Embedding Geodesic and Balanced Cycles into Hypercubes

Pao-Lien Lai
National Dong Hwa University
Department of Computer Science
and Information Engineering
Shoufeng, Hualien, 97401
Taiwan, R.O.C.
baolein@mail.ndhu.edu.tw

Chang-Hsiung Tsai
National Dong Hwa University
Department of Computer
and Information Science
Shoufeng, Hualien, 97401
Taiwan, R.O.C.
chtsai@mail.ndhu.edu.tw

Hong-Chun Hsu
Tzu Chi University
Department of Medical Informatics
Haulien, 970
Taiwan, R.O.C.
hchsu@mail.tcu.edu.tw

Abstract

A graph G is said to be pancyclic if it contains cycles of all lengths from 4 to $|V(G)|$ in G. For any two vertices $u, v \in V(G)$, a cycle is called a geodesic cycle with u and v if a shortest path joining u and v lies on the cycle. Let G be a bipartite graph. For any two vertices u and v in G, a cycle C is called a balanced cycle between u and v if $d_{C}(u, v)=\max \left\{d_{C}(x, y) \mid d_{G}(x, u)\right.$ and $d_{G}(y, v)$ are even, resp. for all $x, y \in V(G)$ \}. A bipartite graph G is geodesic bipancyclic (respectively, balanced bipancyclic) if for each pair of vertices $u, v \in V(G)$, it contains a geodesic cycle (respectively, balanced cycle) of every even length of k satisfying $\max \left\{2 d_{G}(u, v), 4\right\} \leq k \leq|V(G)|$ between u and v. In this paper, we prove that Q_{n} is geodesic bipancyclic and balanced bipancyclic if $n \geq 2$.

Key-Words: Hypercube; Interconnection networks; Edge-bipancyclic; Geodesic bipancyclic; Balanced bipancyclic

1 Introduction

An interconnection network topology is usually represented by a graph where vertices represent processors and edges represent links between processors. There are various kinds of graphs applied to design interconnection networks. For example, a ring structure is often used as a connection structure of local area network and as a control and data flow structure in distributed networks due to its good properties such as low connectivity, simplicity, and their feasible implementation [19]. There are a lot of mutually conflicting requirements in designing the topology of computer networks. It is almost impossible to design a network which is optimum in all aspects. Existence of various cycles (rings) in an interconnection network is essential for parallel algorithms that communicate data in token-ring mode. Probably the most effective measure of a communication network performance is the transmission delay encountered by a message in traveling through the network from its source to its destination. In a store-forward network a message may have to be stored and forwarded by several intermediate processors before reaching its destination. The transmission delay is approximately proportional to the number of edges a message must travel.

The hypercube proposed in [25] is a popular interconnection network with many attractive properties. It has been used in a wide variety of parallel systems such as Intel iPSC, the nCUBE [11], the Connec-
tion Machine CM-2 [27], and SGI Origin 2000 [26]. The n-dimensional hypercube network, Q_{n}, is widely used in interconnection network topology based on its many attractive properties such as regularity, recursive structure, node and edge symmetry, maximum connectivity, and effective routing and broadcasting algorithms [19]. Many variations of hypercube network are also proposed, for example, crossed cube, twisted cube, möbius cube, augmented cube, and folded hypercube. Cycles (rings) are one of the most fundamental networks for parallel and distributed computation. They are suitable for designing simple algorithms with low communication costs. Many efficient algorithms designed on rings for solving various algebraic problems and graph problems can be found in [19]. These applications motivate the embedding of various length of cycles in networks. The ring embedding problem, which deals with all possible lengths of cycles in a given graph, is investigated in a variety of interconnection networks $[3,6,9,10,12,13,16,17$, $18,20,21,23,25,28,30,31,32,33,34,35]$. Indeed, this problem has been studied for n-dimensional hypercube $Q_{n}[15,18,20,22,24,25,28,29]$. Saad and Schultz [25] proved that Q_{n} is bipancyclic in the sense that an even cycle of length k exists for each even integer between 4 and $\left|V\left(Q_{n}\right)\right|$. Latifi et al [18] found that Q_{n} is hamiltonian with up to $n-2$ edge faults. Li et al. [20] proved that Q_{n} is still edge-bipancyclic in the sense that every edge of Q_{n} lies on a cycle of
every even length from 4 to $\left|V\left(Q_{n}\right)\right|$ even if it is up to $n-2$ edge faults. Recently, Tsai [28] proved that Q_{n} is bipancyclic with up to $2 n-5$ edge faults if these faults satisfy a specified condition.

In this paper, we address the existence of cycles with some properties in Q_{n}. The rest of this paper is organized as follows. In the next section, we propose notions of geodesic bipancyclic and balanced bipancyclic that are restrictions of the concept of bipancyclic as new measures of cycle embedding capability of a bipartite graph. Section 3 shows that Q_{n} is geodesic bipancyclic. Secion 4 proves that Q_{n} is balanced bipancyclic too. The last section contains conclusions and discussions.

2 Preliminaries

Our fundamental graph terminologies refer to [2]. A graph $G=(V, E)$ is bipartite if the node set $V(G)=$ $B \cup W$ is the union of two disjoints node sets B and W (also called the partite sets), such that every edge joins B and W. Two vertices, u and v, have the same color if and only if u and v are in the same partite set. We also use $G=(B \cup W, E)$ to denote a bipartite graph. Two vertices a and b are $a d$ jacent if $(a, b) \in E$. A path is a sequence of adjacent vertices, written as $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, in which all the vertices $v_{0}, v_{1}, \ldots, v_{m}$ are distinct except possibly $v_{0}=v_{m}$. We also write the path $\left\langle v_{0}, P\left[v_{0}, v_{m}\right], v_{m}\right\rangle$, where $P\left[v_{0}, v_{m}\right]=\left\langle v_{0}, v_{1} \ldots, v_{m}\right\rangle$ as well as v_{0} and v_{m} are two end-vertices of $P\left[v_{0}, v_{m}\right]$. The length of a path P denoted by $l(P)$ is the number of edges in P. Two paths are vertex-disjoint (also called disjoint) if and only if they do not have any vertices in common. Two edges (u, v) and (w, z) are disjoint if $u \notin\{w, z\}$ and $v \notin\{w, z\}$. Let u and v be two vertices of G. The distance between u and v denoted by $d_{G}(u, v)$ is the length of a shortest path of G joining u and v.

A cycle C is a special path with at least three vertices such that the first vertex is the same as the last one. A cycle C is called k-cycle if $l(C)=k$. A path (respectively, cycle) which traverses each vertex of G exactly once is a hamiltonian path (respectively, hamiltonian cycle). They are defined as follows.

Definition 1 Let G be a graph. For any two vertices $u, v \in V(G)$, a cycle C in G is called a geodesic cycle between u and v if the shortest path joining u and v in C is also a shortest path joining u and v in G.

In definition 1 , we define a geodesic k-cycle between two distinct vertices, u and v, such that the distance of u and v in the cycle is the smallest over all k-cycles passing through u and v in G. The transmis-
sion delay between u and v in this cycle will be the minimum.

