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Abstract: A graphG is said to bepancyclicif it contains cycles of all lengths front to |V (G)| in G. For any
two verticesu,v € V(G), a cycle is called @eodesic cyclevith « andwv if a shortest path joining: andv lies
on the cycle. LetG be a bipartite graph. For any two verticesand v in GG, a cycleC is called abalanced
cyclebetweenu andv if do(u,v) = maz{dc(x,y) | da(z,u) anddg(y,v) are even, resp. for all,y € V(G)

+. A bipartite graphG is geodesic bipancycli¢respectively,balanced bipancyclicif for each pair of vertices
u,v € V(G), it contains a geodesic cycle (respectively, balanced cycle) of every even lengtlatisfying
maz{2dg(u,v),4} < k < |V(G)| betweenu andw. In this paper, we prove th&,, is geodesic bipancyclic and
balanced bipancyclic if > 2.
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1 Introduction

An interconnection network topology is usually repre-

ted b hwh i i used in interconnection network topology based on its
sented by a graph where vertices represen processorsmany attractive properties such as regularity, recursive
and edges represent links between processors. There

tion Machine CM-2 [27], and SGI Origin 2000 [26].
Then-dimensional hypercube networ,,, is widely

: ' X o structure, node and edge symmetry, maximum con-
are various kinds of graphs applied to design inter- ge sy Y

connection networks. For example, a ring structure is
often used as a connection structure of local area net-
work and as a control and data flow structure in dis-
tributed networks due to its good properties such as
low connectivity, simplicity, and their feasible imple-
mentation [19]. There are a lot of mutually conflicting
requirements in designing the topology of computer
networks. It is almost impossible to design a network
which is optimum in all aspects. Existence of various
cycles (rings) in an interconnection network is essen-
tial for parallel algorithms that communicate data in
token-ring mode. Probably the most effective measure
of a communication network performance is the trans-
mission delay encountered by a message in traveling
through the network from its source to its destination.
In a store-forward network a message may have to be
stored and forwarded by several intermediate proces-
sors before reaching its destination. The transmission
delay is approximately proportional to the number of
edges a message must travel.

The hypercube proposed in [25] is a popular in-
terconnection network with many attractive proper-
ties. It has been used in a wide variety of parallel sys-
tems such as Intel iPSC, the nCUBE [11], the Connec-
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nectivity, and effective routing and broadcasting algo-
rithms [19]. Many variations of hypercube network
are also proposed, for example, crossed cube, twisted
cube, mdbius cube, augmented cube, and folded hy-
percube. Cycles (rings) are one of the most funda-
mental networks for parallel and distributed compu-
tation. They are suitable for designing simple algo-
rithms with low communication costs. Many efficient
algorithms designed on rings for solving various alge-
braic problems and graph problems can be found in
[19]. These applications motivate the embedding of
various length of cycles in networks.The ring embed-
ding problem, which deals with all possible lengths of
cycles in a given graph, is investigated in a variety of
interconnection networks [3, 6, 9, 10, 12, 13, 16, 17,
18, 20, 21, 23, 25, 28, 30, 31, 32, 33, 34, 35]. Indeed,
this problem has been studied ferdimensional hy-
percube®),, [15, 18, 20, 22, 24, 25, 28, 29]. Saad and
Schultz [25] proved thap),, is bipancyclic in the sense
that an even cycle of length exists for each even in-
teger between 4 and’ (@,,)|. Latifi et al [18] found
that @,, is hamiltonian with up to» — 2 edge faults.

Li et al. [20] proved that),, is still edge-bipancyclic

in the sense that every edge @f, lies on a cycle of
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every even length from to |V (Q,,)| even ifitis up to
n — 2 edge faults. Recently, Tsai [28] proved tliat
is bipancyclic with up t®2n — 5 edge faults if these
faults satisfy a specified condition.

In this paper, we address the existence of cycles
with some properties i),,. The rest of this paper
is organized as follows. In the next section, we pro-
pose notions of geodesic bipancyclic and balanced bi-
pancyclic that are restrictions of the concept of bipan-
cyclic as new measures of cycle embedding capabil-
ity of a bipartite graph. Section 3 shows th@y}, is
geodesic bipancyclic. Secion 4 proves thgtis bal-
anced bipancyclic too. The last section contains con-
clusions and discussions.

2 Preliminaries

Our fundamental graph terminologies refer to [2]. A
graphG = (V, E) is bipartite if the node sét' (G) =
B U W is the union of two disjoints node sef3
and W (also called thepartite set$, such that every
edge joinsB and W. Two vertices,u and v, have
the same color if and only if. andv are in the same
partite set. We also us€ = (B U W, E) to de-
note a bipartite graph. Two verticesand b are ad-
jacentif (a,b) € E. A path is a sequence of adjacent
vertices, written aguvg, v1, v2, ..., Um), iN Which all
the verticesyy, vy, . . . , vy, are distinct except possibly
vy = U, We also write the patkug, Plvg, v, vm),
wherePlvg, vy,] = (vo,v1 ..., vy,) as well asuy and
vy, are twoend-verticeof P[vg, v,,]. Thelengthof a
path P denoted by (P) is the number of edges iR.
Two paths are vertex-disjoint (also called disjoint) if
and only if they do not have any vertices in common.
Two edgequ, v) and(w, z) are disjoint ifu ¢ {w, z}
andv ¢ {w,z}. Letu andv be two vertices ofG.
Thedistancebetweenu andv denoted byig (u,v) is
the length of a shortest path Gfjoining u andwv.

