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Abstract: This paper considers nonparametric regression to analyze correlated data. The correlated data could be
longitudinal or clustered data. Some developments of nonparametric regression have been achieved for longitudinal
or clustered categorical data. For data with exponential family distribution, nonparametric regression for correlated
data has been proposed using GEE-Local Polynomial Kernel (LPK). It was showed that in order to obtain an
efficient estimator, one must ignore within subject correlation. This means within subject observations should be
assumed independent, hence the working correlation matrix must be an identity matrix. Thus to obtained efficient
estimates we should ignore correlation that exist in longitudinal data, even if correlation is the interest of study. In
this paper we propose GEE-Smoothing spline to analyze correlated data and study the properties of the estimator
such as the bias, consistency and efficiency. We use natural cubic spline and combine with GEE in estimation.
We want to study numerically, whether the properties of GEE-Smoothing spline are better than of GEE-Local
Polynomial Kernel. Several conditions have been considered. i.e. several sample sizes and several correlation
structures. Using simulation we show that GEE-Smoothing Spline is better than GEE-local polynomial. The bias
of pointwise estimator is decreasing with increasing sample size. The pointwise estimator is also consistent even
with incorrect correlation structure, and the most efficient estimate is obtained if the true correlation structure is
used. We also give example using real data, and compared the result of the proposed method with parametric
method and GEE-Smoothing Spline under independent assumption.

Key–Words: Nonparametric regression, Longitudinal binary data, Generalized estimating equation, Natural cubic
spline, Properties of estimator.

1 Introduction

Nowadays many studies are conducted in the wide
area that consist of many districts. In these studies,
subjects are drawn from many districts. These studies
are very common in economics, epidemiology or clin-
ical trials. In the studies related to area, area usually
can be split into some clusters where within cluster
subjects are homogeneous but between cluster, sub-
jects are heterogeneous. These studies are usually
in economic or epidemiological research. For exam-
ple, Gonzaléz et al. [4] studied the behavior obesity
of childhood in developing countries. In this case,
the subjects in a district are correlated whilst subjects
from different districts are not. Other research of this
type was conducted by Raimundo & Venturino [12]
that studied the drug resistent impact on tubercolis
transition. In this study dependency among subjects
within an area must be considered in the model.

Another type of study that is common in epidemi-
ology, biology, and clinical trial is a study that is re-
lated to time. In this study, subjects are followed over

time or several occasions to collect response variables.
This study is commonly known as longitudinal study.
Example for longitudinal study is given by Adina et
al. [2]. Adina et al. [2] studied the prognosis factor
in metastatic breast cancer, carried out on 120 patients
admitted at the Cluj-Napoca Institue of Oncology be-
tween January 2000 and December 2005. Subjects
were followed on several observations. Data from the
same subject are more similar than from different sub-
ject, meaning within subject observations are depen-
dent whilst between subject observations are indepen-
dent.

The characteristic of these data is that they are no
longer independent. In the clustered data, there are
correlations among subjects in a cluster whilst sub-
jects from different cluster are independent. In lon-
gitudinal sudy, within subject observations are corre-
lated whilst between subject observations are indepen-
dent. Another characteristic is that the variances usu-
ally are not homogeneous.

Methods in the class of generalized linear model
(GLM) are no longer valid for these data, since GLM
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assumes that observations are independent. Some
developments have been proposed to analyze such
data, that can be classified into three types of model,
marginal model, subject specific effect, and transition
model (Davis [3]). In the class of marginal model,
Liang and Zeger [8] and Zeger and Liang [13] ex-
tended quasi-likelihood estimation of Weddernburn
[14] by introducing ”working correlation” to accom-
modate within subject correlation, which is called
generalized estimating equation (GEE). GEE yields
consistent estimates of the regression coefficients and
their variances even though there is misspecification
of the working correlation structure, provided the
mean function is correctly specified.

