
Efficient Algorithms for Higher-Order Derivatives of the Continued
Erlang Delay Function

JORGE SÁ ESTEVES
University of Aveiro

Department of Mathematics
Campus de Santiago, 3810-193 Aveiro

PORTUGAL
saesteves@ua.pt

Abstract: In this paper we analyze the partial derivatives of any order of the continued Erlang delay function in
the number of servers. Several properties with strong analytical relations between the high-order derivatives of
Erlang’s B and C functions are established. Using these relations, three algorithms are proposed for the numerical
computation of the cited derivatives. For comparison purposes, it is also generalized a numerical method based on
a quadrature procedure suggested by D. L. Jagerman [16]. All the computational methods are compared in terms
of stability, efficiency and precision. Our study concludes that a recursive matrix relation presented in a previous
work [10, 11], may be used for the establishment of a simple and reliable algorithm having the best performance
considering the trade-off of the different criteria. Extensive computational results are presented and discussed. In
the sequel, a conjecture about the strict convexity of the first derivative of Erlang delay function is presented and
supported by numerical evidence.

Key–Words: Performance Evaluation, Queueing Systems, Erlang’s B and C Formulas, Numerical Differentiation.

1 Introduction
The derivatives of Erlang C function are useful in the
optimum design of stochastic service systems (queues
or networks of queues). Actually, one of the most
common models to support performance evaluation of
those systems is the M/M/x/∞ (Erlang C model).
Moreover, the Erlang C formula plays an important
role in approximations for more general systems.

Classical examples of such systems are tele-
phone switching and cellular networks [7, 21], allo-
cation of transport vehicles and of urban emergency
units. Other examples are found in computer systems
(jobs submitted to parallel processors, dynamic shared
memory [20]), satellite communication systems (al-
location of transmission bandwidth) and communica-
tions networks (teletraffic models) [13].

Recently, Erlang C model has been the subject of
intensive study in the context of the dimensioning of
call centers [12, 19, 14, 17]. A call center is a service
network in which agents provide telephone-based ser-
vices. Customers who seek these services are delayed
in tele-queues. Worldwide, telephone-based services
have been expanding dramatically. This has given rise
to a huge growth industry — the (telephone) call cen-
ter industry. In this context, the most common model
to support workforce management of telephone call
centers is the Erlang C system or its generalizations.

The most of the models consider non-linear per-
formance functions related with Erlang’s functions
describing the behavior of the systems by using
queueing theory. Examples of performance functions
are the system throughput (total carried traffic by the
system), grade of service, mean waiting time, average
number of users in queue, etc.

The derivatives of performance functions are use-
ful in the optimum design of those stochastic service
systems. Non-linear programming problems encoun-
tered in optimizations of those systems can be solved
by using the performance functions and their deriva-
tives namely for Newton-Raphson and gradient type
solutions. In fact, derivative-free optimization meth-
ods are not as well developed as gradient-based meth-
ods; current algorithms are effective only for small
problems. Therefore, most algorithms for nonlinear
optimization and nonlinear equations require knowl-
edge of derivatives.

The usefulness of derivatives is not restricted to
algorithms for solve equations and optimization prob-
lems. Modelers in areas such design optimization
and economics are often interest in performing post-
optimal sensitivity analysis, in which they determine
the sensitivity of the optimum to small perturbations
in the parameter or constraint values.

The obtainment of an efficient method, with good

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 320 Issue 7, Volume 8, July 2009

accuracy, for calculating higher order derivatives of
Erlang C function, beyond the interest in terms of nu-
merical analysis, may be used for local approxima-
tions of the function and its derivatives by using a con-
venient Taylor polynomial. Those approximations are
specially important for iterative algorithms in small
neighborhoods of the solution. Indeed, those proce-
dures could be much more efficient if the function and
its derivatives are updated in each iteration using lo-
cal approximations by using Taylor Theorem or other
osculatory Hermite polynomial.

It is important to recognize that the Erlang C func-
tion is intimately related to the Erlang B function. In
addition, Erlang’s B and C functions may be easily re-
lated with very well known special functions, such as
the confluent hypergeometric function, the incomplete
gamma function and the chi-square probability func-
tion (see [1]). Therefore the algorithms for computing
Erlang C function derivatives may have independent
interest in other fields of applied Mathematics [9].