A cycleC is a special path with at least three ver-

tices such that the first vertex is the same as the last

one. A cycleC is calledk-cycle if [(C) = k. A
path (respectively, cycle) which traverses each vertex
of G exactly once is &amiltonian path(respectively,
hamiltonian cyclg They are defined as follows.

Definition 1 Let G be a graph. For any two vertices
u,v € V(G), acycleC in G is called a geodesic cycle
betweeru and v if the shortest path joining: and v
in C'is also a shortest path joining andv in G.

In definition 1, we define a geodesiecycle be-
tween two distinct vertices; andv, such that the dis-
tance ofu andwv in the cycle is the smallest over all
k-cycles passing throughandv in G. The transmis-
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sion delay betweem andwv in this cycle will be the
minimum.

Definition 2 LetG be a graph. For any two vertices
u,v € V(G), acycleC is called a balanced cycle be-
tweenu and v if do(u,v) = maz{dc(z,y) | z,y €
V(C)}.

Consequently, i” is a balanced-cycle between
u andv, dc(u,v) = |£]. In a bipartite graph, there
are only even cycles and vertex set is divided into two
partite sets. Hence we modify definition 2 for bipartite
graphs.

Definition 3 Let G = (B U W, E) be a bipartite
graph. For any two vertices, and v in G, a cy-
cle C is called a balanced cycle betweanand v if
dco(u,v) = mazx{dc(z,y) | x andu are in the same
partite set, andy andv are in the same partite se}.

One can observe that a balan@etycle C' with
[ > 2 betweenu andv in a bipartite graph satisfies
one of the following four conditions: (For example
see Figure 1.)

(a) w andv are in different partite set$,is odd, and
do(u,v) = 1.

(b) wandv are in different partite set$,is even, and
do(u,v) =1—1.

(c) w andv are in the same partite sétis even, and
do(u,v) = 1.

(d) uwandwv are in the same partite sétis odd, and
do(u,v) =1—1.

A bipartite graph isvertex-bipancyclid23] if ev-
ery vertex lies on a cycle of every even length from
4 to |V(G)| inclusive. Similarly, a bipartite graph is
edge-bipancyclidéf every edge lies on a cycle of every
even length from! to |V (G)| inclusive. Obviously,
every edge-bipancyclic graph is vertex-bipancyclic.
A bipartite graphG is geodesic bipancycli¢respec-
tively, balanced bipancyclicif for each pair of ver-
ticesu,v € V(G), it contains a geodesic cycle (re-
spectively, balanced cycle) of every even length of
k satisfyingmaz{2dg(u,v),4} < k < |V(G)| be-
tweenu andw. It is observed that every geodesic bi-
pancyclic graph is edge-bipancyclic.

Let u = up_1un_2o...urug be an-bit binary
strings. TheHamming weighof «, denoted byw(u),
is the number ofu; such thatu; = 1. Letu =
Up—1Up—2 ... U1Ug ANd Vv = vp_1Up_2...0v109 DE
two distinctn-bit binary strings. TheHamming dis-
tance h(u,v) between two verticez. and v is the
number of different bits in the corresponding strings
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u u u u
WAY,

V V V V

(@) (b) (c) (d)

Figure 1:(a) A balanced 6-cycle betweenandv that
are in different partite sets(b) A balanced 8-cycle
betweenu andwv that are in different partite setsc)
A balanced 8-cycle betweem andv that are in the
same partite set(d) A balanced 6-cycle between
andv that are in the same partite set.

of both vertices. The-dimensional hypercubele-
noted by(Q),,, consists of alh-bit binary strings as its
vertices and two verticeg andv are adjacent if and
only if (u,v) = 1. For0 < k < n, we usev” to de-
note the binary string derived from the binary string
Vp—1Un—2 - .. V109 Such thatu, = 1 — v, andu; = v;

if i # k. An edge(u,v) in E(Q,,) is of dimension;
if w= ' Itis known thatdg, (u,v) = h(u,v). For
a given0 < i < n, we can partition),, along dimen-
sioni into two (n — 1)-cubes such thap® , denotes
the subgraph of),, induced by{z € V(Q,) | x;
0} andQ} _; denotes the subgraph &, induced by
{x € V(Q,) | z; = 1}. We have@’ , andQ! ,
being isomorphic t@),,_;. The following lemmas are
useful in our later proofs.

Lemma 1 [25] For n > 2, Q,, is edge-bipancyclic.

Lemma 2 [20] Let v and v be two arbitrary distinct
vertices with the same partite set ép, for n > 2.
Then, for any vertexs such thath(w, u) is odd, there
exists a path joining: and v passing all vertices of
Q., exceptw.

