
The Performance of Robust Weighted Least Squares in the Presence of 
Outliers and Heteroscedastic Errors 

  
 

HABSHAH MIDI1, MD. SOHEL RANA2, AND A. H. M. RAHMATULLAH IMON3 

 

1,2 Laboratory of Applied and Computational Statistics, 
Institute for Mathematical Research, University Putra Malaysia, 

43400 Serdang, Selangor,  
MALAYSIA 

 
3Department of Mathematical Sciences, Ball State University, 

Muncie, IN 47306,  
U.S.A. 

E-mail: 1habshahmidi@gmail.com, 2srana_stat@yahoo.com, 3imon_ru@yahoo.com 

 
 
Abstract: The Ordinary Least Squares (OLS) method is the most popular technique in statistics and is often use 
to estimate the parameters of a model because of tradition and ease of computation.  The OLS provides an 
efficient and unbiased estimates of the parameters when the underlying assumptions, especially the assumption 
of contant error variances (homoscedasticity), are satisfied.  Nonetheless, in real situation it is difficult to retain 
the error variance homogeneous for many practical reasons and thus there arises the problem of 
heteroscedasticity. We generally apply the Weighted Least Squares (WLS) procedure to estimate the regression 
parameters when heteroscedasticity occurs in the data. Nevertheless, there is evidence that the WLS estimators 
suffer a huge set back in the presence of a few atypical observations that we often call outliers.  In this situation 
the analysis will become more complicated.  In this paper we have proposed a robust procedure for the 
estimation of regression parameters in the situation where heteroscedasticity comes together with the existence 
of outliers. Here we have employed robust techniques twice, once in estimating the group variances and again in 
determining weights for the least squares. We call this method Robust Weighted Least Squares (RWLS).  The 
performance of the newly proposed method is investigated extensively by real data sets and Monte Carlo 
Simulations. The results suggest that the RWLS method offers substantial improvements over the existing 
methods. 
 
Key-words: Heteroscedasticity, Outliers, Robust Estimation, Robust Weighted Least Squares, Monte Carlo 
Simulation  
  
 
1.  Introduction 
In linear regression analysis the ordinary least 
squares (OLS) technique is widely used to fit the 
model mainly because of tradition and ease of 
computation. Under certain assumptions the OLS 
estimators possess some very nice and desirable 
properties. Significance tests and confidence 
intervals involving regression coefficients are 
available in popular statistical packages that 
researchers use regularly. But the validity of the 
tests and the coverage probability of confidence 
intervals depend largely on the extent to which the 
model's assumptions are met.   
       

  
 Among the assumptions of the OLS regression 
model, homoscedasticity is a rather stringent one 
that is unlikely to hold in many applied settings. 
Researchers often encounter situations in which the 
variance of the dependent variable is related to the 
values of one or more explanatory variables, 
resulting in heteroscedasticity. In such a situation, a 
variance model based on the explanatory variables 
can produce weights for the weighted least squares 
estimator (see [5], [6], [11], [22]). Weighted least 
squares, which is a special case of the generalized 
least squares estimator, is optimal if the covariance 
structure of the errors is known (see [18]). But 
usually, the error covariance structure is not known 
in advance. In that case, researchers can use esti-
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mated generalized least squares (see [4], [17], [20]) 
instead. 
 In the presence of heteroscedasticity, the OLS 
estimators are still unbiased.  However, the most 
damaging consequence of heteroscedasticity is that 
the OLS estimator of the parameter Covariance 
Matrix (OLSCM), whose diagonal elements are 
used to estimate the standard errors of the regression 
coefficients, becomes biased and inconsistent. As a 
consequence, the t tests for individual coefficients 
are either too liberal or too conservative depending 
on the form of heteroscedasticity. Therefore, a 
natural question comes to our mind is whether we 
can find an alternative variance estimator that 
remains consistent under heteroscedasticity. In this 
case, a Heteroscedasticity Consistent Covariance 
Matrix (HCCM) proposed by White (see [28]) is 
used to solve the consistency problem of the 
estimator. 
 But there is evidence that a few atypical ob-
servations (outliers) can make all the estimation 
procedures meaningless (see [2], [19], [21], [24]). 
In the presence of outliers we have some robust 
techniques for the detection of heteroscedasticity 
(see [13], [23]). Unfortunately we do not have 
much robust techniques available in the literature 
for the estimation of parameters in the presence of 
heteroscedasticity and outliers. Although 
heteroscedasticity does not cause any biasness 
problem to the OLS estimators, the OLS can easily 
be affected by the presence of outliers. The 
weighted least squares also suffer the same 
problem in the presence of outliers (see [19]) and 
can make a huge interpretive problem in the 
estimation technique. Generally speaking, none of 
the estimation techniques work well unless we 
eliminate/reduce the effect of outliers in a 
heteroscedastic regression model. This problem 
motivates us to develop a new and more accurate 
estimation technique, when heteroscedasticity and 
outliers occurs at the same time. Our proposed 
method can handle heteroscedastic problem as we 
have used different weights for different group 
variances. At the same time our method is outlier 
resistant because we have employed robust 
techniques in estimating the group variances and 
again in determining weights for the least squares. 
Real data sets and Monte Carlo simulations support 
our view that the newly proposed robust weighted 
least squares method outperforms the existing 
estimation techniques in the presence of 
heteroscedasticity and outliers.  
 