Definition 2 Let G be a graph. For any two vertices $u, v \in V(G)$, a cycle C is called a balanced cycle between u and v if $d_{C}(u, v)=\max \left\{d_{C}(x, y) \mid x, y \in\right.$ $V(C)\}$.

Consequently, if C is a balanced k-cycle between u and $v, d_{C}(u, v)=\left\lfloor\frac{k}{2}\right\rfloor$. In a bipartite graph, there are only even cycles and vertex set is divided into two partite sets. Hence we modify definition 2 for bipartite graphs.

Definition 3 Let $G=(B \cup W, E)$ be a bipartite graph. For any two vertices u and v in G, a cycle C is called a balanced cycle between u and v if $d_{C}(u, v)=\max \left\{d_{C}(x, y) \mid x\right.$ and u are in the same partite set, and y and v are in the same partite set. $\}$.

One can observe that a balanced $2 l$-cycle C with $l \geq 2$ between u and v in a bipartite graph satisfies one of the following four conditions: (For example see Figure 1.)
(a) u and v are in different partite sets, l is odd, and $d_{C}(u, v)=l$.
(b) u and v are in different partite sets, l is even, and $d_{C}(u, v)=l-1$.
(c) u and v are in the same partite set, l is even, and $d_{C}(u, v)=l$.
(d) u and v are in the same partite set, l is odd, and $d_{C}(u, v)=l-1$.

A bipartite graph is vertex-bipancyclic [23] if every vertex lies on a cycle of every even length from 4 to $|V(G)|$ inclusive. Similarly, a bipartite graph is edge-bipancyclic if every edge lies on a cycle of every even length from 4 to $|V(G)|$ inclusive. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. A bipartite graph G is geodesic bipancyclic (respectively, balanced bipancyclic) if for each pair of vertices $u, v \in V(G)$, it contains a geodesic cycle (respectively, balanced cycle) of every even length of k satisfying $\max \left\{2 d_{G}(u, v), 4\right\} \leq k \leq|V(G)|$ between u and v. It is observed that every geodesic bipancyclic graph is edge-bipancyclic.

Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ be a n-bit binary strings. The Hamming weight of u, denoted by $w(u)$, is the number of u_{i} such that $u_{i}=1$. Let $u=$ $u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be two distinct n-bit binary strings. The Hamming distance $h(u, v)$ between two vertices u and v is the number of different bits in the corresponding strings

Figure 1: (a) A balanced 6-cycle between u and v that are in different partite sets. (b) A balanced 8-cycle between u and v that are in different partite sets. (c) A balanced 8 -cycle between u and v that are in the same partite set. (d) A balanced 6 -cycle between u and v that are in the same partite set.
of both vertices. The n-dimensional hypercube, denoted by Q_{n}, consists of all n-bit binary strings as its vertices and two vertices u and v are adjacent if and only if $h(u, v)=1$. For $0 \leq k<n$, we use v^{k} to denote the binary string u derived from the binary string $v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ such that $u_{k}=1-v_{k}$ and $u_{i}=v_{i}$ if $i \neq k$. An edge (u, v) in $E\left(Q_{n}\right)$ is of dimension i if $u=v^{i}$. It is known that $d_{Q_{n}}(u, v)=h(u, v)$. For a given $0 \leq i<n$, we can partition Q_{n} along dimension i into two $(n-1)$-cubes such that Q_{n-1}^{0} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{i}=\right.$ $0\}$ and Q_{n-1}^{1} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{i}=1\right\}$. We have Q_{n-1}^{0} and Q_{n-1}^{1} being isomorphic to Q_{n-1}. The following lemmas are useful in our later proofs.

Lemma 1 [25] For $n \geq 2, Q_{n}$ is edge-bipancyclic.
Lemma 2 [20] Let u and v be two arbitrary distinct vertices with the same partite set in Q_{n} for $n \geq 2$. Then, for any vertex w such that $h(w, u)$ is odd, there exists a path joining u and v passing all vertices of Q_{n} except w.

Lemma 3 [20] Let u and v be two arbitrary distinct vertices in Q_{n} and $h(u, v)=d$, where $n \geq 2$. There are paths formed by $\langle u, P[u, v], v\rangle$ in the Q_{n} with lengths $d, d+2, d+4, \ldots, c$, where $c=2^{n}-1$ if d is odd, and $c=2^{n}-2$ if d is even.

3 Geodesic bipancyclicity of Hypercubes

In this section, we address the existence of geodesic cycles between any pair of vertices in Q_{n}. Given two
vertices u and v, the transmission delay from u to v is minimum in a geodesic cycle. For any pair of vertices u and v, a cycle C is called geodesic cycle between u and v in Q_{n} if $h(u, v)=d_{C}(u, v) . Q_{n}$ is geodesic bipancyclic if Q_{n} contains a geodesic cycle of every even length of k satisfying $\max \{2 h(u, v), 4\} \leq k \leq$ 2^{n}. The following lemma about shortest path properties of Q_{n} will be used in the proof of Theorem 1 .

Lemma 4 Let $u, v \in Q_{n}$.
(1) If $u, v \in Q_{n-1}^{0}$ (respectively, Q_{n-1}^{1}), then there exists a shortest path joining u and v in Q_{n} with all its vertices in Q_{n-1}^{0} (respectively, Q_{n-1}^{1}).
(2) Let $u \in Q_{n-1}^{0}$ and $v \in Q_{n-1}^{1}$. Then, (i) There exists a shortest path S joining u and v in Q_{n} with all its vertices (except u) in Q_{n-1}^{1}. (ii) There exists a shortest path S joining u and v in Q_{n} with all its vertices (except v) in Q_{n-1}^{0}.

Proof. Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=$ $v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be any two distinct vertices of Q_{n} and $h(u, v)=d$ where $d \geq 1$.
Case 1: $u, v \in V\left(Q_{n-1}^{0}\right)$ or $u, v \in V\left(Q_{n-1}^{1}\right)$.
Hence $u_{n-1}=v_{n-1}$ and $h(u, v) \leq n-1$. Let $\alpha=u_{n-2} u_{n-3} \ldots u_{0}$ and $\beta=v_{n-2} v_{n-3} \ldots v_{0}$ be two ($n-1$)-bit binary strings. Hence α and β are two vertices of Q_{n-1}. Obviously $h(\alpha, \beta)=h(u, v) \leq$ $n-1$. Let $S=\left\langle\alpha^{0}=\alpha, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{h(u, v)}=\beta\right\rangle$ denote a shortest path joining α and β in Q_{n-1} where $\alpha^{i}=\alpha_{n-2}^{i} \alpha_{n-3}^{i} \ldots \alpha_{0}^{i}$ is an $(n-1)$-bit binary string for $0 \leq i \leq h(u, v)$. Let $u^{i}=u_{n-1} \alpha_{n-2}^{i} \alpha_{n-3}^{i} \ldots \alpha_{0}^{i}$ be an n-bit binary string with first bit u_{n-1} where $0 \leq$ $i \leq h(u, v)$. Therefore, all vertices lying on the path $R=\left\langle u^{0}, u^{1}, u^{2}, \ldots u^{h(u, v)}\right\rangle$ are in $Q_{n-1}^{u_{n-1}}$ where $u^{0}=$ $u, u^{h(u, v)}=v$, and $u_{n-1}=0,1$. Obviously, the path R is a shortest path joining u and v in Q_{n}.
Case 2: $u \in V\left(Q_{n-1}^{i}\right)$ and $v \in V\left(Q_{n-1}^{1-i}\right)$ where $i=$ 0,1 .