Lemma 3 [20] Let « and v be two arbitrary distinct
vertices in@,, and h(u,v) = d, wheren > 2. There
are paths formed byu, P[u,v],v) in the @, with

lengthsd,d + 2,d + 4,...,c, wherec = 2" — 1 if

disodd, andc = 2" — 2if d is even.

3 Geodesic bipancyclicity of Hyper-
cubes

In this section, we address the existence of geodesic
cycles between any pair of vertices@),. Given two
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verticesu andwv, the transmission delay fromto v is
minimum in a geodesic cycle. For any pair of vertices
u andwv, a cycleC is called geodesic cycle between
wandv in @, if h(u,v)=dc(u,v). @, is geodesic
bipancyclic if Q,, contains a geodesic cycle of every
even length of satisfyingmaxz{2h(u,v),4} <k <

2™, The following lemma about shortest path proper-
ties of Q,, will be used in the proof of Theorem 1.

Lemma4 Letu,v € Q.

Q) If u,v € Q°_(respectively,Ql ,), then there
exists a shortest path joining and v in @Q,, with all
its vertices inQ¥_, (respectivelyQl ;).

(@ Letu € Q%_, andv € QL_,. Then,(i) There
exists a shortest path' joining « and v in Q,, with
all its vertices(exceptu) in QL ;. (ii) There exists
a shortest pathS joining v and v in @,, with all its
vertices(excepty) in Q¥ _.

Proof. Letu = up_qup—2...ujug andv =
Un_1Un_2 ... 10y be any two distinct vertices a,,
andh(u,v) = d whered > 1.

Case Liu,v € V(QY_;)oru,v € V(QL ;).

Henceu,,—1 = v,—1 andh(u,v) < n — 1. Let
QO = Up_9Up_3...uyp aNd 3 = v,_sv,_3...v9 be
two (n — 1)-bit binary strings. Hence and; are two
vertices of@,_1. Obviously h(a, 5) = h(u,v) <
n—1. LetS = (a® = a,al,a?,..., ") = j)
denote a shortest path joinimgand in @,,_1 where
ol = ol _,al_4...akis an(n — 1)-bit binary string
for 0 <i < h(u,v). Letu’ = u,_1a!,_sal_4...af
be ann-bit binary string with first bitu,,_; where0 <
i < h(u,v). Therefore, all vertices lying on the path
R = (uu,u?,.. . u"V)) areinQ!" 7" whereu’ =
u, u®) = ¢ andu,_; = 0,1. Obviously, the path
R is a shortest path joining andv in Q,,.

Case 2:u € V(Q!,_;) andv € V(QL™%) wherei =
0,1.

Without loss of generality, we may assume that
i=0,ie,uec V(Q)_;)andv € V(QL_,). Let
T = Up_1Un_o...ugadNdy = Tp,_1Vn_2...v9. Ob-
viously, z € V(QL_;) andy € V(Q%_,), respec-
tively. Also h(z,u) = 1 andh(y,v) = 1.

By case 1, there exists a shortest path, denoted
(u,ut,u?,... y), joining v and y in Q¥ _; and a
shortest path, denote@,v!,v?, ..., ), connecting
vandx in QL _,, respectively. Therefore, there ex-
ists a shortest path = (u,u!,u?,...,y,v) joining
w andv in @, where all vertices (except) are in
QL_,. Meanwnhile there exists a shortest pdth=
(v,0',v% ... x,u) joining u andv in Q,, where all
vertices (except) are inQY . O

Theorem 1 Q,, is geodesic bipancyclic i#f > 2.

Issue 7, Volume 8, July 2009



WSEAS TRANSACTIONS on MATHEMATICS

Proof. Letu = up_qup—2...ujug andv =
Upn_1Vn_2 - .. 109 be any two distinct vertices @,
andh(u,v) = d.

Case 1:h(u,v) = 1,i.e.uwandv are adjacent. Apply-
ing Lemma 1, we have that every edg&jn lies on a
cycle of every even length fromto 2. The theorem
holds forh(u,v) = 1.

Case 2:h(u,v) = d > 2, i.e. w andv are not adja-
cent. We prove this theorem by induction on Ob-

viously, the theorem holds fot = 2. Assume that
the theorem is true for every integ2r< k < n. To

prove this theorem, we establish every geodesic cy-

cle of even length: betweenu andv in @Q,, where
2d < k < 2™, Partitioning@,, along dimensiort), we
obtain two disjoint(n — 1)-subcube£)® , andQ} ,
such thatQ® , denotes the subgraph &, induced
by {z € V(Q,) | zo = 0} andQ} _, denotes the sub-
graph of@,, induced by{z € V(Q,,) | xo = 1}. The
proof of case 2 is divided into two casesandv are
in the same subcub@?_, (or Q. ), andu andv are
in different subcubes.

u I AV
W we
S[uM]
Py RWe,u]
\
Qs "

Figure 2: The geodesic cycle betweenand v of
even length of2"~! + 1 + I(R) where [(R) =
1,3,5,7,...,2" L — 1, 1(S) = h(u,v), andl(S) +
(P)=2""1-1,