 
 

2. Estimation of Heteroscedastic 
Regression Model 
Consider a linear regression model  
y X= β +ε                                                          (1) 

where y is the 1n×  vector of observed values for 
the response variables, X is the of predictors n p×
including the intercept, β is a 1p× vector of 
regression parameters, and ε is the  vector of 1n×
errors. The errors are assumed to be normally 
distributed, with mean 0 and constant variance 2σ . 

The OLS estimator of regression coefficients is 
1ˆ ( )T TX X X yβ −= , and the 

1 1ˆvar( ) ( ) ( )T T TX X X X X Xβ − −= Ω                       (2) 
where ( )TE εε = Ω , a positive definite matrix. 
Equation (2) simplifies to  

2 1ˆvar( ) ( )T −X Xβ σ                                            (3)                   =

if the errors are homoscedastic, that i ns 2IσΩ = . 

If the errors are heteroscedastic, that is 2VσΩ = , 
equation (2) becomes  

2 1 1ˆvar( ) ( ) ( )T T TX X X VX X Xβ σ − −=                    (4) 
The above problem can be solved by transforming 
the model to a new set of observations that satisfy 
the standard least squares assumptions. Then the 
OLS is applied on the transformed data. Since 

is the covariance matrix of the errors, V must 
be nonsingular and positive definite, and        

2Vσ

1 1 1ˆ ( )T T
GLS X V X X V yβ − − −=                                  (5) 

 is the generalized least squares (GLS) estimates of 
β . When the errors ε  are uncorrelated but have 
unequal variances, the covariance matrix of ε  is 
written as , i = 1, 2, …, n 
.Consequently, the GLS is the solution of the 
heteroscedastic model. If we define W

2 / ]iV di wσ = [1ag

1V −= , W 
becomes a diagonal matrix with diagonal elements 
or weights 1 2 . From equation (5), the 
weighted least squares estimator is 

, ,...,w w

1( )T

nw

Tˆ
WLS X WX X−

2 1( )T
WLS WXβ σ

Wy

X −

β =

ˆ( )WLSV =

 and 

 where 
2

2 ˆi iw
n pWLS

ε
σ =

−
∑ . 

If the heteroscedastic error structure of the 
regression model is known, it is easy to compute 
the weights of W matrix, and consequently the 
WLS would be a good solution of heteroscedastic 
regression model. Unfortunately, in practice, the 
structure of the heteroscedastic error is unknown.  
 
 

WSEAS TRANSACTIONS on MATHEMATICS Habshah Midi, Md. Sohel Rana, A. H. M. Rahmatullah Imon