Two classical works on this subject are [2] and [3]
which establish a numerical method for calculating
derivatives until order two, by using a complex pro-
cess based on the evaluation of some special functions
related to the gamma function. Methods using numer-
ical differentiation theory were approached in [22] but
the obtained accuracy is relatively poor. The method
derived from the Theorem 17 of [15], which leads to
an accuracy of four significant figures for a wide range
of the arguments, may also be included in this class of
algorithms. A more accurate method of calculation of
the derivatives of Erlang-B function using quadrature
theory based on cardinal series, was proposed by D.
L. Jagerman in a AT&T Bell Laboratories research re-
port [16]. In Appendix A we propose a generalization
of that method in order to compute directly the deriva-
tives of Erlang C function of any order.

A method for calculating the derivatives of order
n of the Erlang B function in the number of servers,
which can be considered the natural generalization of
the classical recursive algorithm for the calculation of
the function, was developed by the author and pre-
sented in a previous paper [10]. This recursion, desig-
nated as generalized recursion, where both the number
of servers and the order of the derivative intervene as
parameters, was shown to have the important property
that the propagated relative error associated with the
calculation of the initial values always decreases (in a
certain sense) and tends to a constant value, asymp-
totically. Extensive computation has shown that the
proposed method is very accurate in an wide range of
values of the arguments and compares favorably, in
terms of efficiency, with the method proposed by D.
L. Jagerman [16], excepting for very high values of
the arguments where the situation is the inverse.

In the sequel, a second paper [11] shows that for
high values of the arguments it is possible to obtain
a significant improvement in the method efficiency,
without jeopardizing the required precision, by defin-
ing a reduced recursion starting from a point closer to
the desired value of the number of servers. The prob-
lem of estimating the initial values was by-passed, ac-
cepting the value zero for all initial values. It will be
shown that this option does not jeopardize the accu-
racy of the method, since the absolute value of the rel-
ative error decreases rapidly during the recursive cal-
culation.

The essential problem dealt with in paper [11] is
focused on how to estimate the value of the initial
point which allows to obtain the required precision.
The proposed process is very efficient and inherently
based on closed formulae avoiding iterative proce-
dures. For short, the proposed method will be hence-
forth referred to as RR method (Reduced Recursion
Method), by opposition to the general method pro-
posed in the companion paper [10] henceforth referred
to as CR method (Complete Recursion Method).

Following the above mentioned works on the Er-
lang B function derivatives, a method for calculating
directly higher-order derivatives of Erlang C function,
is developed in the present work.

2 The Erlang’s B and C Formulas
The Erlang B and C formulas are true probability clas-
sics. Indeed, much of the theory was developed by
A. K. Erlang and his colleagues prior to 1925 [6].
The subject has been extensively studied and applied
by telecommunications engineers and mathematicians
ever since. A nice introductory account, including
some of the telecommunications subtleties, is pro-
vided by [8]. The Erlang B (or loss) formula gives
the (steady-state) blocking probability in the Erlang
loss model, i.e., in the M/M/x/0 model (see for ex-
ample [8, pp. 5 and 79]):

B(a, x) .=
ax/x!∑x
j=0 aj/j!

, x ∈ N0, a ∈ R+. (1)

The numerical studies regarding this formula are usu-
ally based on its analytical continuation, ascribed to
R. Fortet [15]:

[B(a, x)]−1 = I(a, x) = a

∫ +∞

0
e−az (1 + z)x dz

(2)
which is valid for traffic offered a ∈ R+ and x ∈ R+

0
servers. The function I(a, x) tends to be easier to ana-
lyze than B(a, x) and may be named as the reciprocal,
or the inverse probability of blocking.

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 321 Issue 7, Volume 8, July 2009

A classical result is the following recursion ob-
tained by partial integration of (2):

I(a, x + 1) =
x + 1

a
I(a, x) + 1, x ∈ R+

0 , (3)

Since B(a, 0) = Ia(0) = 1 for all a ∈ R+, I(a, x)
may be calculated by recursion (3) for any positive
integer x. Actually, in [10] it is shown that (3) defines
a very stable numerical recursion.