Subcase 2-1u,v € QY_, oru,v € QL_,. (See
Figure 2.) Without loss of generality, we may assume
thatw andv are inQ%_;., i.e. ug = vo = 0. By
induction hypothesis@)®_; is geodesic bipancyclic.
QY _, contains every geodesic cycle of even lenjgth
satisfying2d < k < 2"~ ! betweeru andv. Applying
Lemma 4, we have thaig, (u,v) = ngil(u,v) =
h(u,v) = d. It is observed that every geodesic cycle
between: andv in Q_ is a geodesic cycle between
u andv in Q,. Thus, geodesic cycle betwearand
v with even length of satisfying2d < k < 2"~ !in
Q,, can be found iQ% ;.

The rest of the proof of this subcase is to find ev-
ery geodesic cycle of even length fra2i—! + 2 to
2" betweenu andv in @,,. Let C be a geodesic cy-
cle of length2"~! betweenu andv in Q%_,. Hence
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C is a hamiltonian cycle i) _, passing through
andv, andd¢(u,v) = h(u,v) = d. Sincen > 3,
[(C) > 4. One may choice a adjacent vertex
of w in C such that the cycl&' can be written as
(u, S[u,v],v, Plv,w],w,u) wherel(S) = h(u,v).
Hencel(S) = d and{(P) > 1. Since(u,u") and
(w,w") are two edges of dimension @? andw" are
two adjacent vertices i@} ;. By Lemma 3, there
exist paths formed byuw?, R[w®, u°], u°) intheQ}
with length1,3,5,...,2" — 1. Therefore, we can con-
struct a cycleC’ = (u, S[u,v], v, Plv,w], w, w°,
R[w®, 4], u°, u) containing the shortest pa#u, v].

It is observed that”’ is a geodesic cycle with even
length ofl(C’) = 2"t —1+2+I(R) between: andv

in Q, wherel(R) = 1,3,5,...,2" 1 — 1. Therefore,
2n=1 4 2 < (C") < 2", The proof of this subcase is
completed.

Plv.w]
u ue w, U]
v‘JI I v QWO
Y,
Qns Qn Qn

G

Figure 3: (a) A geodesic 4-cycle betweenand v
if h(u,v) = 2. (b) The geodesic cycle between
and v of even length ofm + k + 1 wherem =
1,3,5,7,...,2"~1 — 1, k is an even integer satisfy-
ing max{2h(u,v) — 2,4} < k < 2771 1(S9) =
h(u,v) — 1,1(P) = m, andl(S) + (R) = k — 1.

Subcase 2-2:u € Q% ; andv € QL_; (or
ve@)  andu € QL ;). (See Figure 3.) With-
out loss of generality, we may assume that Q°
andv € QL ;. Applying Lemma 4, there exists
a shortest patht|u, v] joining v and v in Q,, with
all vertices (exceptv) in Q¥_,. We write the path
S[u,v] as (u, Plu,v°],2°,v). Hencel(P[u,v°]) =
d — 1. Meanwhile, there exists a shortest path
Si[v,u] joining v and w in @, with all vertices
(exceptu) in QL _,. We write the pathS;[v,u] as
(v, Pi[v,u°],u°, u). Then, (P[v,u’]) = d — 1.
Therefore, (u, Plu,v°],v°, v, P[v,u°],u", u) forms
a geodesic cycle of lengt?d betweernu andv in Q,,.

If d = 2, the geodesic cycle of lengthbetween: and
v exists.

Sinceu and v° are in Q% _,, by induction hy-
pothesis, Q¥ _, is geodesic bipancyclic. Let
be a geodesic cycle with even length &f sat-
isfying maz{2(d — 1),4} < k < 2! be-
tween v and v in QY _,. The cycle C' can
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be rewritten as(u, S[u,v°],v", w, R[w,u],u) where
1(S[u,v°]) = d — 1 andi(R[w,u]) = k — d. Hence
{u, S[u,v°],v°,v) is a shortest path af,, joining u
andv. Sincev® andw are adjacent; andw? are adja-
centinQ} ;. By Lemma 3, there are paths formed by
(v, Plv,w°],w°) in the Q} _; with lengthm = 1, 3,
5,...,2"~1 — 1. Therefore, we can construct a cycle
C" = {(u, S[u,v°],v°, v, Plv,w°],w’, w, Rlw,u],u)
containing the shortest paftju, v]. Itis observed that
(' is a geodesic cycle with even length ")
d—14+1+m+1+k—d=m+k+1betweenu
andv in Q,,. Therefore,nax{2d,6} < I(C’) < 2™
The theorem is proved. O

4 Balanced bipancyclicity of Hyper-
cubes

To route a packet fromu to v in a k-cycle, one
may first breaks the packet into two smaller pieces.
Then, route the two pieces along two internal vertex-
disjoint paths to the two intermediate verticgs vs.
In the second phase, symmetrically, the two pieces are
routed from the intermediate vertices, vy to their
common destinatiom. The packet is combined in
until all pieces of this packet arrived. Therefore, this
kind of transmission delay betweenandv in a cy-
cle is determined by the longest path betweeand
v in this cycle. It is of interest to find a cycle passing
throughu andv such that lengths of two disjoint paths
betweeru andv in this cycle are as equal as possible.
Q) is balanced bipancyclic if for each pair of ver-
ticesu,v € V(Q,), it contains a balanced cycle of
every even length dil satisfyingmax{h(u,v),2} <
[ < 271 petweenu andv. The following lemma is
useful in the proof of Theorem 2.