Without loss of generality, we may assume that $i=0$, i.e., $u \in V\left(Q_{n-1}^{0}\right)$ and $v \in V\left(Q_{n-1}^{1}\right)$. Let $x=\overline{u_{n-1}} u_{n-2} \ldots u_{0}$ and $y=\overline{v_{n-1}} v_{n-2} \ldots v_{0}$. Obviously, $x \in V\left(Q_{n-1}^{1}\right)$ and $y \in V\left(Q_{n-1}^{0}\right)$, respectively. Also $h(x, u)=1$ and $h(y, v)=1$.

By case 1, there exists a shortest path, denoted $\left\langle u, u^{1}, u^{2}, \ldots, y\right\rangle$, joining u and y in Q_{n-1}^{0} and a shortest path, denoted $\left\langle v, v^{1}, v^{2}, \ldots, x\right\rangle$, connecting v and x in Q_{n-1}^{1}, respectively. Therefore, there exists a shortest path $S=\left\langle u, u^{1}, u^{2}, \ldots, y, v\right\rangle$ joining u and v in Q_{n} where all vertices (except u) are in Q_{n-1}^{1}. Meanwhile there exists a shortest path $R=$ $\left\langle v, v^{1}, v^{2}, \ldots, x, u\right\rangle$ joining u and v in Q_{n} where all vertices (except v) are in Q_{n-1}^{0}.

Theorem $1 Q_{n}$ is geodesic bipancyclic if $n \geq 2$.

Proof. Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=$ $v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be any two distinct vertices of Q_{n} and $h(u, v)=d$.
Case 1: $h(u, v)=1$, i.e. u and v are adjacent. Applying Lemma 1, we have that every edge in Q_{n} lies on a cycle of every even length from 4 to 2^{n}. The theorem holds for $h(u, v)=1$.
Case 2: $h(u, v)=d \geq 2$, i.e. u and v are not adjacent. We prove this theorem by induction on n. Obviously, the theorem holds for $n=2$. Assume that the theorem is true for every integer $2 \leq k<n$. To prove this theorem, we establish every geodesic cycle of even length k between u and v in Q_{n} where $2 d \leq k \leq 2^{n}$. Partitioning Q_{n} along dimension 0 , we obtain two disjoint $(n-1)$-subcubes Q_{n-1}^{0} and Q_{n-1}^{1} such that Q_{n-1}^{0} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{0}=0\right\}$ and Q_{n-1}^{1} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{0}=1\right\}$. The proof of case 2 is divided into two cases: u and v are in the same subcube Q_{n-1}^{0} (or Q_{n-1}^{1}), and u and v are in different subcubes.

Figure 2: The geodesic cycle between u and v of even length of $2^{n-1}+1+l(R)$ where $l(R)=$ $1,3,5,7, \ldots, 2^{n-1}-1, l(S)=h(u, v)$, and $l(S)+$ $l(P)=2^{n-1}-1$.

Subcase 2-1: $u, v \in Q_{n-1}^{0}$ or $u, v \in Q_{n-1}^{1}$. (See Figure 2.) Without loss of generality, we may assume that u and v are in Q_{n-1}^{0}., i.e. $u_{0}=v_{0}=0$. By induction hypothesis, Q_{n-1}^{0} is geodesic bipancyclic. Q_{n-1}^{0} contains every geodesic cycle of even length k satisfying $2 d \leq k \leq 2^{n-1}$ between u and v. Applying Lemma 4, we have that $d_{Q_{n}}(u, v)=d_{Q_{n-1}^{0}}(u, v)=$ $h(u, v)=d$. It is observed that every geodesic cycle between u and v in Q_{n-1}^{0} is a geodesic cycle between u and v in Q_{n}. Thus, geodesic cycle between u and v with even length of k satisfying $2 d \leq k \leq 2^{n-1}$ in Q_{n} can be found in Q_{n-1}^{0}.

The rest of the proof of this subcase is to find every geodesic cycle of even length from $2^{n-1}+2$ to 2^{n} between u and v in Q_{n}. Let C be a geodesic cycle of length 2^{n-1} between u and v in Q_{n-1}^{0}. Hence
C is a hamiltonian cycle in Q_{n-1}^{0} passing through u and v, and $d_{C}(u, v)=h(u, v)=d$. Since $n \geq 3$, $l(C) \geq 4$. One may choice a adjacent vertex w of u in C such that the cycle C can be written as $\langle u, S[u, v], v, P[v, w], w, u\rangle$ where $l(S)=h(u, v)$. Hence $l(S)=d$ and $l(P) \geq 1$. Since $\left(u, u^{0}\right)$ and $\left(w, w^{0}\right)$ are two edges of dimension $0, u^{0}$ and w^{0} are two adjacent vertices in Q_{n-1}^{1}. By Lemma 3, there exist paths formed by $\left\langle w^{0}, R\left[w^{0}, u^{0}\right], u^{0}\right\rangle$ in the Q_{n-1}^{1} with length $1,3,5, \ldots, 2^{n}-1$. Therefore, we can construct a cycle $C^{\prime}=\left\langle u, S[u, v], v, P[v, w], w, w^{0}\right.$, $\left.R\left[w^{0}, u^{0}\right], u^{0}, u\right\rangle$ containing the shortest path $S[u, v]$. It is observed that C^{\prime} is a geodesic cycle with even length of $l\left(C^{\prime}\right)=2^{n-1}-1+2+l(R)$ between u and v in Q_{n} where $l(R)=1,3,5, \ldots, 2^{n-1}-1$. Therefore, $2^{n-1}+2 \leq l\left(C^{\prime}\right) \leq 2^{n}$. The proof of this subcase is completed.

Figure 3: (a) A geodesic 4-cycle between u and v if $h(u, v)=2$. (b) The geodesic cycle between u and v of even length of $m+k+1$ where $m=$ $1,3,5,7, \ldots, 2^{n-1}-1, k$ is an even integer satisfying $\max \{2 h(u, v)-2,4\} \leq k \leq 2^{n-1}, l(S)=$ $h(u, v)-1, l(P)=m$, and $l(S)+l(R)=k-1$.