GEE is part of the class of parametric estimation,
in which the model can be stated in a linear func-
tion and the function is known. Very often the ef-
fect of the covariate cannot be specified in the spe-
cific function. Nonparametric regression can accom-
modate this problem by relaxing relationship between
covariate and response. In nonparametric regression,
we assume that the effect of the covariate follows an
unknown function without specific term, that is just
a smooth function. To date there are several meth-
ods in nonparametric regression, for example: local
polynomial kernel regression, penalized splines re-
gression, and smoothing splines. Green and Silver-
man [5] gave a simple algorithm for nonparametric re-
gression using cubic spline by penalized least square
estimation. They also gave nonparametric and semi-
parametric methods for independent observations for
class of generalized linear models.

Some developments of nonparametric and semi-
parametric regression for longitudinal or clustered
data have been achieved. Lin and Carroll [9] consid-
ered nonparametric regression using longitudinal data
GEE-Local Polynomial Kernel (LPK). They showed
that for kernel regression, in order to obtained an effi-
cient estimator, one must ignore within subject corre-
lation. This means within subject observations should
be assumed independent, hence the working correla-
tion matrix must be an identity matrix. This result was
definitely different from GEE of Liang & Zeger’s, in
which the GEE estimator was consistent even there
are misspecification of the true correlation as working
correlation. Lin and Carroll [10] also studied the be-
havior of local polynomial kernel which was applied
to semiparametric-GEE for longitudinal data. The re-
sult was the same as in nonparametric GEE-LPK in
Lin and Carroll [9]. Welsh et al. [15] studied the local-
ity of the kernel method for nonparametric regression
and compared it to P-splined regression and smooth-
ing splines. The result was that the kernel is local even
when the correlation is taken into account. The re-
sult was different for smoothing splines, in which if

there is no within subject correlation then smoothing
splines is local, and if within subject correlation in-
creases, than smoothing splines become more nonlo-
cal. This implies that for smoothing splines, within
subject correlation must be taken into account in the
working correlation.

This paper considers nonparametric regression to
analyze longitudinal data. In this paper we propose
GEE-Smoothing spline to analyze longitudinal data
and study the properties of the estimator such as the
bias, consistency and efficiency. We use natural cubic
spline and combine this with GEE of Liang & Zeger’s
in estimation. We want to study numerically, whether
the properties of GEE-Smoothing spline are better
than of GEE-Local Polynomial Kernel proposed by
Lin & Carrol [9]. Simulation study was carried out to
investigate these properties.

The outline of this paper is follows. We give a
short review of GEE in section 2.1. Section 2.2 con-
siders brief review of smoothing splines. The algo-
rithm of the proposed method is considered in section
3.1. Section 3.2 considers smoothing parameter selec-
tion. Properties of GEE-smoothing spline estimator
using simulation are given in section 4. In section 5
we illustrate the application to real data and compare
to the parametric GEE and GEE-Smoothing Spline.
The conclusion and discussion are given in Section 6.

2 Generalized Estimating Equation
and Smoothing Splines

2.1 Generalized estimating equation
Suppose there are K subjects, and the i-th subject is
observed ni times for the responses and covariates.
Let yi = (yi1, yi2, . . . , yini)

T be the ni × 1 vector
of response variable and Xi = (xi1, . . . , xini)

T be
ni × p matrix of covariate for the i-th subject, and
xij = (xij1, xij2, . . . , xijp)T . It is assumed that the
marginal density of yij follows exponential family
with probability density function

f(yij) = exp
(

yijθij − b(θij)
a(φ)

+ c(yij , φ)
)

The first two moments of yij are

E(yij) = b′(θij) = µij

and
Var(yij) = b′′(θij)a(φ),

where θij is canonical parameter. It is assumed that
between subject, observations are independent. The
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relationship between µ and covariates through the link
function is

g(µij) = ηij = xT
ijβ (1)

where β = (β1, β2, . . . , βp)T be p × 1 vector of re-
gression coefficient.