The Erlang C (or delay) formula gives the
(steady-state) probability of delay (that an arrival must
wait before beginning service) in the Erlang delay
model. i.e., in the M/M/x/∞ model (e.g., see pp.
7 and 91 of [8]):

C(a, x) .=
ax

x!
x

x−a∑x−1
j=0

aj

j! + x
x−a

, for 0 < a < x. (4)

The Erlang C formula is intimately related to the Er-
lang B formula provided that 0 < a < x. Indeed it is
easy to show that:

C(a, x) =
xB(a, x)

x− a + aB(a, x)
, 0 < a < x. (5)

The reciprocal of C(a, x) or the inverse probability
of waiting may be defined as J(a, x) .= 1/C(a, x).
Using (5) and (3) it may be shown that

J(a, x) = I(a, x)− I(a, x− 1). (6)

An integral representation for the continued Erlang-C
function may be obtained substituting relation (2) in
(6):

[C(a, x)]−1 = J(a, x) = a

∫ +∞

0
e−az(1+z)x−1 z dz.

(7)
An integral representation for the continued

Erlang-C function may be obtained substituting rela-
tion (2) in (6):

J(a, x) = a

∫ +∞

0
e−az(1 + z)x−1 z dz (8)

Relations (2) and (8) may be related if we intro-
duce the Confluent Hypergeometric or Kummer Func-
tion [1] as

F (a, x, r) .=
1

Γ(r)

∫ +∞

0
e−az(1 + z)x−r+1zr−1 dz,

(9)
where Γ(r) is the well known Euler Gamma function:

Γ(r) .=
∫ +∞

0
e−z tz−1 dz. (10)

Thence, we have:

I(a, x) = aF (a, x, 0), (11)
J(a, x) = aF (a, x, 1). (12)

The first order partial derivatives of B(a, x) with re-
spect to a and x are given by (see for example [15]):

B′
a(a, x) =

[x

a
− 1 + B(a, x)

]
B(a, x), (13)

B′
x(a, x) = −[B(a, x)]2 I1(a, x) (14)

The derivatives of B(a, x) and C(a, x) of higher order
in a may be computed from (13) and (5) and the as-
sociated numerical calculations is reduced to the eval-
uation of a rational expression in a, x and B(a, x).
In Section 4, methods for computing the derivatives
C

(k)
x (a, x), k = 0(1)n will be given. These meth-

ods are generalizations of those for the derivatives
B

(k)
x (a, x), k = 0(1)n proposed in [10] and [11].

3 Erlang B Function Derivatives
The main features of the method proposed in [10] are
the starting point of this present work. In the sequel,
we summarize the most important results from [10]
and the corresponding notations used in this paper.

On account of the uniform convergence [5][pp.
44–45] of integrals (11) and (12), partial derivatives
of I(a, x) and J(a, x) on variables a and x are given
by simpler differentiation rules. Successive differen-
tiation of (2) leads to:

Ik(a, x) =
∂kI

∂ xk
= a

∫ +∞

0
e−az(1 + z)x lnk(1 + z) dz,

(15)
and successive differentiation of (8) yields

Jk(a, x)=
∂kJ

∂ xk
=a

∫ +∞

0
e−az(1+z)x−1z lnk(1+z) dz.

(16)
Successive differentiation of (3) with respect to x
leads to the general recursive relation (valid for k =
1, 2, . . .):

Ik(a, x + 1) =
x + 1

a
Ik(a, x) +

k

a
Ik−1(a, x). (17)

Note that, if a convenient algorithm for calculating the
values Ik(a, x), k = 0(1)n is obtained, then it is pos-
sible to calculate all the derivatives B

(k)
x (a, x), k =

0(1)n using Algorithm 2 (see Appendix A). The gen-
eral recursive matrix relation for calculating deriva-
tives of B(a, x) in the number of servers x proposed
in [10] is defined from (3) and (17). Also in [10] it

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 322 Issue 7, Volume 8, July 2009

is shown this matrix scheme defines a very stable nu-
merical recursion. For high values of the arguments
(say x > a > 100), a significant improvement in
efficiency may be obtained by considering a reduced
recursion starting from a point closer to the desired
value of x (see [11]). This can be attained without
jeopardizing the required precision. For short, this
method is referred to as RR method (Reduced Recur-
sion Method), by opposition to the method proposed
in [10] is referred to as CR method (Complete Re-
cursion Method). The RR method has been estab-
lished for derivatives until order two [11]. However,
this method may be easily generalized for calculat-
ing higher order derivatives. Indeed, computational
experiments show that the initial point used for cal-
culating derivatives until order two may be used for
calculating derivatives until order five with excellent
precision (all the 15 figures are exact, except for some
arguments greater than 105).