Subcase 2-2: $u \in Q_{n-1}^{0}$ and $v \in Q_{n-1}^{1}$ (or $v \in Q_{n-1}^{0}$ and $u \in Q_{n-1}^{1}$). (See Figure 3.) Without loss of generality, we may assume that $u \in Q_{n-1}^{0}$ and $v \in Q_{n-1}^{1}$. Applying Lemma 4, there exists a shortest path $S[u, v]$ joining u and v in Q_{n} with all vertices (except v) in Q_{n-1}^{0}. We write the path $S[u, v]$ as $\left\langle u, P\left[u, v^{0}\right], v^{0}, v\right\rangle$. Hence $l\left(P\left[u, v^{0}\right]\right)=$ $d-1$. Meanwhile, there exists a shortest path $S_{1}[v, u]$ joining v and u in Q_{n} with all vertices (except u) in Q_{n-1}^{1}. We write the path $S_{1}[v, u]$ as $\left\langle v, P_{1}\left[v, u^{0}\right], u^{0}, u\right\rangle$. Then, $l\left(P_{1}\left[v, u^{0}\right]\right)=d-1$. Therefore, $\left\langle u, P\left[u, v^{0}\right], v^{0}, v, P_{1}\left[v, u^{0}\right], u^{0}, u\right\rangle$ forms a geodesic cycle of length $2 d$ between u and v in Q_{n}. If $d=2$, the geodesic cycle of length 4 between u and v exists.

Since u and v^{0} are in Q_{n-1}^{0}, by induction hypothesis, Q_{n-1}^{0} is geodesic bipancyclic. Let C be a geodesic cycle with even length of k satisfying $\max \{2(d-1), 4\} \leq k \leq 2^{n-1}$ between u and v^{0} in Q_{n-1}^{0}. The cycle C can
be rewritten as $\left\langle u, S\left[u, v^{0}\right], v^{0}, w, R[w, u], u\right\rangle$ where $l\left(S\left[u, v^{0}\right]\right)=d-1$ and $l(R[w, u])=k-d$. Hence $\left\langle u, S\left[u, v^{0}\right], v^{0}, v\right\rangle$ is a shortest path of Q_{n} joining u and v. Since v^{0} and w are adjacent, v and w^{0} are adjacent in Q_{n-1}^{1}. By Lemma 3, there are paths formed by $\left\langle v, P\left[v, w^{0}\right], w^{0}\right\rangle$ in the Q_{n-1}^{1} with length $m=1,3$, $5, \ldots, 2^{n-1}-1$. Therefore, we can construct a cycle $C^{\prime}=\left\langle u, S\left[u, v^{0}\right], v^{0}, v, P\left[v, w^{0}\right], w^{0}, w, R[w, u], u\right\rangle$ containing the shortest path $S[u, v]$. It is observed that C^{\prime} is a geodesic cycle with even length of $l\left(C^{\prime}\right)=$ $d-1+1+m+1+k-d=m+k+1$ between u and v in Q_{n}. Therefore, $\max \{2 d, 6\} \leq l\left(C^{\prime}\right) \leq 2^{n}$. The theorem is proved.

4 Balanced bipancyclicity of Hypercubes

To route a packet from u to v in a k-cycle, one may first breaks the packet into two smaller pieces. Then, route the two pieces along two internal vertexdisjoint paths to the two intermediate vertices v_{1}, v_{2}. In the second phase, symmetrically, the two pieces are routed from the intermediate vertices v_{1}, v_{2} to their common destination v. The packet is combined in v until all pieces of this packet arrived. Therefore, this kind of transmission delay between u and v in a cycle is determined by the longest path between u and v in this cycle. It is of interest to find a cycle passing through u and v such that lengths of two disjoint paths between u and v in this cycle are as equal as possible.
Q_{n} is balanced bipancyclic if for each pair of vertices $u, v \in V\left(Q_{n}\right)$, it contains a balanced cycle of every even length of $2 l$ satisfying $\max \{h(u, v), 2\} \leq$ $l \leq 2^{n-1}$ between u and v. The following lemma is useful in the proof of Theorem 2.

Lemma 5 For any two disjoint edges (u, v) and (w, z) in Q_{n} with $n \geq 2$, there exist two disjoint paths, $\left\langle u, P_{1}[u, v], v\right\rangle$ and $\left\langle w, P_{2}[w, z], z\right\rangle$, in Q_{n} with equal length k where $k=1,3,5,7, \ldots, 2^{n-1}-1$.

Proof. We prove this lemma by induction on n. Obviously, the lemma holds for $n=2$. Assume that the lemma is true for every integer $2 \leq m<n$. Suppose that (u, v) is an edge of dimension i and (w, z) is an edge of dimension j where $0 \leq i, j \leq n-1$. Since $n \geq 3$, there exists an integer r such that $r \neq i$ and $r \neq j$. We may partition Q_{n} along dimension r into two $(n-1)$-subcubes such that Q_{n-1}^{0} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{r}=0\right\}$ and Q_{n-1}^{1} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{r}=1\right\}$. Since $r \neq i$ and $r \neq j,(u, v)$ and (w, z) are in the same subcube or in different subcubes. The proof is divided into two cases: (u, v) and
(w, z) lie on the same subcube Q_{n-1}^{0} (or Q_{n-1}^{1}), and (u, v) and (w, z) are in different subcubes.
Case 1: (u, v) and (w, z) lie on the same subcube Q_{n-1}^{0} (or Q_{n-1}^{1}).

Without loss of generality, we may assume that (u, v) and (w, z) lie on Q_{n-1}^{0}. By induction hypothesis, there exist two disjoint paths $P_{1}[u, v]$ and $P_{2}[w, z]$ in Q_{n-1}^{0} with equal length of k where $k=$ $1,3,5,7, \ldots, 2^{n-2}-1$.

In the rest of Case 1 , we construct two disjoint paths $P_{1}[u, v]$ and $P_{2}[w, z]$ in Q_{n} with equal length of k where $k=2^{n-2}+1,2^{n-2}+3,2^{n-2}+$ $5, \ldots, 2^{n-1}-1$. Let $R_{1}[u, v]$ and $R_{2}[w, z]$ be two disjoint paths of length $2^{n-2}-1$ in Q_{n-1}^{0}. Since $n \geq 3, l\left(R_{1}\right)=l\left(R_{2}\right) \geq 1$. We can rewrite $R_{1}[u, v]$ (respectively, $R_{2}[w, z]$) as $\left\langle u, x, S_{1}[x, v], v\right\rangle$ (respectively, $\left\langle w, y, S_{2}[y, z], z\right\rangle$) where $l\left(S_{1}\right)=l\left(S_{2}\right) \geq 0$, and $x=v$ if $l\left(S_{1}\right)=0$ (respectively, $y=z$ if $\left.l\left(S_{2}\right)=0\right)$. Let $\left(u, u^{r}\right),\left(x, x^{r}\right),\left(w, w^{r}\right)$, and $\left(y, y^{r}\right)$ be four disjoint edges of dimension r. Hence $\left(u^{r}, x^{r}\right)$ and $\left(w^{r}, y^{r}\right)$ are two edges lying Q_{n-1}^{1}. By the induction hypothesis, there exist two disjoint paths $T_{1}\left[u^{r}, x^{r}\right]$ and $T_{2}\left[w^{r}, y^{r}\right]$ in Q_{n-1}^{1} with equal length of m where $m=1,3,5,7 \ldots, 2^{n-2}-$ 1. Therefore, two paths can be constructed as $P_{1}=\left\langle u, u^{r}, T_{1}\left[u^{r}, x^{r}\right], x^{r}, x, S_{1}[x, v], v\right\rangle$ and $P_{2}=$ $\left\langle w, w^{r}, T_{2}\left[w^{r}, y^{r}\right], y^{r}, y, S_{2}[y, z], z\right\rangle$ where $l\left(P_{1}\right)=$ $l\left(P_{2}\right)=2^{n-2}+m$ and $m=1,3,5,7, \ldots, 2^{n-2}-1$. Hence $P_{1}[u, v]$ and $P_{2}[w, z]$ are two disjoint paths with equal length of $2^{n-2}+1,2^{n-2}+3,2^{n-2}+$ $5, \ldots, 2^{n-1}-1$.
Case 2: (u, v) and (w, z) are in different subcubes.
Applying Lemma 3, there are paths formed by $\left\langle u, P_{1}[u, v], v\right\rangle$ in the Q_{n-1}^{0} with length $1,3,5$, $7, \ldots, 2^{n-1}-1$ and there are paths formed by $\left\langle w, P_{2}[w, z], z\right\rangle$ in the Q_{n-1}^{1} with length $1,3,5,7, \ldots$, $2^{n-1}-1$. The Lemma is proved.