ISSN: 1109-2769 352 Issue 7, Volume 8, July 2009



3. Robust Weighted Least Squares 
(RWLS) 
Several attempts have been made in the literature to 
estimate the parameters of the regression model 
with unknown heteroscedastic error structure (see 
[7], [8], [9], [15], [16], [28]). Montgomery et al. 
(see [20]), proposed a WLS methods to solve this 
problem by developing weighting techniques that 
are later used for estimating the parameters of a 
heteroscedastic model. Instead of fitting regression 
with all the data, Montgomery et al. (see [20]) 
suggested finding several “near-neighbor” groups 
in the explanatory variable. We refer to this method 
as the Montgomery, Peck and Vining (MPV) 
method. The group means would now represent the 
explanatory variables (X). The groups in the 
response variable Y is formed in accordance with 
the groups formed in X. The sample variance of 
each groups of Y and the mean of each group of X 
are then computed. These group variances in Y are 
then regressed on the corresponding group mean of 
X. In the presence of heteroscedasticity we expect 
variations in errors among these groups. Hence the 
inverse of the fitted response can be used as 
weights for stabilizing variance heterogeneity. The 
values of X are first sorted to form near neighbor 
groups.            
 The main limitation of the preceding 
mentioned estimators is that they are very sensitive 
to outliers. It is important to point out that it is very 
difficult to know the exact heteroscedastic pattern 
if outliers occur in the data.  In this situation, it is 
really difficult to find a suitable weights for the 
weighted least squares procedures. The main 
shortcoming of the MPV method is that both the 
group mean and the group variance are computed 
from non-robust methods which are very sensitive 
to the presence of outliers. It is now evidence that 
the classical mean and standard deviation are easily 
affected by outliers (see [19,24]). Consequently, 
the resulting weight of the MPV would not be 
useful in stabilizing the error variances and hence 
the fitting of the model will not be that efficient.  A 
more effective way to deal with this problem is to 
replace the non-robust mean and standard 
deviations with the robust measures such as the 
median and median absolute deviations (MAD). 
However, based on our study, it is not sufficient to 
remove the effect of outliers just by replacing the 
classical mean and classical standard deviation by 
median and MAD. In order to improve the 
precision of the MPV estimator, we propose to 
consider a robust weighting function for dampening 
the influence of outlying cases. The main attraction 

of this method is that it still can retain the 
unbiasness properties in the presence of 
heteroscedasticty and outliers. The proposed 
Robust Weighted Least Squares (RWLS) method 
consists of the following steps: 
Step 1: Identify several “near-neighbors,”  groups 
in the explanatory variables which correspond to 
the observations which are reasonably close to each 
other or have approximately repeated points in the 
explanatory variables (X). The number of “near-
neighbors,”  groups is denoted as g. 
Step 2: Next we calculate Med ( ( )jX ), j = 1, 2, …, 
g, the median for each group of the explanatory 
variables (X) and also compute  MAD 
( jY )=Median {| ( )j jYY Median− |} from the g 
groups of the response variables (Y) corresponding 
to the groups of (X). 
Step 3: Regress {MAD ( jY )}  on Med (2

( )jX ) by 
the Least Trimmed of Squares (LTS) method (see 
[24]) and compute the regression coefficients from 
this fitting. 
Step 4: Obtain the LTS regression line of y on x’s 
by using the parameter estimates computed in Step 
3.  Calculate the fitted values of y based on the 
values of the variables X’s. 
Step 5: The inverse of these absolute fitted values 
denoted by  will be the initial weight.  The final 
weight can be acquired from any robust weight 
functions, but in this study, we will use the  Huber 
(see [10]) weights function which is defined as 

1iw

2

1 | | 1.3
1.345 | | 1.345

| |

i

i
i

i

e
w

e
e

≤⎧
⎪= ⎨ >⎪
⎩

45
 

The constant 1.345 is called the tuning constant and 
the is the standardized residuals of the LTS 
obtained from step 3. We multiply the weight  
with the weight to get the final weight . 

ie

1iw

2iw iw
Step 6: Finally perform a WLS regression using 
final weights . The regression coefficients iw
obtained from this WLS regression are the desired 
estimate of the heteroscedastic model.  
 
 
4. Numerical Examples 
In this section we consider few examples to show 
the advantages of using RWLS estimator in the 
presence of heteroscedasticity and outliers. 
 
 
4.1 Restaurant Food Sales Data 
Our first example is taken from Montgomery et al. 
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(see [20]) which presents the average monthly 
income (y) corresponding to their predictor 
variables of 30 restaurants. We deliberately change 
two data points (in the parenthesis) to create 
outliers in the data which are shown in Table 1. 
The OLS, MPV, and RWLS were then applied to 
the original and modified data.  