4 Erlang C Function Derivatives
Successive differentiation of (6) with respect to x
leads to

Jk(a, x) = Ik(a, x)− Ik(a, x− 1), k = 0, 1, 2, . . .
(18)

Since we have a convenient algorithm to calculate the
values Ik(a, x), k = 0(1)n relation (18) may lead to
the computation of Erlang C function derivatives of
any order of variable x. Unfortunately, for x >> a
we have Ik(a, x) ≈ Ik(a, x − 1) and relation (18)
is numerically unstable since the value calculated for
Jk(a, x) is affected by subtractive cancelation.

For this particular task, a reformulation of the
problem of calculating Jk(a, x), k = 0(1)n in terms
of the quantities Ik(a, x), k = 0(1)n avoids the diffi-
culty. The following proposition s the first method for
accomplish that reformulation.

Proposition 1 For k = 0, 1, 2, . . . we have:

Jk(a, x)=
+∞∑

j=1

Ik+j(a, x− 1)
j!

=
+∞∑

j=1

(−1)j+1Ik+j(a, x)
j!

.

Proof: The Taylor expansion of function Ik(a, x) at
point ξx = x− 1 may be written as

Ik(a, x) = Ik(a, x− 1) +
+∞∑

j=1

Ik+j(a, x− 1)
j!

.

The first series follows using relation (18). Alterna-
tively, from the Taylor expansion of Ik(a, x − 1) at

point x we obtain

Ik(a, x− 1) = Ik(a, x) +
+∞∑

j=1

(−1)j Ik+j(a, x)
j!

.

Again, relation (18) gives the representation of
Jk(a, x) in the form of the second series. ut
Proposition 1 may be used to compute Jk(a, x)
with arbitrary precision, since the truncation error of
the partial summation of the series may be easily
bounded. Indeed, since Jk(a, x) is the sum of an al-
ternated series, it follows that:

Jk(a, x) ≈
r∑

j=1

(−1)j+1 Ik+j(a, x)
j!

, (19)

with absolute error less than Ik+r+1(a, x)/(r+1)!. To
estimate the magnitude of the decay of that bound of
the error it is important to remember that (see Lemma
4 of Appendix A of [10]):

lim
x→∞

Ik+1(a, x)
Ik(a, x) ln(x)

= 1, k = 0, 1, 2, . . . (20)

Therefore, for large x it is easy to see that

Ik+r+1(a, x)/(r + 1)! ≈ lnr(x)
(r + 1)!

Ik+1(a, x),

implying a slow convergence of the summation (19).
Furthermore, the evaluation of the Ik+r(a, x) for large
r by recursion have an important computational cost.
The conclusion is that the algorithm inspired in rela-
tion (19) is numerically stable but is rather inefficient.

The following proposition is another attempt in
order to define a convenient method of computation
of the Jk(a, x) quantities.

Proposition 2 For a ∈ R+ and x ∈ [1, +∞[:

J0(a, x) =
x

a
J0(a, x− 1) +

1
a
I0(a, x− 2)

Jk(a, x) =
k

a
Jk−1(a, x− 1) +

x

a
Ik(a, x− 1) +

+
1
a

Ik(a, x− 2), k ∈ N.

Proof: Integration by parts applied to (8) leads to

J0(a, x) =
[−e−az(1 + z)x−1z

]+∞
0

+

+
∫ +∞

0
e−az(zx + 1)(1 + z)x−2 dz.

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 323 Issue 7, Volume 8, July 2009

Therefore it may be written

J0(a, x) =
x

a
a

∫ +∞

0
e−az(1 + z)x−2z dz +

+
1
a
a

∫ +∞

0
e−az(1 + z)x−2 dz,

thence the first relation holds. Successive differenti-
ation with respect to variable x leads to the intended
recursion for Jk(a, x). ut
Proposition (2) may have theoretical interest but its
numerical stability it is an open question. Moreover
there are some disadvantages related not only to the
evaluation of initial values but also to the number of
arithmetic operations involved.

Proposition 3 For a ∈ R+, x ∈ [1, +∞[and k ∈ N:

J0(a, x) =
x− a

a
I0(a, x− 1) + 1

Jk(a, x) =
k

a
Ik−1(a, x− 1) +

x− a

a
Ik(a, x− 1).