Theorem $2 Q_{n}$ is balanced bipancyclic if $n \geq 2$.
Proof. Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=$ $v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be any two distinct vertices of Q_{n} and $h(u, v)=d$. To prove the theorem, we will find every balanced $2 l$-cycle between u and v where $\max \{d, 2\} \leq l \leq 2^{n-1}$. The proof is divided into two parts: $d=1$ and $d \geq 2$.
Case 1: $d=1$, i.e. u and v are adjacent. (See Figure 4.)

Without loss of generality, we may assume that (u, v) is an edge of dimension 0 . We may partition Q_{n} along dimension 1 into two $(n-1)$-subcubes such that Q_{n-1}^{0} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{1}=0\right\}$ and Q_{n-1}^{1} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{1}=1\right\}$. Therefore, u and v are in the same subcube Q_{n-1}^{0} or

Figure 5: Three balanced cycles between $u=000$ and $v=011$ in Q_{3}.

Figure 4: (a) Let $l\left(P_{1}\right)=l\left(P_{2}\right)=k$. Then, a balanced $(2 k+2)$-cycle between u and v is constructed, where $k=1,3,5, \ldots, 2^{n-1}-1$. (b) Let $l\left(P_{1}\right)=k+2$ and $l\left(P_{2}\right)=k$. Then, a balanced $(2 k+4)$-cycle between u and v is constructed, where $k=1,3,5, \ldots, 2^{n-1}-3$.
Q_{n-1}^{1}. Without loss of generality, we suppose that u and v are in Q_{n-1}^{0}.

Let $\left(u, u^{1}\right)$ and $\left(v, v^{1}\right)$ be two edges of dimension 1. Hence $h\left(u^{1}, v^{1}\right)=1$ and $u^{1}, v^{1} \in$ $V\left(Q_{n-1}^{1}\right)$. Applying Lemma 3, there are paths formed by $\left\langle u, P_{1}[u, v], v\right\rangle$ in the Q_{n-1}^{0} with length $k_{1}=1$, $3,5,7, \ldots, 2^{n-1}-1$ and there are paths formed by $\left\langle v^{1}, P_{2}\left[v^{1}, u^{1}\right], u^{1}\right\rangle$ in the Q_{n-1}^{1} whose lengths are $k_{2}=1,3,5,7, \ldots, 2^{n-1}-1$. We can construct a cycle as $C=\left\langle u, P_{1}[u, v], v, v^{1}, P_{2}\left[v^{1}, u^{1}\right], u^{1}, u\right\rangle$ of length $l(C)=k_{1}+k_{2}+2$ where $k_{1}=l\left(P_{1}\right)$ and $k_{2}=l\left(P_{2}\right)$. Obviously, the cycle C passes through u and v.
(a). Balanced $(2 k+2)$-cycle between u and v where $k=1,3,5, \ldots, 2^{n-1}-1$. Let $k_{1}=k$ and $k_{2}=k$. Then, $l(C)=2 k+2$ where $k=1,3,5, \ldots$, $2^{n-1}-1$. Hence $d_{C}(u, v)=k=\frac{l(C)}{2}-1$. Since d is odd, $\frac{l(C)}{2}$ is even, and $d_{C}(u, v)=\frac{l(C)}{2}-1$, the cycle C is a balanced $(2 k+2)$-cycle between u and v where $k=1,3,5, \ldots, 2^{n-1}-1$.
(b). Balanced $(2 k+4)$-cycle between u and v where $k=1,3,5, \ldots, 2^{n-1}-3$. Let $k_{1}=k+2$ and $k_{2}=k$. Then, $l(C)=2 k+4$ where $k=1,3,5, \ldots$,
$2^{n-1}-3$. Hence $d_{C}(u, v)=k+2=\frac{l(C)}{2}$. Since d is odd, $\frac{l(C)}{2}$ is odd, and $d_{C}(u, v)=\frac{l(C)}{2}$, the cycle C is a balanced $(2 k+4)$-cycle between u and v where $k=1,3,5, \ldots, 2^{n-1}-3$.
Case 2: $d \geq 2$, i.e. u and v are not adjacent.
We prove this case by induction on n. Obviously, the proof of case 2 holds for $n=2$. Assume that the proof of case 2 is true for every integer $2 \leq m<n$. Let $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0}$ and $v=v_{n-1} v_{n-2} \ldots v_{1} v_{0}$ be any two distinct vertices of Q_{n} and $h(u, v)=d$. Partitioning Q_{n} along dimension $0, Q_{n}$ can be divided into two $(n-1)$-subcubes where Q_{n-1}^{0} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{0}=0\right\}$ and Q_{n-1}^{1} denotes the subgraph of Q_{n} induced by $\left\{x \in V\left(Q_{n}\right) \mid x_{0}=1\right\}$.

Subcase 2-1: $u, v \in Q_{n-1}^{0}$ or $u, v \in Q_{n-1}^{1}$. (See Figure 5 and Figure 6.)

Without loss of generality, we may assume that $u, v \in Q_{n-1}^{0}$. For the basis of this proof, we consider Q_{3}. It is clear that Q_{3} is balanced bipancyclic. (See Figure 5 for an illustration).

Figure 6: Let $l\left(S_{1}\right)=l\left(S_{2}\right)=k$ where $k=$ $1,3,5, \ldots, 2^{n-1}$. Then, a balanced $(m+2 k+$ 2)-cycle between u and v is constructed, where $\left\langle u, x, P_{1}[x, v], v, y, P_{2}[y, u], u\right\rangle$ is balanced m-cycle between u and v of Q_{n-1}^{0} where $m \geq 6$.