Generalized estimating equation to solve β was
given by Liang and Zeger [8] as follows:

K∑
i=1

DT
i V −1

i Si = 0 (2)

where

Di =
∂(b′(θi))

∂β
=

∂µi

∂β

=
∂µi

∂θi

∂θi

∂ηi

∂ηi

∂β

= Ai∆iXi,

∆i =
∂θi

∂ηi
,

and
Vi = A

1/2
i R(α)A1/2

i .

Ai is an ni × ni diagonal matrix with diagonal ele-
ments var(yij). R(α) is also called a ”working cor-
relation”, an ni × ni symmetric matrix which ful-
fills the requirement of being a correlation matrix, and
Si = yi − µi . The estimating equation (2) is similar
to the quasi-likelihood estimating equation, except the
form of Vi. Thus it can be seen as an estimating equa-
tion of β by letting Φ as the ”quasi-likelihood” score
function of the y1, y2, . . . , yK . Solution of β can be
obtained by minimizing Φ subject to β . Thus the es-
timating equation is

∂Φ
∂β

=
n∑

i=1

DT
i V −1

i Si = 0

Liang and Zeger [8] gave the iterative procedure using
modified Fisher scoring for β and moment estimation
method of α and φ . Given the current estimates of α̂
and φ̂ then the iterative procedure for β is

β̂s+1 =β̂s +

[
n∑

i=1

DT
i (β̂s)Ṽ −1

i Di(β̂s)

]−1

×

[
n∑

i=1

DT
i (β̂s)Ṽ −1

i Si(β̂s)

]
(3)

where Ṽi(β) = Ṽi{β, α(β, φ̂(β))}. The close form
of moment estimator for α and φ for some correlation
structures can be seen in Liang & Zeger [8].

2.2 Smoothing spline
Green and Silverman [5] gave simple approach in es-
timating smooth function f in interval [a, b] using
natural cubic splines. Suppose given n real num-
ber t1, t2, . . . , tn on the interval [a, b] and satisfy-
ing a < t1 < · · · < tn < b. A function f
on [a, b] is cubic spline if two conditions are sat-
isfied. First, f is cubic polynomial on each inter-
val (a, t1), (t1, t2), . . . , (tn, b); second, the polyno-
mial pieces fit together at the points ti in such a way
that f itself and its first and second derivative are con-
tinuous at each ti, thus the function is continuous on
the whole of [a, b]. It is said to be natural cubic spline
(NCS), if its second and third derivative are zero at
a and b. Suppose fi = f(ti) and γi = f ′′(ti) for
i = 1, 2, . . . , n. By definition of NCS, the second
derivative of f at t1 and tn are zero, so γ1 = γn = 0.
Let fff = (f1, f2, . . . , fn)T and γ = (γ2, . . . , γn−1)T .
Vector γ is numbered in non standard way, starting at
i = 2. The vector f and vector γ completely specify
the curve f . These two vectors are related and speci-
fied by two matrices Q and R defined below.

Let hi = ti+1 − ti, for i = 1, 2, . . . , n − 1. Let
Q be the n × (n − 2) matrix with elements qij , i =
1, . . . , n, and j = 2, . . . , n− 1, given by

qj−1,j = h−1
j−1,

qjj = −h−1
j−1 − h−1

j ,

and
qj+1,j = h−1

j .