Proof: Since I0(a, x) = x I0(a, x− 1)/a + 1, from
(6) the first equality follows:

J0(a, x) =
x− a

a
I0(a, x− 1) + 1.

Successive differentiation with respect to variable x
leads to the second equality. ut
Finally, Proposition (3) establishes a convenient com-
putational method. Indeed, we only need to compute
Ik(a, x − 1), k = 0(1)m using the matrix recursion
defined in [10] and then apply Proposition 3 in order
to compute Jk(a, x), k = 0(1)m. If a and x are
greater than 100 the RR algorithm may be used to im-
prove the computational efficiency. Algorithm 4 de-
fines the computational procedure.

5 Computational Results
First note that C(a, x) is a strictly decreasing function
of x, therefore C ′

x(a, x) < 0. Since C(a, x) is a con-
vex function in variable x (see [18]), C ′′

x(a, x) ≥ 0.
Numerical evidence, obtained by our computational
experiments, leads to the conjecture C ′′′

x (a, x) < 0,
implying that C ′

x(a, x) is also a convex function of x.
However, the derivatives of higher order do not seem
to preserve sign. Figures 1–4 show samples of graphic
representations which illustrate these properties.

Algorithm 1 defines the CR method for the com-
putation of high-order derivatives of Erlang-C func-
tion. The initial values are computed using Gauss-
Laguerre quadrature (degree 15) as explained in [10].

Algorithm 1 CR Method for C
(n)
x (a, x), n = 0(1)m

Require: a ∈ R+, x ∈ N and m ∈ N0;
Ensure: Ck = C

(n)
x (a, x) for n = 0, 1, . . . ,m;

Obtain initial values In(a, 0), n = 0(1)m;
for j = 0 to x− 1 do

for k = m to 1 do
Ik ← (k · Ik−1 + j · Ik)/a;

end for
I0 ← 1 + j · I0/a;

end for
J0 ← 1 + (x− a) · I0/a;
for k = 1 to m do

Jk ← (k · Ik−1 + (x− a) · Ik)/a
end for
Compute C

(n)
x , n = 0(1)m by Algorithm 2;

15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF SERVERS (x)

LO
G

 O
F

 D
E

R
IV

A
T

IV
E

S
ERLANG−C DERIVATIVES ON THE Nb. OF SERVERS

a=15 Erlang
Log(C(0))

Log(−C(1)
x

)

Log(C(2)
x

)

Log(−C3
x
)

Log(|C(4)
x

|)

Figure 1: Graphics of |C(k)
x (15, x)| for x ∈ [15, 30]

computed by CR Method (Algorithm 1).

The implementation of the correspondent RR method
it is straightforward since the only modification is the
point to start the recurrence calculations easily com-
puted as indicated in [11]. The implementation of all
the algorithms was performed using Turbo C compiler
version 2.1. The measuring of processing times (du-
rations of evaluations) was performed on a PC (Intel
Core2 dual E6400 processor running at 2.13 GHz and
2 GB RAM) using MS Windows XP and time criti-
cal priority of the process. All the calculations were
made in double precision, and tables are produced by
writing automatically LATEX code.

Extensive computational results have been ob-
tained, enabling to compare the precision and effi-
ciency of the RR method, the CR method and Jager-
man algorithm (see Appendix B).

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 324 Issue 7, Volume 8, July 2009

30 35 40 45 50 55 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF SERVERS (x)

LO
G

 O
F

 D
E

R
IV

A
T

IV
E

S

ERLANG−C DERIVATIVES ON THE Nb. OF SERVERS

a=30 Erlang
Log(C(0))

Log(−C(1)
x

)

Log(C(2)
x

)

Log(−C3
x
)

Log(|C(4)
x

|)

Figure 2: Graphics of |C(k)
x (30, x)| for x ∈ [30, 60]

computed by CR Method (Algorithm 1).

50 60 70 80 90 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

NUMBER OF SERVERS (x)

LO
G

 O
F

 D
E

R
IV

A
T

IV
E

S

ERLANG−C DERIVATIVES ON THE Nb. OF SERVERS

a=50 Erlang Log(C(0))

Log(−C(1)
x

)

Log(C(2)
x

)

Log(−C3
x
)

Log(|C(4)
x

|)

Figure 3: Graphics of |C(k)
x (50, x)| for x ∈ [50, 100]

computed by CR Method (Algorithm 1).