Lemma5 For any two disjoint edgequ,v) and
(w, z) in @, withn > 2, there exist two disjoint paths,
(u, Py [u,v],v) and(w, Py[w, 2|, z), in @,, with equal
lengthk wherek = 1,3,5,7,...,2" 1 — 1.

Proof. We prove this lemma by induction on
Obviously, the lemma holds for = 2. Assume that
the lemma is true for every integer< m < n. Sup-
pose thatu, v) is an edge of dimensiohand (w, z)
is an edge of dimensiof where0 < i,j5 < n — 1.
Sincen > 3, there exists an integersuch that # 4
andr # j. We may partition@,, along dimension
into two (n — 1)-subcubes such thgt® _, denotes the
subgraph of),, induced by{z € V(Q,) | z, = 0}
and Q. _, denotes the subgraph ¢J,, induced by
{xr € V(Qp) | x, = 1}. Sincer # ¢ andr # j, (u,v)
and(w, z) are in the same subcube or in different sub-
cubes. The proof is divided into two casés; v) and
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(w, z) lie on the same subcul@’ , (or Q. _,), and

(u,v) and(w, z) are in different subcubes.

Case 1: (u,v) and (w, z) lie on the same subcube
h—1 (0r Qy_1).

Without loss of generality, we may assume that
(u,v) and (w, z) lie on Q°%_,. By induction hy-
pothesis, there exist two disjoint patt#%[u,v] and
Py[w, 2] in QY_; with equal length ofc wherek =
1,3,5,7,...,2"2 — 1.

In the rest of Case 1, we construct two dis-
joint paths Py [u,v] and P[w, z] in @, with equal
length of k wherek = 272 41,2772 4 3,272 +
5,...,2" 71 — 1. Let Ry[u,v] and Ry[w, 2] be two
disjoint paths of lengti2"=2 — 1 in Q% _,. Since
n > 3,1(Ry) = I(Ry) > 1. We can rewriteR; [u, v]
(respectively,Rs[w, z]) as(u, z, S1[z,v],v) (respec-
tively, (w,y, Sa[y, z], 2)) wherel(S1) = 1(S2) > 0,
and x v if 1(S1) 0 (respectively,y z
if 1(S2) 0). Let (u,u"), (z,2"), (w,w"), and
(y,y") be four disjoint edges of dimension Hence
(u",2") and (w",y") are two edges lyingQ} ;.

By the induction hypothesis, there exist two dis-
joint pathsT[u",z"] and To[w",y"] in QL _; with
equal length ofn wherem = 1,3,5,7...,2"2 —

1. Therefore, two paths can be constructed as
P = (u,u", Th[u", 2", 2", x, S1[z,v],v) and Py
(w,w", Thlw", y"],y", y, Saly, 2], z) wherel(P;)
I(P)=2"24+mandm =1,3,57,...,2" 21,
Hence P, [u,v] and P[w, z] are two disjoint paths
with equal length of2"—2 4 1,272 4 3,272 +
5,...,2n" 1 1.

Case 2:(u,v) and(w, z) are in different subcubes.

Applying Lemma 3, there are paths formed by
(u, P1[u,v],v) in the Q¥ ; with length 1, 3, 5,
7,..., 271 — 1 and there are paths formed by
(w, Py[w, 2], z) inthe QL _, with length1, 3,5, 7, ...,
27—l _ 1. The Lemma is proved. 0

Theorem 2 @,, is balanced bipancyclic i, > 2.

Proof. Letu = up_q1up—2...ujug andov
Un_1Un_2 ... 0109 be any two distinct vertices a,,
and h(u,v) = d. To prove the theorem, we will
find every balancedl-cycle between:, andv where
max{d,2} <1< 27!, The proofis divided into two
parts:d = 1 andd > 2.

Case 1:d = 1, i.e. u andv are adjacent. (See Fig-
ure 4.)