Figure 2.  
20000

10000

0

-10000

-20000

    Let us first focus our attention to the OLS 
residual plot of the original data against the fitted 
values which is presented in Figure 1. If the 
variances of the error terms are constant then one 
can expect that the residuals are randomly 
distributed around zero residual, without showing 
any systematic trend. This plot clearly indicates a 
violation of the constant variance assumption. This 
signifies that the OLS fit is inappropriate here, as 
there is a clear indication of heterogeneous error 
variances. To correct this non-constancy of error 
variances for the original data, by using the WLS, 
requires a known weights, . We apply the MPV iw
and the proposed RWLS methods to this data. To 
apply the MPV to the data, we first need to 
determine the “near-neighbor” groups. By 
examining the data as shown in Table 1, we 
observe that there are several sets of x values that 
are “near-neighbors,” that is, observations which 
have approximate repeat points of x. We will 
assume that these near neighbors are close enough 
to be considered as repeat points. Once the near 
neighbors are identified, the variance of the 
response at those considered repeat points are 
computed, and then we observe how var(y) changes 
with x. The weights,  are obtained according to iw
the MPV algorithm. The MPV residuals are plotted 
against the weighted fitted values of  as shown in ŷ
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Fig. 1 Plot of OLS residuals versus fitted values 
(Original data)  
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Fig. 2 Plot of MPV residuals versus fitted values 
(Original data) 

 
 
 

 
 

 
Table 1 Restaurant food sales data (Original and Modified) 

Index Income (Y) Advertising 
Expense  (X) 

Index Income (Y) Advertising  
Expense (X) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

81464 
72661 
72344 
90743 
98588 
96507 

126574 
114133 

115814 (315814) 
123181 
131434 
140564 
151352 
146926 
130963 

3000 
3150 
3085 
5225 
5350 
6090 
8925 
9015 
8885 
8950 
9000 

11345 
12275 
12400 
12525 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

146630 
147041 
179021 
166200 
180732 
178187 
185304 
155931 
172579 
188851 
192424 
203112 
192482 
218715 

214317(314317) 

12310 
13700 
15000 
15175 
14995 
15050 
15200 
15150 
16800 
16500 
17830 
19500 
19200 
19000 
19350 
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Fig. 3 Plot of RWLS residuals versus fitted values 
(Original data) 
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Fig. 4 Plot of MPV residuals versus fitted values 
(Modified data) 
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Fig. 5 Plot of RWLS residuals versus fitted values 
(Modified data) 
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Fig. 6 Plot of MPV residuals versus fitted values 
(Modified data) 
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Fig. 7 Plot of RWLS residuals versus fitted  
values (Modified data) 
 
This plot indicates much improvement when 
compared to Figure 1 of the OLS fit. Figure 3 
displays the residuals of the RWLS estimates 
against the RWLS fitted values of . We observe ŷ
from this plot that this transformation also helps in 
producing constant error variances. It is now 
evident from Figures 2 and 3 that in the absence of 
outliers, the performance of the MPV and the 
RWLS are equally good. In order to see the effect 
of outliers in the presence of heteroscedasticity, we 
would like to consider the modified Restaurant 
Food Sales data. We deliberately put two outliers at 
the 9th and 30th positions in the original Restaurant 
Food Sales data to create outliers. We apply the 
LTS method to confirm that these two modified 
data are outliers. We applied the MPV and the 
RWLS methods to the modified data and display 
their residual plots in Figures 4 and 5. 
  It is interesting to note here, regarding the plots 
observed in Figures 4 and 5. Unlike Figures 2 and 
3, the plots of Figures 4 and 5 do not show a clear 
indication of whether heteroscedastic problem has 
been solved.  These results are as expected, because 
the outliers can destroy the real picture of the 
heteroscedasticity. 
To get a clearer picture about the real situation, the 
fitted values and the residuals corresponding to the 
two outliers are omitted.  The residual plots of the 
MPV and the RWLS are again re-plotted without 
these two observations.  These two plots are shown 
in Figures 6 and 7.  The plot of Figure 6 shows that 
the MPV method is affected by outliers. The fan 
shape of Figure 6 signifies that, the MPV cannot 
remedy the problem of heteroscedasticity in the 
presence of outliers.  On the other hand, the RWLS 
plot of Figure 7 indicates that the RWLS can solve 
the heteroscedasticity even for data which have 
outliers. Table 2 presents the summary statistics, 
such as the standard errors and the t values of the 
estimated regression coefficient of the original and 
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Table 2 Summary statistics for the restaurant food 
 sales data (Original and Modified) 
Methods Data Type Estimate SE t-value 