5.1 Small values of the arguments
For small values of the arguments, say a < x < 100
the RR method is not applicable. So, we only com-
pare the CR method with Jagerman method. Since,
in this range, CR method is much more efficient than
Jagerman method, it remains to compare the precision
of the calculated values.

Tables 1–4 show some of those results. The ap-
proximations calculated are presented together with
the percentage of (relative) error assuming that the
Jagerman algorithm is exact. In fact, it may be no-
ticed that the Jagerman algorithm is very precise in
this range of the arguments. Indeed, comparisons with
methods based on adaptive quadrature show results of
the Jagerman method in that range with more than 10

100 110 120 130 140 150 160 170 180
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

NUMBER OF SERVERS (x)

LO
G

 O
F

 D
E

R
IV

A
T

IV
E

S

ERLANG−C DERIVATIVES ON THE Nb. OF SERVERS

a=100 Erlang
Log(C(0))

Log(−C(1)
x

)

Log(C(2)
x

)

Log(−C3
x
)

Log(|C(4)
x

|)

Figure 4: Graphics of |C(k)
x (100, x)| for x ∈

[100, 180] computed by CR Method (Algorithm 1).

exact figures. On the other hand, the precision of the
RC method proposed is less than the obtained with
the Jagerman method. This fact is easily explained:
Gauss-Laguerre quadrature calculates a crude approx-
imation of the initial values and for small values of a
and x the relative error of the calculated values does
not decay sufficiently since very few steps of the re-
cursion are used. Moreover and as expected, when
the order of the derivative increases the accuracy de-
creases. Table 4 shows that the degradation of the pre-
cision of the calculated values by CR method practi-
cally disappear for x > a > 10. In that table the
digits that are not in accordance with the values cal-
culated by Jagerman method are emphasized in bold.
Therefore, for x > a > 10 it may be concluded that
the CR method is much more efficient and allows high
precision calculations.

Table 1: Derivatives C
(k)
x for a = 0.5 and x = 1

k CR Alg. Jagerman Alg. Error
0 5.000 000 E − 01 5.000 000 E − 01 0.00000%

1 −7.307 315 E − 01 −7.307 277 E − 01 0.00052%

2 9.176 161 E − 01 9.175 930 E − 01 0.0025%

3 −8.991 244 E − 01 −8.990 934 E − 01 0.0034%

4 4.946 733 E − 01 4.953 288 E − 01 0.13%

5 2.680 977 E − 01 2.603 695 E − 01 3.0%

6 −8.166 878 E − 01 −7.625 793 E − 01 7.1%

7 1.900 512 E − 01 −9.536 994 E − 02 3.0%

8 1.014 154 E + 00 −2.199 867 E + 00 146%

9 2.828 523 E + 00 −9.486 902 E − 01 398%

10 −1.780 151 E + 01 −9.792 540 E + 00 81%

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 325 Issue 7, Volume 8, July 2009