Without loss of generality, we may assume that
(u,v) is an edge of dimension 0. We may partition
@, along dimension into two (n — 1)-subcubes such
that Q¥ _, denotes the subgraph ¢J,, induced by
{x € V(Q,) | 1 = 0} and@Q} _, denotes the sub-
graph of@,, induced by{z € V(Q,) | =1 = 1}.
Therefore,u andv are in the same subculég, , or
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010 v=011 110 111 010 v=011 110 111 010 v=011 110 111
Q3 Q3 Q3
Figure 5: Three balanced cycles betwees 000 andv = 011 in Q3.
T T ~' — 3. Henced¢(u,v) =k +2 = M Sinced
i i is odd, “§) is odd, anddc (u,v) = 1) the cycleC
v vt is a balancec{2k + 4)-cycle betweem andv where
k=1,3,5...,2"t -3,
Case 2:d > 2, i.e. u andv are not adjacent.
Rluv] R [viul] We prove this case by induction an  Obvi-
ously, the proof of case 2 holds far = 2. As-
Q, QL sume that the proof of case 2 is true for every inte-

Figure 4: (a) Letl(P;) = I(P) = k. Then, a
balanced(2k + 2)-cycle betweenu and v is con-

structed, wheré: = 1,3,5,...,2""1 — 1. (b) Let

I(P) = k+2andl(P,) = k. Then, a balanced
(2k + 4)-cycle between, andv is constructed, where
k=1,3,5,...,2"1 —3.

L. Without loss of generality, we suppose that
andv are inQ"_,.

Let (u,u') and (v,v') be two edges of di-
mension 1. Hencé(u',v!) = 1 andu!,v! €
V(QL_,). Applying Lemma 3, there are paths formed
by (u, P, [u,v],v) in the QY_, with lengthk; = 1,
3,5, 7,. — 1 and there are paths formed

by (vt PQ[T) ul],ul) inthe Q. _, whose lengths are
ky=1,3,5,7,...,2" 1 —1. We can construct a cycle
asC = (u, Pi[u,v], v, v}, Py[vt, u'] ul, u) of length

I(C) = k1 +ka+2wherek, = (P) andky = [(P).
Obviously, the cycle” passes through ando.

(a). Balanced(2k + 2)-cycle between. and v
wherek =1, 3,5, ...,2» 1 — 1. Letk; = k and
ko = k. Then,l(C) = 2k + 2 wherek =1, 3,5, ..,
27=1 _ 1. Hencedc(u,v) = k = §) — 1. Sinced is

odd, @ is even, andi¢c (u,v) = HE) _ 1, the cycle
C'is a balanced2k + 2)-cycle between andv where
k=1,3,5...,2""1 —1.

(b). Balanced(2k + 4)-cycle between: and v
wherek =1, 3,5,...,2""1 — 3. Letk; = k + 2 and
ko = k. Then,l(C) = 2k + 4 wherek = 1, 3,5, ..,
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ger2 < m < n. Letu = uy_1up_o...ujug and
V= Un_1Un_2 ... V109 be any two distinct vertices of
@, andh(u,v) = d. Partitioning@,, along dimen-
sion0, @,, can be divided into twdn — 1)-subcubes
where@® _, denotes the subgraph @¢f, induced by
{x € V(Qn) | 0o = 0} and@QL _, denotes the sub-
graph of@,, induced by{z € V(Q,,) | o = 1}.

Subcase 2-1u,v € QY_, oru,v € QL_,. (See
Figure 5 and Figure 6.)

Without loss of generality, we may assume that
u,v € Q°_,. For the basis of this proof, we consider
Q3. Itis clear thatQ)s is balanced bipancyclic. (See
Figure 5 for an illustration).

'S
Xp Byl |xo
R XVl y r\_

V-

Q. Qi.l

S,[1°.x7]

1.y

Figure 6: Leti(S;) = [(S2) = k wherek =
1,3,5,...,2""1.  Then, a balancedm + 2k +
2)-cycle betweenu and v is constructed, where
(u,z, Py[x,v],v,y, Po|y,u],u) is balancedm-cycle
betweernu andv of Q¥ _, wherem > 6.

Suppose that > 4. By induction hypothesis,
U _. is balanced bipancyclic. Every balancet

n—1
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cycle between, ard v in Q,, can be found inQR" _,
whered < | < 2772, Let C be a balancea-cycle
with m > 6 betweenu andv in Q%_,. Hence we
rewrite the cycleC' as (u, z, Pi[z,v], v, y, Paly,u],
u). Let (u,u?), (z,2°), (v,2°), and(y,y") be four
edges of dimension 0. It is observed that, z°,

0%, and ¢ are four distinct vertices iQ. ,, and
that (u”, 2°) and (v°,4°) are two disjoint edges in

L .. Applying Lemma 5, there exist two disjoint
paths S1[u?, z°] and S3[v°,4°] in QL ; such that
1(S1) = 1(S2) = kwherek = 1,3,5,7,...,2" 2 1.
Therefore, we may construct a cydl¢ = (u, uY,
S1[u®, 20, 20, x, Pi[z,v], v, ¥°, S2[v°,3°], °, v,
Pyly,ul], u) passing through andv. Hencel(C’) =
m+ 2k + 2.

Subcase 2-1-1Balanced(2"~! + 2k)-cycle be-
tweenu andv wherek = 1,3,5,...,2" 2 — 1. Let
m = 2"~ — 2. Therefore](C') = 2"~ ! + 2k.