Suppose that $n \geq 4$. By induction hypothesis, Q_{n-1}^{0} is balanced bipancyclic. Every balanced $2 l-$
cycle between u and v in Q_{n} can be found in Q_{n-1}^{0} where $d \leq l \leq 2^{n-2}$. Let C be a balanced m-cycle with $m \geq 6$ between u and v in Q_{n-1}^{0}. Hence we rewrite the cycle C as $\left\langle u, x, P_{1}[x, v], v, y, P_{2}[y, u]\right.$, $u\rangle$. Let $\left(u, u^{0}\right),\left(x, x^{0}\right),\left(v, v^{0}\right)$, and $\left(y, y^{0}\right)$ be four edges of dimension 0 . It is observed that u^{0}, x^{0}, v^{0}, and y^{0} are four distinct vertices in Q_{n-1}^{1}, and that $\left(u^{0}, x^{0}\right)$ and $\left(v^{0}, y^{0}\right)$ are two disjoint edges in Q_{n-1}^{1}. Applying Lemma 5, there exist two disjoint paths $S_{1}\left[u^{0}, x^{0}\right]$ and $S_{2}\left[v^{0}, y^{0}\right]$ in Q_{n-1}^{1} such that $l\left(S_{1}\right)=l\left(S_{2}\right)=k$ where $k=1,3,5,7, \ldots, 2^{n-2}-1$. Therefore, we may construct a cycle $C^{\prime}=\left\langle u, u^{0}\right.$, $S_{1}\left[u^{0}, x^{0}\right], x^{0}, x, P_{1}[x, v], v, v^{0}, S_{2}\left[v^{0}, y^{0}\right], y^{0}, y$, $\left.P_{2}[y, u], u\right\rangle$ passing through u and v. Hence $l\left(C^{\prime}\right)=$ $m+2 k+2$.

Subcase 2-1-1: Balanced $\left(2^{n-1}+2 k\right)$-cycle between u and v where $k=1,3,5, \ldots, 2^{n-2}-1$. Let $m=2^{n-1}-2$. Therefore, $l\left(C^{\prime}\right)=2^{n-1}+2 k$.
(a). Suppose that d is odd. Since C is a balanced $\left(2^{n-1}-2\right)$-cycle between u and v, and $\frac{l(C)}{2}=$ $2^{n-2}-1$ is odd, $d_{C}(u, v)=2^{n-2}-1$. It is clearly that $d_{C^{\prime}}(u, v)=d_{C}(u, v)+k+1=2^{n-2}+k$ and $\frac{l\left(C^{\prime}\right)}{2}=2^{n-2}+k$. Since d is odd, $\frac{l\left(C^{\prime}\right)}{2}$ is odd, and $d_{C^{\prime}}(u, v)=2^{n-2}+k=\frac{l\left(C^{\prime}\right)}{2}$, the cycle C^{\prime} is a balanced $\left(2^{n-1}+2 k\right)$-cycle between u and v in Q_{n} where $k=1,3,5, \ldots, 2^{n-2}-1$.
(b). Suppose that d is even. Since C is a balanced $\left(2^{n-1}-2\right)$-cycle between u and v, and $\frac{l(C)}{2}=$ $2^{n-2}-1$ is odd, $d_{C}(u, v)=2^{n-2}-2$. It is clearly that $d_{C^{\prime}}(u, v)=d_{C}(u, v)+k+1=2^{n-2}+k-1$ and $\frac{l\left(C^{\prime}\right)}{2}=2^{n-2}+k$. Since d is even, $\frac{l\left(C^{\prime}\right)}{2}$ is odd, and $d_{C^{\prime}}(u, v)=2^{n-2}+k-1=\frac{l\left(C^{\prime}\right)}{2}-1$, the cycle C^{\prime} is a balanced $\left(2^{n-1}+2 k\right)$-cycle between u and v in Q_{n} where $k=1,3,5, \ldots, 2^{n-2}-1$.

Subcase 2-1-2: Balanced $\left(2^{n-1}+2 k+2\right)$-cycle between u and v where $k=1,3,5, \ldots, 2^{n-2}-1$. Let $m=2^{n-1}$. Therefore, $l\left(C^{\prime}\right)=2^{n-1}+2 k+2$.
(a). Suppose that d is odd. Since C is a balanced 2^{n-1}-cycle between u and v, and $\frac{l(C)}{2}=2^{n-2}$ is even, $d_{C}(u, v)=2^{n-2}-1$. It is clearly that $d_{C^{\prime}}(u, v)=$ $d_{C}(u, v)+k+1=2^{n-2}+k$ and $\frac{l\left(C^{\prime}\right)}{2}=2^{n-2}+$ $k+1$. Since d is odd, $\frac{l\left(C^{\prime}\right)}{2}$ is even, and $d_{C^{\prime}}(u, v)=$ $2^{n-2}+k=\frac{l\left(C^{\prime}\right)}{2}-1$, the cycle C^{\prime} is a balanced $\left(2^{n-1}+2 k+2\right)$-cycle between u and v in Q_{n} where $k=1,3,5, \ldots, 2^{n-2}-1$.
(b). Suppose that d is even. Since C is a balanced 2^{n-1}-cycle between u and v, and $\frac{l(C)}{2}=2^{n-2}$ is even, $d_{C}(u, v)=2^{n-2}$. It is clearly that $d_{C^{\prime}}(u, v)=$ $d_{C}(u, v)+k+1=2^{n-2}+k+1$ and $\frac{l\left(C^{\prime}\right)}{2}=$ $2^{n-2}+k+1$. Since d is even, $\frac{l\left(C^{\prime}\right)}{2}$ is even, and
$d_{C^{\prime}}(u, v)=2^{n-2}+k+1=\frac{l\left(C^{\prime}\right)}{2}$, the cycle C^{\prime} is a balanced $\left(2^{n-1}+2 k+2\right)$-cycle between u and v in Q_{n} where $k=1,3,5, \ldots, 2^{n-2}-1$.

Figure 7: $h(u, v)=d$ is even. (a) Let $l\left(P_{1}\right)=$ $l\left(P_{2}\right)=k$. Then, a balanced $(2 k+2)$-cycle between u and v is constructed, where $k=d-1, d+1, d+$ $3, \ldots, 2^{n-1}-1$. (b) Let $l\left(P_{1}\right)=k+2$ and $l\left(P_{2}\right)=k$. Then, a balanced $(2 k+4)$-cycle between u and v is constructed, where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-$ 3.

Subcase 2-2: $u \in Q_{n-1}^{0}$ and $v \in Q_{n-1}^{1}$ (or $v \in$ Q_{n-1}^{0} and $\left.u \in Q_{n-1}^{1}\right)$.

Without loss of generality, we may assume that $u \in Q_{n-1}^{0}$ and $v \in Q_{n-1}^{1}$. Let $\left(u, u^{0}\right)$ and $\left(v, v^{0}\right)$ be two edges of dimension 0 . Hence $u^{0} \in V\left(Q_{n-1}^{1}\right)$ and $v^{0} \in V\left(Q_{n-1}^{0}\right)$, and $h\left(u, v^{0}\right)=h\left(v, u^{0}\right)=d-1$.

