041) 

3.966 
(0.883) 

5.053 
(1.107) 

3β  4.996 
(0.043) 

3.429 
(0.851) 

4.996 
(1.163) 

 
 

Table 7 : Bootstrapped Estimates with their respective 
standard errors written in brackets for n =40  

 
Outliers = 10% 

 
Coefficient 
Parameter 

 
WBP 

 
BOOTSTRAP1 

 
DIAG 

0β  5.569 
(0.547) 

13.261 
(5.695) 

2.442 
(7.304) 

1β  4.965 
(0.029) 

4.724 
(0.287) 

4.967 
(0.336) 

2β  4.990 
(0.029) 

4.356 
0.300 () 

5.017 
(0.372) 

3β  5.003 
(0.033) 

4.966 
(0.333) 

5.046 
(0.394) 

 
Outliers = 20% 

 
Coefficient 
Parameter 

 
WBP 

 
BOOTSTRAP1 

 
DIAG 

0β  5.718 
(0.682) 

32.694 
(10.243) 

9.898 
(11.998) 

1β  4.969 
(0.032) 

4.253 
(0.514) 

4.982 
(0.578) 

2β  4.980 
(0.028) 

4.076 
(0.419) 

4.985 
(0.488) 

3β  4.981 
(0.033) 

4.378 
(0.508) 

4.981 
(0.566) 

Table 8 : Bootstrapped Estimates with their respective 
standard errors written in brackets for n =100  

 
Outliers = 10% 

 
Coefficient 
Parameter 

 
WBP 

 
BOOTSTRAP1 

 
DIAG 

0β  5.084 
(0.276) 

19.264 
(4.688) 

7.665 
(5.269) 

1β  5.024 
(0.014) 

4.382 
(0.233) 

5.004 
(0.286) 

2β  4.972 
(0.016) 

5.061 
0.257 () 

4.967 
(0.318) 

3β  4.996 
(0.015) 

4.405 
(0.237) 

4.987 
(0.275) 

 
Outliers = 20% 

 
Coefficient 
Parameter 

 
WBP 

 
BOOTSTRAP1 

 
DIAG 

0β  4.739 
(0.391) 

41.903 
(7.131) 

4.513 
(8.984) 

1β  4.994 
(0.021) 

4.010 
(0.398) 

5.006 
(0.489) 

2β  5.036 
(0.023) 

3.279 
(0.423) 

5.048 
(0.544) 

3β  5.003 
(0.020) 

4.155 
(0.374) 

4.989 
(0.453) 
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Figure 4: Density plots of bootstrapped coefficient 
estimates for  using contaminated data set with 
sample size n=20 and 10% residual outliers 
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Figure 5: Density plots of bootstrapped coefficient 
estimates for  using contaminated data set with 
sample size n=20 and 20% residual outliers 
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Figure 6: Density plots of bootstrapped coefficient 
estimates for  using contaminated data set with 
sample size n=40 and 10% residual outliers 
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Figure 7: Density plots of bootstrapped coefficient 
estimates for  using contaminated data set with 
sample size n=40 and 20% residual outliers 
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Figure 8: Density plots of bootstrapped coefficient 
estimates for  using contaminated data set with 
sample size n=100 and 10% residual outliers 
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Figure 9: Density plots of bootstrapped coefficient 
estimates for  using contaminated data set with 
sample size n=100 and 20% residual outliers 

3β

 
 
4 Conclusion 
In this paper, we propose a new bootstrap method to 
reduce the effect of outliers on the bootstrap 
estimates. The numerical studies suggest that 
Bootsrap 1 performs poorly in the presence of 
outliers. The Diagnostic-Before bootstrap is more 
efficient than the Bootstrap 1 but it is not 
sufficiently robust because it is not very stable and 
has relatively large confidence interval lengths.  
 The WBP method consistently outperformed the 
Bootstrap 1 and Diagnostic-Before bootstrap 
methods. It emerges that the Hampel’s weighting 
function and re-sampling probability schemes 
introduced in the WBP procedure help to improve 
the performance of the bootstrapped estimates. The 
results of the study clearly indicate that the WBP is 
the best estimator as it is consistently provides stable 
estimates, closest residuals to the error true values 
and shortest average confident length. Hence, it 
should provide a robust alternative to other existing 
bootstrap methods.  
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