The R matrix is defined by the (n−2)× (n−2) sym-
metric matrix with elements rij , for i and j running
from 2 to (n− 1), given by

rii = (hi−1 + hi)/3, for i = 2, 3, .., n− 1

ri,i+1 = ri+1,i = hi/6, for i = 2, 3, .., n− 1
Matrix R and Q are numbered in non standard way.
The matrix R is strictly diagonal dominant, in which
|rii| >

∑
i6=j |rij |. Thus R is strictly positive-definite,

hence R−1 exists. Defined a matrix G by

G = QR−1QT (4)

The important result is the theorem below (Greean &
Silverman [5]):

Theorem 1 The vector fff and γ specify a natural cu-
bic spline f , if and only if the condition

QTfff = Rγ

is satisfied. If condition above is satisfied then the
roughness penalty will satisfy∫ b

a
[f ′′(t)]2dt = γT Rγ = fffT Gfff (5)

WSEAS TRANSACTIONS on MATHEMATICS Noor Akma Ibrahim, Suliadi

ISSN: 1109-2769 333 Issue 7, Volume 8, July 2009



The proof of this theorem can be seen in Green and
Silverman [5].

Green and Silverman [5] proposed smoothing
spline for several conditions, e.g nonparametric and
semiparametric regressions for independent continu-
ous data, nonparametric and semiparametric general-
ized linear models for independent data, and quasi-
likelihood for independent data. They also consid-
ered method for correlated continuous data. For quasi-
likelihood approach, the important result is the solu-
tion of the function f for nonparametric regression
and parameter β in semiparametric regression, ob-
tained by maximizing ”penalized quasi-likelihood”:

Π = Φ− 1
2
λ

∫
[f ′′(t)]2dt (6)

Thus the solution of f is obtained by maximizing (6).

3 Generalized Estimating Equation-
Smoothing Spline

3.1 Estimation of GEE-smoothing spline
Suppose there are K subjects and the measurement
of the i-th subject taken ni times. Let yi =
(yi1, yi2, . . . , yini)

T be a vector of responses of the
i-th subject, corresponding to the vector of covariate
ti = (ti1, ti2, . . . , tini)

T and yij ∈ {0, 1} be Bernoulli
distributed and comes from exponential family distri-
bution with canonical parameter θij . Thus E(yij) =
b′(θij) = µij and V ar(yij) = b′′(θij)a(φ) = µij(1−
µij).

Consider the population average model, where
the systematic component of the exponential family
is nonparametric, rather than parametric, that is

g(µij) = ηij = f(tij),

i = 1, 2, ...,K; j = 1, 2, ..., ni

We replace the systematic component in (1) with un-
known smooth function, i.e. natural cubic splines,
rather than linear (known) function. In this paper we
use the canonical link function θij = ηij . Suppose Xi

an ni × q incidence matrix of all tij’s that can be con-
structed as follows. Let all tij’s have q different values
that can be ordered to be t(1) < t(2) < · · · < t(q) with
relation to xijk is xijk = 1, if tij = t(k) and xijk = 0,
if tij 6= t(k) for k = 1, 2, . . . , q.

Let xij = (xij1, xij2 . . . , xijq)T and vector of
the functions f at different points denoted by fff =
[f(t(1)), f(t(2)), . . . , f(t(q))]T . Then the function f

at point tij can be expressed as f(tij) = xT
ijfff . Set

Xi = (xi1, xi2, . . . , xini)
T ,

yi = (yi1, yi2, . . . , yini)
T ,

ηi = (ηi1, ηi2, . . . , ηini)
T ,

µi = (µi1, µi2, . . . , µini)
T

Since function f can be any arbitrary smooth
function, then to maximize ”quasi-likelihood” score
function Φ (see Sub-Section 2.1), one might take yij

as the estimates of f(tij) and the Φ will be maximum.
But the function obtained, f̂ , is just an interpolation
of the yij’s and the function is too rough or wiggly.
One might want a smooth function by adding rough-
ness penalty to the objective function. This is called
penalized ”quasi-likelihood” function defined by

Π = Φ− 1
2
λ

∫ b

a
[f ′′(t)]2dt (7)

From (2), (3), and (5), the estimating equation
that maximizing penalized ”quasi-likelihood” func-
tion (7) is defined as

∂Π
∂f

=
K∑

i=1

DT
i V −1

i Si −
∂

∂f

[
1
2
λ

∫
[f ′′(t)]2dt

]