Subcase 2-2-1: d is even, i.e. u and v are in the same partite set. (See Figure 7.) Hence u^{0} and v are in different partite sets. Similarly, v^{0} and u are in different partite sets. By Lemma 3, there exists a path $P_{1}\left[u, v^{0}\right]$ (respectively, $P_{2}\left[v, u^{0}\right]$) connecting u and v^{0} (respectively, v and u^{0}) where $l\left(P_{1}\right)=d-1, d+1, d+$ $3, \ldots, 2^{n-1}-1$ (respectively, $l\left(P_{2}\right)=d-1, d+1, d+$ $\left.3, \ldots, 2^{n-1}-1\right)$. The cycle C can be constructed as $\left\langle u, P_{1}\left[u, v^{0}\right], v^{0}, v, P_{2}\left[v, u^{0}\right], u^{0}, u\right\rangle$. Therefore, the cycle C passing through u and v, and $l(C)=k_{1}+$ $k_{2}+2$ where $k_{1}=l\left(P_{1}\right)$ and $k_{2}=l\left(P_{2}\right)$.
(a). Balanced $(2 k+2)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-1$. Let $k_{1}=k$ and $k_{2}=k$ where $k=d-1, d+1, d+3, \ldots$, $2^{n-1}-1$. Therefore, $l(C)=2 k+2$. One can observe that $\frac{l(C)}{2}=k+1$ and $d_{C}(u, v)=k+1$. Since d is even, $\frac{l(C)}{2}$ is even, and $d_{C}(u, v)=\frac{l(C)}{2}$, the cycle C is a balanced $(2 k+2)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-1$.
(b). Balanced $(2 k+4)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-3$. Let $k_{1}=k+2$ and $k_{2}=k$ where $k=d-1, d+1$, $d+3, \ldots, 2^{n-1}-3$. Therefore, $l(C)=2 k+4$. One can observe that $\frac{l(C)}{2}=k+2$ and $d_{C}(u, v)=k+1$. Since d is even, $\frac{l(\stackrel{\rightharpoonup}{C})}{2}$ is odd, and $d_{C}(u, v)=\frac{l(C)}{2}-1$,
the cycle C is a balanced $(2 k+4)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-3$.

Subcase 2-2-2: d is odd, i.e. u and v are in different partite sets. (See Figure 8.) Hence u^{0} and v are in the same partite set. Similarly, v^{0} and u are in the same partite set. By Lemma 3, there exists a paths $P_{1}\left[u, v^{0}\right]$ (respectively, $P_{2}\left[v, u^{0}\right]$) connecting u and v^{0} (respectively, v and u^{0}) where $l\left(P_{1}\right)=d-1, d+1, d+$ $3,2^{n-1}-2$ (respectively, $l\left(P_{2}\right)=d-1, d+1, d+$ $\left.3, \ldots, 2^{n-1}-2\right)$. The cycle C can be constructed as $\left\langle u, P_{1}\left[u, v^{0}\right], v^{0}, v, P_{2}\left[v, u^{0}\right], u^{0}, u\right\rangle$. Therefore, the cycle C passing through u and v, and $l(C)=k_{1}+$ $k_{2}+2$ where $k_{1}=l\left(P_{1}\right)$ and $k_{2}=l\left(P_{2}\right)$.
(a). Balanced $(2 k+2)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-2$. Let $k_{1}=k$ and $k_{2}=k$ where $k=d-1, d+1, d+3, \ldots$, $2^{n-1}-2$. Therefore, $l(C)=2 k+2$. One can observe that $\frac{l(C)}{2}=k+1$ and $d_{C}(u, v)=k+1$. Since d is odd, $\frac{l(C)}{2}$ is odd, and $d_{C}(u, v)=\frac{l(C)}{2}$, the cycle C is a balanced $(2 k+2)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-2$.
(b). Balanced $(2 k+4)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-4$. Let $k_{1}=k+2$ and $k_{2}=k$ where $k=d-1, d+1$, $d+3, \ldots, 2^{n-1}-4$. Therefore, $l(C)=2 k+4$. One can observe that $\frac{l(C)}{2}=k+2$ and $d_{C}(u, v)=k+1$. Since d is odd, $\frac{l(C)}{2}$ is even, and $d_{C}(u, v)=\frac{l(C)}{2}-1$, the cycle C is a balanced $(2 k+4)$-cycle between u and v where $k=d-1, d+1, d+3, \ldots, 2^{n-1}-4$.

Figure 8: $h(u, v)=d$ is odd. (a.1) Let $l\left(P_{1}\right)=$ $l\left(P_{2}\right)=k$. Then, a balanced $(2 k+2)$-cycle between u and v is constructed, where $k=d-1, d+$ $1, d+3, \ldots, 2^{n-1}-2$. (a.2) Let $l\left(P_{1}\right)=k+2$ and $l\left(P_{2}\right)=k$. Then, a balanced $(2 k+4)$-cycle between u and v is constructed, where $k=d-1, d+$ $1, d+3, \ldots, 2^{n-1}-4$. (b) A balanced hamiltoian cycle between u and v where $l\left(P_{1}\right)=2^{n-1}-1$ and $l\left(P_{2}\right)=2^{n-1}-2$.
(c). Balanced 2^{n}-cycle between u and v. Let $w \in V\left(Q_{n-1}^{1}\right)$ and $h(w, v)=1$. It is observed that $h\left(w, u^{0}\right)$ is odd. By Lemma 2, there exists a path $P\left[v, u^{0}\right]$ of length $2^{n-1}-2$ joining v and u^{0}
passing all vertices of Q_{n-1}^{1} except w. Let $\left(w, w^{0}\right)$ be an edge of dimension 0 . Hence w^{0} is in Q_{n-1}^{0}, and w^{0} and u are in different partite sets. By Lemma 3, there exists a hamiltonian path $P_{1}\left[u, w^{0}\right]$ joining u and w^{0} in Q_{n-1}^{0}. Therefore, the longest cycle C between u and v in Q_{n} can be constructed as $\left\langle u, P_{1}\left[u, w^{0}\right], w^{0}, w, v, P_{2}\left[v, u^{0}\right], u^{0}, u\right\rangle$. Therefore, the cycle C passing through u and v, such that $l(C)=$ $2^{n-1}-1+1+1+2^{n-1}-2+1=2^{n}$ and $d_{C}(u, v)=$ $2^{n-1}-1=\frac{l(C)}{2}-1$. Since d is odd, $\frac{l(C)}{2}$ is even, and $d_{C}(u, v)=\frac{l(C)}{2}-1$, the cycle C is a balanced cycle between u and v. The theorem is proved.

5 Conclusions

In this paper, we address the existence of geodesic cycles and balanced cycles between any pair of vertices in Q_{n}. Given two vertices u and v, the transmission delay from u to v is minimum in a geodesic cycle. We prove that Q_{n} is a geodesic bipancyclic, i.e. for any two distinct vertices u and v, there exists a geodesic cycle of every even length of k satisfying $\max \{2 h(u, v), 4\} \leq k \leq 2^{n}$ in Q_{n}.

We also deal with the other kind of transmission delay from one vertex to others. To route a packet from u to v in a cycle, one may first breaks the packet into two smaller pieces. Then, route the two pieces along two internal vertex-disjoint paths to destination v. The packet is combined in v until these two pieces arrived. It is of interest to find a cycle passing through u and v such that lengths of two disjoint paths between u and v in this cycle are as equal as possible. Therefore, we define the notion of balanced cycle between u and v. We prove that Q_{n} is balanced bipancyclic., i.e. for any two distinct vertices u and v, there exists a balanced cycle of every even length of k satisfying $\max \{2 h(u, v), 4\} \leq k \leq 2^{n}$ in Q_{n}.