OLS Original  8.0489 0.3257 24.713 
 Modified  8.1637 1.4786 5.5212 

MPV Original  7.9288 0.2528 31.3541
 Modified  8.1637 1.4786 5.5212 

RWLS Original  7.933956 0.2557 31.0177
 Modified  8.087738 0.4629 17.4685

 
modified data. The results of Table 2 reveal that in 
the absence of outliers, the RWLS estimates are 
reasonably close to the MPV estimates with respect 
to the estimated regression parameters, Standard 
errors, and  t-values. The presence of outliers 
changes things dramatically. The OLS and the 
MPV estimates immediately affected by outliers. 
However, the RWLS seems to be only slightly 
affected by outliers. The summary statistics 
exemplified in Table 2 signify that the RWLS 
method does a superb job for both original and 
modified data. The RWLS possesses the lowest 
standard errors of the parameter estimates, and the 
largest t values compared to the OLS and the MPV. 
 
 
4.2 Simulated High Leverage Data with  
Heterogeneous Variances  
Our next example is a data set (see Table 3) taken 
from Imon (see [12]) which is generated in similar 
way as it was done by Ryan (see [25]) to study the 
heterogeneity of variances. The essential 
difference, however, is that here the explanatory 
variable X contains high leverage points. Although 
this data set is artificial in nature, it gives us a 
better understanding about the results. Here we 
clearly know the structure of the data, but for the 
real data there is always uncertainty about the 
nature of the observations (see [3]). There is a good  
 
Table 3 Simulated High Leverage Data with 
Heterogeneous Variances 
Index Y X Index Y X 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2.9003 
5.8499 
1.5382 
6.2404 
8.2405 
1.7757 
0.1720 
12.6976 
5.1139 
10.8171 

1.0 
1.0 
1.5 
1.5 
2.0 
2.0 
2.5 
2.5 
3.0 
3.0 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1.2638 
14.3819 
12.2122 
4.1828 
-0.4158 
20.4436 
-1.9150 
21.2692 
74.5689 
70.2012 

3.5 
3.5 
4.0 
4.0 
4.5 
4.5 
5.0 
5.0 
10.0 
10.0 

reason to believe that if the variances of errors 
depend on X, it is expected that unusual Y values  
would correspond to unusual X values. Hence it is 
more likely that high leverage points would also 
produce large errors and thus they may become 
outliers. Table 3 presents similar type of data. To 
generate this data we set ten values of X as 1, 1.5, 
2, 2.5, 3, 3.5, 4, 4.5, 5 and 10. Each of the 
observations is replicated once to produce 20 
observations. The Y values are generated based on 
the following function 

1 2i i iY X ε= + +   i=1, 2, …, 20.                          (6) 
where the true errors ( iε ) are generated using 

3ii iXσ = to produce heteroscedastic errors. All 
three methods were then applied 
to this data.  The OLS residuals plot in Figure 8 
with funnel shape gives a clear indication of 
violation of the constant variance assumption and 
two outliers are also identified.  
 Nonetheless, it is difficult to judge by looking 
at the MPV and the RWLS residual plots of Figures 
9 and 10 whether the problem of heteroscedasticity 
has been solved or not.  In order to see the effect of 
outliers on the MPV and the RWLS, the residual 
plots of both estimates are re-plotted with residuals 
corresponding to the two outliers are omitted (19th 
and 20th observations). These residual plots are 
illustrated in Figures 11-12. 
 It can be observed from Figure 11 that   the 
MPV method still shows the heteroscedastic pattern 
whereas in Figure 12, the proposed RWLS shows a 
substantial improvement. The results of Table 4 
signify that the OLS and the MPV method cannot 
retain their unbiasedness properties in the presence 
of outliers. Nevertheless, there is no such type of 
biasness problem for the RWLS method. The 
RWLS estimates give the least bias and least 
standard errors when compared to the  other 
estimates. From these results, it seems that all 
estimators except the RWLS are very sensitive to 
outliers and heteroscedastic errors. Just by  
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Fig. 8 Plot of OLS residuals versus fitted values 
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Fig. 9 Plot of MPV residuals versus fitted values 
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Fig. 10 Plot of RWLS residuals versus fitted values 
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Fig. 11 Plot of MPV residuals versus fitted values 
(without outliers) 
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Fig. 12 Plot of RWLS residuals versus fitted values  
(without outliers) 

 
observing the results of some data, we cannot make 
a general conclusion yet, but a reasonable 
interpretation up to this stage is that the RWLS is 
less affected by outliers and heteroscedasticity 
compared to the other estimators.  
 