=
K∑

i=1

DT
i V −1

i Si − λGfff = 0

where

Di =
∂(b′(θi))

∂β
=

∂µi

∂β

=
∂µi

∂θi

∂θi

∂ηi

∂ηi

∂β

= Ai∆iXi,

and Si = yi − µi(see subsection 2.1).
Given the current estimates of α̂ and assuming

canonical link function is used, following Liang and
Zeger [8] as in (3), then the iterative procedure using
modified Fisher scoring for fff , is

f̂ffs+1 =f̂ffs +

[
K∑

i=1

DT
i Ṽ −1

i Di + λG

]−1

×

[
K∑

i=1

DT
i Ṽ −1

i Si − λGf̂ffs

]
(8)

where Di, Ṽi, and Si are evaluated using f̂ffs. The as-
sociation parameter α can be estimated using method
of moment [8].
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We may use sandwich variance estimator for the
estimate suggested by Liang & Zeger [8]. This esti-
mator is robust due to the misspecification of the cor-
relation structure. The sandwich variance estimator of
f̂ff is defined by

VarS(f̂ff) = Σ−1
0 Σ1Σ−1

0 , (9)

where

Σ−1
0 =

[
K∑

i=1

DT
i Ṽ −1

i Di + λG

]−1

and

Σ1 =
K∑

i=1

DT
i Ṽ −1

i SiS
T
i Di (10)

A special case using canonical link funtion, the
∂θi/∂ηi = Ini . Thus the form of (10) becomes

Σ−1
0 =

[
K∑

i=1

XT
i AiṼ

−1
i AiXi + λG

]−1

and

Σ1 =
K∑

i=1

XT
i AiṼ

−1
i SiS

T
i Ṽ −1

i AiXi

Another possibility of Var(f̂ff) is model based co-
variance obtained from (8), this is also called naive es-
timator. The naive estimator is defined by the inverse
hessian matrix, i.e

VarN (f̂ff) = Σ−1
0 . (11)

3.2 Smoothing parameter selection
Smoothing parameter (λ) is an important part in GEE-
Smoothing Spline. The parameter measures the ”trade
off” or exchange between goodness of fit and the
roughness or the smoothness of the curve. Hence,
the performance of the estimator depends on this pa-
rameter. In selecting smoothing parameter, we use
a method proposed by Wu & Zhang ([16], p326)
which is called leave-one-subject-out cross validated
deviance (SCVD). Smoothing parameter λ is chosen
that minimizes SCVD score, where

SCV D(λ) =
K∑

i=1

ni∑
j=1

d(yij , µ̂
(−i)
ij )

where d is ”deviance” and µ
(−i)
ij = g−1(Xif̂ff

(−i)
)ij is

the estimate value for the i-th subject and the j-th time

observation using f̂ff
(−i)

. The f̂ff
(−i)

is f obtained with-
out the i-th observation. Since GEE is based on quasi-
likelihood thus the deviance is also based on quasi-
likelihood (see: Hardin & Hilbe [6], Ch. 4; McCul-
lagh & Nelder [11], Ch. 9).

Direct computation of f̂ff
(−i)

is time consuming.
Wu & Zhang [16] suggested using approximate of

f̂ff
(−i)

computed as follows. Suppose from the final
iteration of (8), we have Di, Ṽ −1

i , Si and f̂s. Then the

f̂ff
(−i)

is approximated by

f̂ff
(−i)

=f̂ffs +

 K∑
i6=r

DT
r Ṽ −1

r Dr + λG

−1

×

 K∑
i6=r

DT
r Ṽ −1

r Sr − λGf̂ffs


We still need to compute f̂ff

(−i)
for i = 1, 2, . . . ,K,

but we do not need to iterate (8) from the beginning.