(a). Suppose thatl is odd. SinceC is a bal-
anced(2"~! — 2)-cycle between; andv, andl(c) =
2"=2 — 1isodd,dc(u,v) = 2772 — 1. Itis cIearIy
thatder (u,v) = de(u,v) + k+1 = 2""2 + k and
M) — on=2 4 k. Sinced is odd, “§7 is odd, and
dor(u,v) =272 + k = @ the cycIeC’ is a bal-
anced 2"~ ! 4-2k)-cycle betweem andv in Q,, where
k=1,3,5,...,2" 2 — 1.

(b). Suppose thatl is even. SinceC is a bal-
anced(2"~! — 2)-cycle between; andv, and@ =
22 _ 1isodd,dc(u,v) = 2"~2 — 2. Itis clearly

thatde (u,v) = do(u,v) +k+1=2""24+k—1
and S0 — 97-2 | k. Sinced is even,!$ ) is odd,
anddcr (u,v) =272 +k—1= @ - 1, the cycle

C'is a balanced2™ ! + 2k)—cycle between: andv
in @, wherek =1,3,5,...,2" 2 — 1.

Subcase 2-1-2Balanced2"~! + 2k + 2)-cycle
betweerny andv wherek = 1,3, 5,...,2" 2 — 1. Let
m = 2"~1. Therefore](C’) = 2"~ 1 + 2k + 2.

(a). Suppose that is odd. Since” is a balanced
2n—1_cycle between andv, and@ =2"2jseven,
do(u,v) = 272 — 1. Itis clearly thatdc: (u,v) =
do(u,v) + k+1 =22 4 pand 450 — on—2 4
k + 1. Sinced is odd, ( ) is even, andicr (u,v) =
2" 4k = % -1, the cycleC’ is a balanced
(2"~! + 2k + 2)-cycle between: andwv in Q,, where
k=1,3,5,...,2" 2 — 1.

(b). Suppose thai is even. Sinc&” is a balanced
27~1cycle betweenu and v, and {§) = 272 is
even,dc(u,v) = 2"~ 2. Itis clearly thatde: (u, v) =
do(u,v) + k+1 = 272 4+ 1 and X0 —
2"=2 L k 4+ 1. Sinced is even,@ is even, and
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der(u,v) =272+ k+1 = @ the cycleC’ is a
balanced2"~! + 2k + 2)-cycle between: andwv in

Q, wherek = 1,3,5,...,2" 2 — 1.
U e uo
[u] P [v,u]
\/0 vV
Qns it

Figure 7: h(u,v) = d is even. (a) Letl(P) =
[(Py) = k. Then, a balance(Rk + 2)-cycle between
u andw is constructed, where = d — 1,d + 1,d +
3,...,2" L —1.(b) Letl(P,) = k+2andl(P,) = k.
Then, a balancek + 4)-cycle between: andv is
constructed, where = d—1,d+1,d+3,...,2" 1 —
3.

Subcase 2-2u € Q°
QY_,andu € QL_)).
Without loss of generality, we may assume that
uwe @ ;andv € QL 4. Let (u,u’) and(v,v") be
two edges of dimension 0. Heneg € V(Q. ;) and
0 e V(QY_,), andh(u,v?) = h(v,u’) = d — 1.
Subcase 2-2-14d is even, i.e.u andv are in the
same partite set. (See Figure 7.) Henfeandv are
in different partite sets. Similarly,’ andv are in dif-
ferent partite sets. By Lemma 3, there exists a path
Py[u,v%] (respectively,” [v, u°]) connecting: andv®
(respectivelyp andu) wherel(Py) = d—1,d+1,d+
3,...,2" 1 —1 (respectively](P;) = d—1,d+1,d+
3,...,2"~1 —1). The cycleC can be constructed as
(u, Py [u,v°],v°, v, Py[v,u’],u’, u). Therefore, the
cycle C passing through andv, andi(C) = ki +
ko + 2 wherek; = [(Py) andky = I(P2).
(a). Balanced(2k + 2)-cycle between: and v
wherek =d —1,d+1,d+3,...,2" ! — 1. Let
k1 = kandky = kwherek =d—-1,d+1,d+3, ...,
27~1 1. Therefore/(C) = 2k +2. One can observe
that l(c) =k + 1landdc(u,v) = k+ 1. Sinced is

even, (2) is even, andi¢ (u,v) = @ the cycleC
is a balanced2k + 2)-cycle between: andv where
k=d-1,d+1,d+3,...,2" 1 1.

(b). Balanced(2k + 4) cycle between: and v
wherek =d —1,d+1,d+3,...,2" 1 — 3. Let
ki = k+2andky = k:wherek =d-1,d+ 1,
d+3,...,2" 1 — 3. Therefore](C) = 2k + 4. One

can observe thad5) = & + 2 and d¢(u, v) = k + 1.
Sinced is even, I(C) isodd, andd (u, v) = X&)

andv € QL (orv e
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the cycleC is a balanced2k + 4)-cycle between
andv wherek =d —1,d+1,d+3,...,2" 1 - 3.
Subcase 2-2-24d is odd, i.e.u andv are in dif-
ferent partite sets. (See Figure 8.) Henceandv
are in the same partite set. Similarly, andw are in