Numerous variants of hypercube, for example, Augmented cubes [4], Crossed cubes [7], Möbius cubes [5], Twisted cubes [1], and Folded hypercubes [8], have been proposed and proved that they are pancyclic. Geodesic and balanced pancyclicities of Augmented cubes and Crossed cubes are shown in [14] and [17]. However, finding geodesic and banlanced cycles in other variants of hypercube is still open. Our further work tends towards the investigation whether there are more classes of interconnection networks, such as these variations of hypercube, to possess the property of geodesic and balanced pancyclicities.

Acknowledgements: This work was supported in part by the National Science Council of the Republic of China under Contracts NSC 97-2115-M-026-001
and NSC 97-2221-E-259-020.

References:

[1] S. Abraham and K. Padmanabhan , "Twisted cube: a study in asymmetry," J. Parallel Distrb. Comput., vol. 13, pp. 104-110, 1991.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
[3] H. C. Chan, J. M. Chang, Y. L. Wang, and S. J. Horng, "Geodesic-pancyclic graphs," Discrete Applied Mathematics, vol. 155, pp. 1971-1978, 2007.
[4] S. A. Choudum and V. Sunitha, "Augmented cubes," Networks, vol. 40, pp. 71-84, 2002.
[5] P. Cull and S. M. Larson , "The Möbius Cubes," IEEE Trans. Comput., vol. 44, pp. 647-659, 1995.
[6] K. Day and A. Tripathi, "Embedding of cycles in arrangement graphs," IEEE Trans. Comput., vol. 12, pp. 1002-1006, 1993.
[7] K. Efe,"The Crossed Cube Architecture for Parallel Computing," IEEE Trans. Parallel and Distributed Systems, vol. 3, no. 5, pp. 513-524, 1992.
[8] A. El-Amawy and S. Latifi , "Properties and performance of folded hypercubes," IEEE Trans. Parallel Distrib. Syst., vol. 2, pp. 31-42, 1991.
[9] J. Fan , "Hamilton-connectivity and cycleembedding of the Möbius Cubes,"Inform. Process. Lett., vol. 82, pp. 113-117, 2002.
[10] A. Germa, M. C. Heydemann, and D. Sotteau, " Cycles in the cube-connected cycles graph," Discr. Appl. Math., vol. 83, pp. 135-155, 1998.
[11] J. P. Hayes and T. N. Mudge, "Hypercube supercomputer," Proc. IEEE, vol. 17, no. 12, pp. 1829-1841, 1989.
[12] S. Y. Hsieh and C. H. Chen , "Pancyclicity on Möbius cubes with maximal edge faults," Parallel Computing, vol. 30, pp. 407-421, 2004.
[13] S. Y. Hsieh and N. W. Chang, "Hamiltonian path embedding and pancyclicity on the Möbius cube with faulty nodes and faulty edges," IEEE Trans. Comput., vol. 55, pp. 854-863, 2006.
[14] H. C. Hsu, P. L. Lai, and C. H. Tsai, "Geodesic pancyclicity and balanced pancyclicity of augmented cubes," Information Processing Letters vol. 101, pp. 227-232, 2007.
[15] K. S. Hu, S. S. Yeoh, C. Chen, and L. H. Hsu , "Node-pancyclicity and edge-pancyclicity of hypercube variants," Inform. Process. Lett., vol. 102, pp. 1-7, 2007.
[16] S. C. Hwang and G. H. Chen, "Cycles in butterfly graphs," Networks, vol. 35, no. 2, pp. 161171, 2000.
[17] P. L. Lai, H. C. Hsu, and C. H. Tsai, "On the Geodesic Pancyclicity of Crossed Cubes", WSEAS TRANSACTION ON CIRCUITS AND SYSTEMS, vol. 5, pp. 1803-1810, 2006.
[18] S. Latifi, S. Zheng, and N. Bagherzadeh, "Optimal ring embedding in hypercubes with faulty links", in Fault-Tolerant Computing Symp., pp. 178-184, 1992.
[19] F. T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, 1992.
[20] T. K. Li, C. H. Tsai, Jimmy J. M. Tan, and L. H. Hsu, "Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes," Information Processing Letters, vol. 87, pp. 107-110, 2003.
[21] T. K. Li and M. C. Yang, J. M. Tan, and L. H. Hsu, "On embedding cycle in faulty twisted cubes," Information Sciences vol. 176, pp. 676690, 2006.
[22] H. S. Lim and H. C. Kim, "Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements," Theoretical Computer Science, vol. 377, pp. 170-180, 2007.
[23] J. Mitchem and E. Schmeichel, "Pancyclic and bipancyclic graphs-a survey," Graphs and applications, pp. 271-278, 1982.
[24] J. H. Park, H. S. Lim, and H. C. Kim, "Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements," Theoretical Computer Science, vol. 377, pp. 170-180, 2007.
[25] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes," IEEE Trans. Computers, vol. 37, no. 7, pp. 867-872, July 1988.
[26] SGI. Origin2000 Rackmount Ower's Guide, 007-3456-003. http://techpubs.sgi.com/, 1997.
[27] L. W. Tucker and G. G. Robertson, "Architecture and applications of connection machine," IEEE Trans. Comput., vol. 21, pp. 26-38, 1988.
[28] C. H. Tsai, "Linear arrays and rings embedding in conditional faulty hypercubes," Theoretical Computer Science vol. 314, pp. 431-443, 2004.
[29] C. H. Tsai and Y. C. Lai, "Conditional faulttolerant edge-bipancyclicity of hypercubes," Information Sciences vol. 177, pp. 5590-5597, 2007.
[30] Y. C. Tseng, S. H. Chang, and J. P. Sheu, "Faulttolerant ring embedding in a star graph with both link and node failures," IEEE Trans. Parallel Distrib. Syst. vol. 8, pp. 1185-1195, 1997.
[31] M. Xu and J. M. Xu , "Edge-pancyclicity of Möbius Cubes ,"Inform. Process. Lett., vol. 96, pp. 136-140, 2005.
[32] J. M. Xu, M. Ma, and M. Lu , "Path in Möbius Cubes and crossed cubes," Inform. Process. Lett., vol. 97, pp. 94-97, 2006.
[33] XiaoFan Yang and G. M. Megson, "On the double-vertex-cycle-connectivity of crossed cubes," Parallel Algorithms and Applications vol. 19, pp. 11-17, 2004.
[34] M. C. Yang, T. K. Li, Jimmy J. M. Tan, and L. H. Hsu, "Fault-tolerant pancyclicity of the Möbius Cubes," IEICE Trans. Fundamentals, vol. E88A, pp. 346-352, 2005.
[35] X. Yang, G. M. Megson, and D. J. Evans, "Pancyclicity of Möbius cubes with faulty nodes," Microprocessors and Microsystems, vol. 30, pp. 165-172, 2006.