4 Simulation Study

The objective of this simulation is to study the proper-
ties of GEE-smoothing spline, such as biasness, con-
sistency, and efficiency, considering different sample
sizes with correct and incorrect correlation structure
in estimation. In this simulation we only consider bi-
nary data using logit link function.

4.1 Model and structure of data

We generated correlated binary data using R language
version 2.7.1 (see: Leisch et al [7]). Three corre-
lation structures were considered: (i) autoregressive
with corr(yij , yi(j+1)) = 0.7, for j = 1, 2, . . . , ni;
(ii) exchangeable with corr(yij , yij′) = 0.35, for
j′, j = 1, 2, . . . , ni and j′ 6= j; and (iii) independency
with corr(yij , yij′) = 0, for j′, j = 1, 2, . . . , ni and
j′ 6= j. Each subject is considered to be measured ten
times, t = 7.5, 25.5, 43.5, . . . , 169.5. The function is
f(t) = sin(πt/90). Response variable, yij , related
to covariate, t, through canonical link function is as
follows,

E(yij) = µij and logit
(

µij

1− µij

)
= f(tij)

We considerd three sample sizes n = 15, n = 30, and
n = 50. For each correlation structure, we estimated
function f using the three correlation structure: au-
toregressive, exchangeable, and independency. Thus
for each one, there are nine combinations of sample
sizes and correlation structure. Each combination was
run 250 times.

The purpose of this simulation is to study the
properties of the estimator, such as biasness, consis-
tency, and efficiency.
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4.2 Simulation results

In order to assess the biasness of the estimator we use
pointwise sum of absolute deviation (SAD). SAD is
defined as follows. Suppose the estimate of f at point
t for the r-th replication is f̂

(r)
t and f̂∗

t is the average
of f̂

(r)
t of 250 replications, thus f̂∗

t =
∑250

r=1 f̂
(r)
t /250,

and the true f at point t is ft. SAD is defined as
SAD =

∑10
j=1 |f̂∗

tj − ftj |/10. Thus SAD shows the
size of bias of the estimates. Figure 1 (a), (b), and
(c) show the SAD for true correlation structure of au-
toregressive, exchangeable, and independency respec-
tively.

From Figure 1 we can see the biasness of the es-
timators. Refering to the correlation structure, there
is no pattern for the size of bias whether we use cor-
rect or incorrect correlation structure. The degree of
biasness is related to the sample size. Whether using
correct or incorrect correlation structure, the bias will
decrease when sample size increases. This pattern is
the same for data that have high correlation (autore-
gressive, α = 0.7), moderate correlation (Exchange-
able, α = 0.35), and independent.

We used standard deviation of 250 replication at
each point estimates to study the consistency and ef-
ficiency. The estimator is consistent if standard devi-
ation tends to zero when sample size is infinity, i.e.
standard deviation decreases while sample size in-
creases. This standard deviation can also be used to
study the efficiency, that is small standard deviation
indicates the efficiency of the estimator. Figure 2 and
Table 1 show the standard deviation of 250 pointwise
function estimates.

From Figure 2 and Table 1 we can see the con-
sistency of the estimator. The pattern of standard de-
viation for all true correlation structures is the same.
It decreases when sample size increases. The same
pattern is also observed for all correlation structures,
using correct or incorect correlation structure. This
means that the estimators are consistent and the con-
sistency still holds even if we use incorrect correlation
structure. The rate of the decreasing of standard devi-
ation from n = 15 to n = 30, and from n = 30 to
n = 50, are the same for all true correlation struc-
tures. This indicates the convergency rate is (almost)
the same for all conditions of true correlation struc-
tures. From the standard deviation we can also study
the efficiency of the estimator. From the result of the
efficiency study we may conclude whether we need to
take into account the correlation into the model or just
ignore the dependency. The method that has smaller
variance or standard deviaton of estimator is more ef-
ficient than others.