Pao-Lien Lai, Chang-Hsiung Tsai, Hong-Chun Hsu

passing all vertices o)., exceptw. Let (w,w")
be an edge of dimension 0. Hened is in Q°_,
and w® and u are in different partite sets. By
Lemma 3, there exists a hamiltonian pa#[u, w°]
joining u andw® in Q°_,. Therefore, the longest cy-

the same partlte set. By Lemma 3 there exists a pathS cle C betweenu andv in Qn can be constructed as

Py[u, 0] (respectively,” [v, u°]) connecting: anduv®
(respectivelyp andu) wherel (Py) = d—1,d+1,d+
3,271 — 2 (respectively](P,) = d — 1, d +1,d+
3,...,2""1 —2). The cycleC can be constructed as
(u, Py [u,v°], 0%, v, Py[v,u’],u’, u). Therefore, the
cycle C passing through andv, andi(C) = k; +
ko + 2 wherek; = [(Py) andky = [(P2).

(a). Balanced(2k + 2)-cycle between. and v
wherek =d —1,d+1,d+3,...,2" 1 — 2. Let
k1 = kandky = kwherek =d—-1,d+1,d+3, ...,
27~1 2. Therefore/(C) = 2k + 2. One can observe
that ( ) — k+1and dc(u,v) = k + 1. Sinced

is odd, 1) s odd, anddc(u,v) = 452, the cycleC
is a balanced2k + 2)-cycle between: andv where
k=d—1,d+1,d+3,...,2" 1 —2.

(b). Balanced(2k + 4) cycle between: and v
wherek =d —1,d+1,d+3, ..., 2" — 4. Let
ki = k+2andky = k:wherek: =d—-1,d+1,
d+3,...,2" "1 — 4. Therefore](C) = 2k + 4. One
can observe thaéfQ =k+2anddc(u,v) =k + 1.

Sinced is odd, “$? Vis even, andlc (u,v) = X&) —
the cycleC is a balanced% + 4)-cycle between:

andv wherek =d —1,d+1,d+3,...,2" !t — 4.
u uo u uO
P, [uvI P [v,u AR Pl[v,u]
W WA
Ve v v
Qn Qns 3.1 Qi

(@) (b)

Figure 8: h(u,v) = dis odd. (a.l) Let(P;) =
I(P,) = k. Then, a balanced2k + 2)-cycle be-
tweenu andwv is constructed, wherk = d — 1,d +
1,d+3,...,2"" 1 — 2. (@2) Letl(P) = k+ 2
andl/(P,) = k. Then, a balance®k + 4)-cycle be-
tweenu andwv is constructed, wherk = d — 1,d +
1,d+3,...,2"1 — 4. (b) A balanced hamiltoian cy-
cle betweernw andv wherel(P;) = 2! — 1 and
I(Py) =21 -2,

(c). BaIancedQ”—cycIe betweerw andv. Let
w € V(QL_,) and h(w,v) = 1. It is observed
that h(w,u®) is odd. By Lemma 2, there exists a
path P[v,u°] of length 2"~! — 2 joining v and u®
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{(u, Py [u, w°], w®, w,v, Py[v,u’],u’, u). Therefore,
the cycleC passing througla andv, such that(C) =
2"l 141414271 —241 =2"andd¢o(u,v) =
on—l 1 = (C) — 1. Sinced is odd, Z(C) is even, and

do(u,v) = @ — 1, the cycleC'is a balanced cycle

betweenu andv. The theorem is proved. O

5 Conclusions

In this paper, we address the existence of geodesic
cycles and balanced cycles between any pair of ver-
tices inQ,. Given two verticesu andv, the trans-
mission delay fromu to v is minimum in a geodesic
cycle. We prove that),, is a geodesic bipancyclic,
i.e. for any two distinct vertices andv, there exists

a geodesic cycle of every even lengthko$atisfying
maz{2h(u,v),4} <k <2"in Q.

We also deal with the other kind of transmission
delay from one vertex to others. To route a packet
from « to v in a cycle, one may first breaks the packet
into two smaller pieces. Then, route the two pieces
along two internal vertex-disjoint paths to destination
v. The packet is combined imuntil these two pieces
arrived. It is of interest to find a cycle passing through
u andv such that lengths of two disjoint paths between
u andw in this cycle are as equal as possible. There-
fore, we define the notion of balanced cycle between
u andv. We prove that),, is balanced bipancyclic.,
i.e. for any two distinct vertices andv, there exists
a balanced cycle of every even lengthko$atisfying
mazx{2h(u,v),4} <k <2"in Q.

Numerous variants of hypercube, for example,
Augmented cubes [4], Crossed cubes [7], Mobius
cubes [5], Twisted cubes [1], and Folded hyper-
cubes [8], have been proposed and proved that they
are pancyclic. Geodesic and balanced pancyclicities
of Augmented cubes and Crossed cubes are shown in
[14] and [17]. However, finding geodesic and ban-
lanced cycles in other variants of hypercube is still
open. Our further work tends towards the investiga-
tion whether there are more classes of interconnec-
tion networks, such as these variations of hypercube,
to possess the property of geodesic and balanced pan-
cyclicities.
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