Table 2: Derivatives C
(k)
x for a = 1 and x = 2

k CR Alg. Jagerman Alg. Error
0 3.333 333 E − 1 3.333 333 E − 1 0.000000%

1 −3.995 941 E − 1 −3.995 942 E − 1 0.000010%

2 4.116 842 E − 1 4.116 840 E − 1 0.000054%

3 −3.323 324 E − 1 −3.323 319 E − 1 0.00014%

4 1.553 650 E − 1 1.553 671 E − 1 0.0013%

5 5.263 250 E − 2 5.260 938 E − 2 0.044%

6 −1.445 280 E − 1 −1.444 383 E − 1 0.062%

7 −4.022 122 E − 3 −4.013 443 E − 3 0.22%

8 2.599 829 E − 1 2.572 807 E − 1 1.1%

9 −1.249 069 E − 1 −1.029 022 E − 1 21%

10 −6.055 802 E − 1 −7.186 006 E − 1 16%

Table 3: Derivatives C
(k)
x for a = 2 and x = 3

k CR Alg. Jagerman Alg. Error
0 4.444 444 E − 01 4.444 444 E − 01 0.000000%

1 −3.882 138 E − 01 −3.882 138 E − 01 0.000000%

2 2.822 712 E − 01 2.822 712 E − 01 0.000000%

3 −1.502 856 E − 02 −1.502 856 E − 01 0.000000%

4 3.366 232 E − 02 3.366 234 E − 02 0.000021%

5 2.656 584 E − 02 2.656 580 E − 02 0.00011%

6 −1.917 458 E − 02 −1.917 458 E − 02 0.000024%

7 −1.800 746 E − 02 −1.800 673 E − 02 0.0041%

8 2.159 498 E − 02 2.159 062 E − 02 0.020%

9 2.458 913 E − 02 2.460 073 E − 02 0.047%

10 −3.935 980 E − 02 −3.934 333 E − 02 0.042%

Table 4: Derivatives C
(k)
x for a = 10 and x = 12

k CR Alg. Jagerman Alg.
0 4.493 882 242 982 E − 1 4.493 882 242 982 E − 1

1 −1.957 138 108 265 E − 1 −1.957 138 108 265 E − 1

2 6.853 579 227 757 E − 2 6.853 579 227 757 E − 2

3 −1.630 475 310 872 E − 2 −1.630 475 310 872 E − 2

4 9.195 949 758 946 E − 4 9.195 949 758 954 E − 4

5 8.915 293 473 794 E − 4 8.915 293 473 783 E − 4

6 −7.780 633 149 666 E − 5 −7.780 633 149 575 E − 5

7 −1.801 545 889 623 E − 4 −1.801 545 889 630 E − 4

8 1.197 684 653 079 E − 6 1.197 684 653 852 E − 6

9 6.757 700 191 225 E − 5 6.757 700 191 184 E − 5

10 1.163 815 001 485 E − 5 1.163 815 001 145 E − 5

5.2 High values of the arguments
For x > a > 100 the RR method may be used in or-
der to improve the efficiency of the CR method. The
precision of the three method is very good, so the crit-
ical criterion of comparison is the efficiency. In order
to accomplish that comparison, Figures 5–7 are pre-
sented showing log-log graphics of processing times
(in milliseconds) versus the magnitude of the argu-
ment a. The value of x was pre-calculated such that

W = C(a, x)/(x − a) = 0.5, meaning that we have
a typical Erlang-C system with the mean waiting time
is half the mean values of service time. For obtaining
better precision for the values of processing times, av-
erages over the values in 1000 runs (RC and Jagerman
method) and in 5000 runs (RR method), were com-
puted. In the next paragraph, some conclusions may
be drawn from the computational results.

The CR Algorithm is consistently more efficient
than the Jagerman method excepting for sufficiently
high values of a where the Jagerman approach is more
efficient. The critical value of a beyond which that
happens seems to be in the range 1000–5000. How-
ever, the RR algorithm is much more efficient than the
CR algorithm and the obtained approximations are ex-
actly the same. For calculating derivatives until order
four, the most efficient method is the RR algorithm
providing that a ≤ 3× 104.

Nevertheless, in the range x > a > 105 some
methods based on asymptotic approximations may
be considered even for high precision computations.
Those methods are well known for C(a, x) and for
the first derivative C ′

x(a, x) (see [4, 15]).

6 Conclusion

Extensive computation has shown that the proposed
CR and RR methods are very accurate in a wide
range of values of a and x and compares favorably,
in terms of efficiency, with the method based in car-
dinal series quadrature, excepting for very high val-
ues of x. For very high values of the arguments (say
x > a > 5×104) Jagerman algorithm shows better ef-
ficiency. Nevertheless, it is important to notice that in
this case the precision of the Jagerman algorithm falls
down. However in that range of arguments of very
high magnitude there are few applications. In these
cases, we suggest asymptotic expansion methods.

Considering those features as well as the numeri-
cal robustness of the methods we believe that the CR
and RR methods proposed in this paper may be attrac-
tive and reliable for all ranges of applications (namely
in Teletraffic engineering and call centers industry),
even if the number of servers is a very large value.

Finally, it is conjectured that C ′
x(a, x) is a convex

function of x. This numerical evidence is supported
by extensive computation covering a wide range of the
parameters by showing in all cases that C ′′′

x (a, x) <
0. The theoretical analysis of that conjecture will be
carried out elsewhere and may lead to an important
property of the Erlang C function.