(a) True correlation is AR-1

(b) True correlation is Exchangeable

(c) True correlation is Independent

Figure 1: Sum of Absolute Deviation of the Three of
True Correlation Structures

Figure 2 and Table 1 show that if data are corre-
lated (true correlation is autoregressive or exchange-
able), for specific sample size, the biggest standard
deviation is obtained if one assumes that the data are
independent. Whilst using true correlation structure,
the standard deviation is the smallest. This means that
taking into account the dependency into the model is
better than assuming data are independent, even we
use incorrect correlation structure. The most efficient
estimate is obtained if we use true correlation struc-
ture. The difference between standard deviations of
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(a) True correlation is AR-1

(b) True correlation is Exchangeable

(c) True correlation is Independent

Figure 2: Standard Deviation of 250 Replications of Pointwise Function Estimates

correlation structure (AR1, EXC, and IND) tends to
get closer when we increase the sample size, hence
we can make a conjecture that the efficiency of cor-

rect or incorrect correlation structure is almost similar
if sample size is large. If true correlation structure
is independent, the standard deviation of AR1, EXC,
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Sample Assuming Estimate Point
K Corr. f(t1) f(t2) f(t3) f(t4) f(t5) f(t6) f(t7) f(t8) f(t9) f(t10)

Correlation Structure AR-1
15 AR1 0.545 0.436 0.464 0.472 0.460 0.474 0.513 0.533 0.519 0.541

EXC 0.549 0.445 0.470 0.481 0.476 0.493 0.531 0.547 0.532 0.568
IND 0.559 0.451 0.480 0.497 0.493 0.508 0.545 0.562 0.543 0.575

30 AR1 0.377 0.332 0.339 0.338 0.331 0.343 0.352 0.362 0.368 0.381
EXC 0.376 0.339 0.342 0.344 0.340 0.351 0.357 0.370 0.373 0.399
IND 0.381 0.347 0.352 0.353 0.349 0.359 0.366 0.378 0.380 0.403

50 AR1 0.296 0.262 0.271 0.273 0.263 0.259 0.271 0.282 0.278 0.284
EXC 0.298 0.265 0.272 0.273 0.268 0.262 0.273 0.285 0.280 0.293
IND 0.301 0.270 0.278 0.279 0.273 0.267 0.278 0.290 0.284 0.295

Correlation Structure Exchangeable
15 AR1 0.517 0.445 0.458 0.439 0.403 0.409 0.410 0.417 0.405 0.501

EXC 0.516 0.439 0.445 0.432 0.398 0.404 0.401 0.409 0.393 0.486
IND 0.519 0.449 0.458 0.444 0.410 0.415 0.412 0.420 0.405 0.494

30 AR1 0.368 0.290 0.291 0.297 0.278 0.289 0.301 0.304 0.319 0.358
EXC 0.360 0.287 0.285 0.293 0.275 0.283 0.293 0.301 0.315 0.345
IND 0.363 0.293 0.293 0.301 0.281 0.289 0.300 0.310 0.322 0.348

50 AR1 0.277 0.231 0.247 0.234 0.227 0.221 0.227 0.234 0.230 0.292
EXC 0.272 0.229 0.245 0.229 0.224 0.219 0.225 0.230 0.229 0.283
IND 0.275 0.233 0.250 0.235 0.228 0.223 0.229 0.237 0.234 0.286

Correlation Structure Independent
15 AR1 0.534 0.332 0.379 0.398 0.323 0.322 0.380 0.378 0.363 0.495

EXC 0.534 0.331 0.377 0.397 0.322 0.322 0.379 0.379 0.363 0.495
IND 0.534 0.330 0.377 0.396 0.322 0.322 0.378 0.379 0.363 0.495

30 AR1 0.367 0.237 0.265 0.267 0.240 0.236 0.250 0.274 0.242 0.348
EXC 0.366 0.237 0.265 0.267 0.239 0.236 0.251 0.275 0.242 0.348
IND 0.366 0.237 0.265 0.267 0.239 0.236 0.251 0.275 0.242 0.348