Table 4 Summary statistics for Simulated High 
Leverage Data with Heterogeneous Variances 
 

Methods Estimate Bias SE 
(Estimate) t-value

OLS 7.3660 5.366 0.9929 7.4188
MPV 4.6399 2.6399 1.4543 3.1903

RWLS 2.0970 0.0970 0.9255 2.2657
 
 
5. Monte Carlo Simulation Results  
Here we report a Monte Carlo simulation study that 
is designed to assess the performance of the RWLS 
method. We reuse a model proposed by Lipsitz et 
al. (see [14]) based on a fixed design matrix. For 
the simulations, we used the model: 

3 2i i iy x= ε+ +                                                 (12) 
To generate the X values, first we fixed the 50 
sample size from uniform distribution with 
different groups. We take the first 10 random 
sample from Uniform (10, 1, 9), the second 10 from 
Uniform (10, 10, 19), the third 10 from Uniform 
(10, 20, 29), the fourth 10 from Uniform (10, 30, 
39), and the fifth 10 from Uniform (10, 40, 49). 
Now we have fixed X sample with sample size 50. 
The error terms were generated such that they will 
induce heteroscedasticity.  In this respect, iε is 

generated according to this relation, i ixε ε ∗=  

where ε ∗ were drawn from standard normal 
distribution with mean zero and variance one. For n 
= 100, we doubled the fix X sample size.  We 
increase the sample size four times and six times to 
produce sample of size 200 and 300, respectively. 
Then we start to contaminate the data. We 
randomly replace few good data points with certain 
percentage of outliers. The outliers are created by 
computing the average and the standard deviation 
 of the n residuals which are generated 
byε ∗ ~N(0,1). Then we take  12σ  distance which 
is equivalent to  12sεε ∗

∗±  and denoted this value 
as . The heteroscedastic error with outliers .contε ∗

are generated such that .In this ( .i cont i contx ε ∗
)ε = .

situation, it is more likely that these points would 
produce big residuals indicating outliers in the data  
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Table 5 Simulated summary statistics for coefficient β  (True value = 2) 
Percentage of Outliers Methods Sample Size Measures 

0% 5% 10% 15% 20% 
OLS n = 50 Estimate 2.0030 2.9234 3.9757 6.3272 5.0667 

  SE 0.2811 1.3109 1.4177 1.7692 1.7629 
  t-value 7.2549 2.3353 2.8072 3.5790 2.8767 
 n = 100 Estimate 1.9944 2.9871 3.5369 5.4579 5.0770 
  SE 0.2002 0.7376 0.9353 1.2046 1.2367 
  t-value 10.0544 4.0525 3.7837 4.5328 4.1070 
 n = 200 Estimate 2.0013 2.7692 3.5381 5.4652 5.0556 
  SE 0.1418 0.4881 0.6600 0.8486 0.8691 
  t-value 14.1733 5.6751 5.3621 6.4414 5.8178 
 n = 300 Estimate 2.0000 2.8303 3.5226 5.4146 5.0119 
  SE 0.1157 0.4073 0.5365 0.6897 0.7070 
  t-value 17.3262 6.9506 6.56631 7.8507 7.0894 

MPV n = 50 Estimate 2.0029 3.2624 3.7298 5.7155 5.1502 
  SE 0.2264 0.7931 1.1403 1.3603 1.3892 
  t-value 9.1832 4.1134 3.2708 4.2016 3.7073 
 n = 100 Estimate 1.9928 2.8593 3.5823 5.1935 5.1526 
  SE 0.1653 0.5917 0.7299 0.9295 0.9617 
  t-value 12.0556 4.8323 4.9079 5.5874 5.3578 
 n = 200 Estimate 1.9980 2.7875 3.5678 5.1862 4.9856 
  SE 0.1219 0.3807 0.5114 0.6593 0.6862 
  t-value 16.3904 7.3220 6.9765 7.8662 7.2655 
 n = 300 Estimate 1.9986 2.7754 3.4741 5.1134 5.0189 
  SE 0.0990 0.3235 0.4267 0.5478 0.5563 
  t-value 20.1878 8.5792 8.1417 9.3344 9.0219 