50 AR1 0.282 0.201 0.206 0.203 0.203 0.191 0.217 0.211 0.197 0.265
EXC 0.282 0.201 0.206 0.203 0.202 0.191 0.217 0.212 0.197 0.265
IND 0.282 0.201 0.206 0.203 0.202 0.191 0.217 0.212 0.197 0.265

Table 1: Standard Deviation of the Estimate Points of Function for Nonparametric Components

and IND are almost similar, for all sample sizes. Thus
in this case, the efficiency of using incorrect corre-
lation structures is almost similar to the efficiency of
using correct correlation structure.

5 Application to Real Data

As an application of the proposed method, we used
data of A5055 Long-Term Viral Dynamic Data. The
data were generated from AIDS Clinical Trials Group,
ACTG 5055 study, which was sponsored by NI-
AID/NIH. More details of this clinical study can be
found in Acosta et al. [1]. Among the total 44 patients
accrued in this study, 42 subjects were included in the
analysis; of the remaining two subjects, one was ex-

cluded from the analysis because the some covariates
were not obtained and the other was excluded because
the phenotype assay could not be completed on this
subject. Detection limit of the viral load (HIV RNA
copies) assay is 50 copies per ml blood. If it is below
detectable, it is imputed as 25 in the data set. Data
were recoded as

yij =
{

1, if RNA < 50 copies per ml blood
0, otherwise

The covariate is day after treatment. For depen-
dent model, we assumed that the structure of correla-
tion is exchangeable. This means that the within sub-
ject correlations for different lag-time are the same.

As comparison we did three scenarios: (i)
parametric approach; (ii) nonparametric (smoothing
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Figure 3: Comparison of the Result: the Parametric Approach, Independent, and Dependent GEE-Smoothing
Spline

spline) approach with assumption within subject ob-
servations are independent; and (iii) nonparametric
approach with assumption within subject observations
are dependent, using GEE-Smoothing Spline. We
used PROC GENMOD for parametric approach, for
smoothing spline we used PROC GAM in SAS 9.0,
and SAS IML for GEE-Smoothing Spline.

Results of Parametric and Nonparametric model
are completely different. GEE-parametric model is
ηij = −1.9619 + 0.0169day, and correlation coef-
ficient is r = 0.2467. The P-value of the intercept and
covariate are less than .0001 respectively. The curve
of this model shows that P(y=1) will increase slowly
with respect to the increasing of day.

Result of nonparametric approach is definitely
different with parametric ones (see Figure 3). Non-
parametric models showed that the relationship of
P (y = 1) and day is almost quadratic. Results of
independent and dependent assumption are almost the
same. From beginning of the day after treatment until
day ≈ 130, those two curves are similar. The differ-
ence between those two assumptions started from this
point, in which the curve of the dependent assump-
tion will decrease faster than independent assumption.
Another result is P (y = 1) for dependent assump-
tion is higher than independent one. For dependent
assumption, the estimate of within subject correlation
is 0.2208.

6 Conclusion and Discussion

From section 4, it can be concluded that GEE-
smooting spline has better properties than GEE-local
polynomial kernel proposed by Lin & Carroll [9]. The
pointwise estimates of GEE-smoothing are consistent,
even we use incorrect correlation structure. The con-
vergency rates of consistency for independent data (no
correlation), moderate correlation, and high correka-
tion are the same. If data are correlated, ignoring
this correlation in the model, will give the most inef-
ficient estimate. Taking into account the dependency
into the model is better than ignoring it, even using in-
correct correlation structure. If data are independent,
the efficiency of using correct or incorrect correlation
structures is almost similar. Hence, since in true sit-
uation the correlation is unknown, then it is better to
assumme the data are correlated rather than to assume
data are independent . We have shown by simulation
that the estimator of GEE-smoothing spline has good
properties. As an extension for future research, it is
imperative these properties should be shown analiti-
cally.
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