RWLS n = 50 Estimate 2.0014 2.07734 2.0646 2.1856 2.1405 
  SE 0.1942 0.3459 0.4411 0.4963 0.5527 
  t-value 10.7714 6.4302 5.1521 4.7124 4.1756 
 n = 100 Estimate 1.9956 2.0234 2.0696 2.1981 2.1207 
  SE 0.1413 0.2562 0.2970 0.3689 0.4342 
  t-value 14.8697 8.8270 7.6176 6.4632 5.3757 
 n = 200 Estimate 1.9983 2.0314 2.0433 2.1793 2.1176 
  SE 0.1075 0.1753 0.2409 0.2883 0.3244 
  t-value 20.2500 12.6438 9.5899 8.2559 7.1909 
 n = 300 Estimate 1.9981 2.0000 2.0461 2.1655 2.0998 
  SE 0.0882 0.1689 0.2053 0.2535 0.2734 
  t-value 24.0742 13.5217 11.2123 9.5193 8.4921 

 
set. We replace some iε with the contaminated 

( .)i contε based on the percentage of contamination.  
In our study, we choose 5%, 10%, 15% and 20% 
level of contamination. The OLS, MPV, and 
RWLS are then applied to these data.  In each 
simulation run, there were 10,000 replications.   
Table 5 presents the average measures of the 
regression coefficients and their corresponding 
standard errors and t-statistics for different 
percentage of outliers for different sample sizes. It 
can be observed that when there is no outliers the 

OLS, MPV and the RWLS give close estimates to 
the true value of the parameters. These results 
suggest no biasness problem of the regression 
parameters. The results also suggest that these 
estimates get even closer to the true value as the 
sample s izes get  larger .  The presence of 
heteroscedasticity retains the unbiasedness property 
of the OLS estimates. However, our prime interest 
is to investigate the effect of both outliers and 
heteroscedasticity on the regression coefficients, 
standard errors and the t-values. Several interesting 
points emerge from Table 5.  As can be expected,
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Table 6. Simulated information criteria for different estimation techniques. 
Percentage of Outliers Methods Sample Size Measures 

0% 5% 10% 15% 20% 
OLS n = 50 AMSEE 0.0994 0.9477 3.9883 18.7945 9.4849 

  MSE 56.7786 224.3825 286.3569 357.3529 356.0769 
  AIC 548.8587 687.1766 711.5668 733.7142 733.3572 
  BIC 554.5947 692.9127 717.3029 739.4502 739.0933 
 n = 100 AMSEE 0.0472 1.0188 2.4059 11.9964 9.5082 
  MSE 57.1968 210.6950 267.1664 344.0931 353.2785 
  AIC 1096.1420 1357.8380 1405.3320 1455.9390 1461.2080
  BIC 1103.9570 1365.6530 1413.1470 1463.755 1469.0240
 n = 200 AMSEE 0.0245 0.6145 2.3879 12.0271 9.3559 
  MSE 57.2942 197.1919 266.6284 342.8170 351.1175 
  AIC 2189.9520 2685.223 2805.8980 2906.4330 2916.0040
  BIC 2199.8470 2695.1180 2815.7930 2916.3280 2925.8990
 n = 300 AMSEE 0.0163 0.7047 2.3331 11.6727 9.0848 
  MSE 57.2844 201.5165 265.4738 341.2798 349.8193 
  AIC 3283.2780 4038.8670 4204.2560 4354.9670 4369.7960
  BIC 3294.3890 4049.9780 4215.3670 4366.0790 4380.9080

MPV n = 50 AMSEE 0.0633 1.6563 3.0383 13.9038 10.0154 
  MSE 0.0310 1.5753 2.1691 2.0841 2.1418 
  AIC 524.1677 651.4896 681.4489 696.0028 706.367 
  BIC 529.9038 657.2257 687.1850 701.7389 712.1013 
 n = 100 AMSEE 0.0293 0.7635 2.5360 10.2201 9.9754 
  MSE 0.9323 1.5494 1.8234 1.8095 2.2657 
  AIC 1048.9140 1297.2970 1349.6120 1390.6180 1404.44 
  BIC 1056.7290 1305.1120 1357.4280 1398.4330 1412.2550
 n = 200 AMSEE 0.0147 0.6354 2.4730 10.1633 8.9246 
  MSE 0.9410 1.4188 1.9333 1.8297 2.1854 
  AIC 2102.3720 2573.3920 2690.9210 2776.6550 2806.9340
  BIC 2112.2670 2583.2870 2700.8160 2786.5500 2816.8290
 n = 300 AMSEE 0.0103 0.6097 2.1812 9.7014 9.1216 
  MSE 0.9264 1.6574 1.9389 1.8977 2.1847 
  AIC 3152.9900 3866.2040 4043.3940 4168.6940 4204.1600
  BIC 3164.1010 3877.3160 4054.5060 4179.7610 4215.2710

RWLS n = 50 AMSEE 0.0705 0.0917 0.1127 0.1331 0.8383 
  MSE 0.90701 0.8788 0.7967 0.7848 0.7786 
  AIC 511.8869 572.8702 599.4941 613.6786 630.1075 
  BIC 517.623 578.6063 605.2301 619.4147 635.8436 
 n = 100 AMSEE 0.0336 0.0369 0.0429 0.0831 0.0656 
  MSE 0.9530 0.8127 0.8686 0.7841 0.8576 
  AIC 1023.6320 1141.7130 1183.7650 1226.5710 1272.9090
  BIC 1031.4470 1149.5280 1191.5810 1234.3860 1280.7420
 n = 200 AMSEE 0.0175 0.0185 0.0215 0.0540 0.0364 
  MSE 0.9937 0.8861 0.8723189 0.7990 0.8749 
  AIC 2054.0150 2265.2550 2402.2160 2478.0900 2557.6870
  BIC 2063.9100 2275.1500 2412.1100 2487.9850 2567.5820
 n = 300 AMSEE 0.0122 0.0121 0.0157 0.0425 0.0236 
  MSE 0.9878 0.8482 0.8838 0.8125 0.8812 
  AIC 3089.5800 3466.4380 3623.6290 3744.3140 3845.2200
  BIC 3100.6910 3477.5500 3634.7400 3755.4250 3856.3320

both the OLS and the MPV estimates retain 
unbiasedness only when there is no outliers in the 
data.  But as the percentage of outliers increases, 
the OLS estimates move away from the true values 

drastically, followed by the MPV estimates.  The 
results also point out that the standard errors of the 
OLS and MPV estimates are larger than the RWLS 
and their t-values are relatively small. It is 
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important to note that the RWLS produces 
unbiased estimators, smaller standard errors and 
larger t values when compared to the OLS and 
MPV estimates irrespective of sample sizes and the 
percentage of outliers in the data.  
 The best overall performance of the existing 
and proposed methods, in the presence of outliers 
and heteroscedasticity, can be accomplished by 
evaluating several indicators. We consider four 
indicators in our simulation study. The first 
indicator is the Average Mean Square Error of 
Estimation (AMSEE) which was introduced by 
Simpson (see [27]) and is defined as 

ˆ ˆ[( ) ( )]
( )

T
R RAMSEE mean

mean MSEE
β β β β= − −

=
 

The second indicator is the Mean Square Error 
(MSE) of the model. The third indicator is the 
Akaike (see [1]) Information Criterion (AIC) 
defined as 

ln( / ) 2AIC n SSE n p= +  
The fourth indicator is the Bayes Information 
Criterion (BIC), originally proposed by Schwartz 
(see [26]) and defined as 

ln( / ) (ln )BIC n SSE n p n= +  
The model with smaller AMSEE, MSE, AIC and 
BIC are preferred. We compute these four types of 
measurements for the OLS, the MPV and the 
RWLS for the simulated design and the average 
results based on 10,000 replications are presented 
in Table 6. 
 It is seen that AMSEE, MSE, AIC and BIC 
values of the RWLS method are consistently the 
smallest among the three estimators followed by 
the MPV and the OLS methods. The results appear 
to be uniform for different percentage of outliers 
and sample of size n= 50, 100, 200, 300. These 
results agree reasonably well with the preceding 
results that the RWLS emerges to be conspicuously 
more efficient than the OLS and the MPV. 
 
 
6. Conclusion 
The main focus of this paper is to develop a reliable 
method for correcting the problem of 
heteroscedastic errors in the presence of outliers. 
The empirical study reveals that the OLS and the 
MPV estimates are easily affected by the outliers. 
Hence they are not reliable. On the other hand, the 
RWLS estimates emerge to be conspicuously more 
efficient and more reliable as it is less affected by 
the outliers.  The results seem to suggest that the 
RWLS  method offers a substantial improvement 
over the other existing methods for handling the 

problems of outliers and heteroscedastic errors. 
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