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 326 Issue 7, Volume 8, July 2009

10
2

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

COMPUTING C(a,x)

OFFERED TRAFFIC (a)

C
P

U
 T

IM
E

 (
M

IL
IS

E
C

O
N

D
S

)

Values of x pre−computed for

constant ratio C(a,x)/(x−a)=0.5

Reduced Recursion
Jagerman Algorithm
Complete Recursion

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

COMPUTING C(k)
x

(a,x) for k=0,1

OFFERED TRAFFIC (a)

C
P

U
 T

IM
E

 (
M

IL
IS

E
C

O
N

D
S

)

Values of x pre−computed for

constant ratio C(a,x)/(x−a)=0.5

Reduced Recursion
Jagerman Algorithm
Complete Recursion

Figure 5: Processing times for the three algorithms.

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

COMPUTING C(k)
x

(a,x) for k=0,1,2

OFFERED TRAFFIC (a)

C
P

U
 T

IM
E

 (
M

IL
IS

E
C

O
N

D
S

)

Values of x pre−computed for

constant ratio C(a,x)/(x−a)=0.5

Reduced Recursion
Jagerman Algorithm
Complete Recursion

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

COMPUTING C(k)
x

(a,x) for k=0,1,2,3

OFFERED TRAFFIC (a)

C
P

U
 T

IM
E

 (
M

IL
IS

E
C

O
N

D
S

)

Values of x pre−computed for

constant ratio C(a,x)/(x−a)=0.5

Reduced Recursion
Jagerman Algorithm
Complete Recursion

Figure 6: Processing times for the three algorithms.

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

COMPUTING C(k)
x

(a,x) for k=0,1,2,3,4

OFFERED TRAFFIC (a)

C
P

U
 T

IM
E

 (
M

IL
IS

E
C

O
N

D
S

)

Values of x pre−computed for

constant ratio C(a,x)/(x−a)=0.5

Reduced Recursion
Jagerman Algorithm
Complete Recursion

Figure 7: Processing times for the three algorithms.

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 327 Issue 7, Volume 8, July 2009

A Reciprocal Function Derivatives
Here we develop an algorithm to compute the succes-
sive derivatives of a reciprocal function given by the
next Proposition.

Proposition 4 Let H : DH ⊂ R −→ R be a n + 1
continuously differentiable function in a neighbor-
hood of a point y∗ ∈ int(DH) and H(y∗) 6= 0. The
successive derivatives of the function G(y) = 1/H(y)
calculated for y = y∗ are given for n = 0, 1, 2, . . . by

G(n+1)=−
n∑

k=0

[(
n

k

) k∑

i=0

(
k

i

)
G(i)G(k−i)

]
H(n+1−k).

Proof: The first step in order to get an expression
for G(n)(y∗) requires the definition of an appropri-
ate notation able of avoiding unwanted formal com-
plications. Thence, G and Hk may replace G(y∗) and
H(k)(y∗) respectively, and:

Gk = G(k)(y∗), k = 0, 1, 2, . . .

By differentiation of G it is immediate that G1 =
−G2 H1, or, in a more simple way

G1 = β0 H1 , (21)

by introducing the notation β = β0 = −G2, and:

βk =
∂kβ

∂ yk
, k = 1, 2, . . .

To obtain a general expression for Gn, equation (21)
will be successively derived, which requires the cal-
culation of the βk. These may be expressed as a poly-
nomial in G0, . . . , Gk, by using the Leibniz formula.
Thence, for k = 0, 1, 2, . . .:

βk = − [G ·G](k) = −
k∑

i=0

(
k

i

)
Gi Gk−i. (22)

Then, from (21) Gn+1 = [β0 H1](n), or

Gn+1 =
n∑

k=0

(
n

k

)
βk Hn+1−k, n = 0, 1, 2, . . .

(23)
The result follows by introducing (22) in (23). ut
Algorithm 2 shows the details of the computational
scheme in order to compute the expression of Propo-
sition 4. The binomial coefficients present in (22) and
(23) may be efficiently computed by recursion.

Algorithm 2 — Computes the expression of Prop. 4.

Require: Hk = H(k)(y∗) for k = 0(1)m;
Ensure: Gk = G(k)(y∗) for k = 0(1)m;

G0 ← 1/H0;
for n = 0 to m− 1 do

βn ← 0;
Hn+1 ← 0;
Q ← 1;
for k = 0 to n do

βn ← βn −Q ·Gk ·Gn−k;
Gn+1 ← Gn+1 + Q · βk ·Hn+1−k;
Q ← (n− k) ·Q/(k + 1);{Binomial coef.;}

end for
end for

B Cardinal series Algorithm
Following [16, pp. 3–5, 17–19], a brief review of
quadrature theory based on cardinal series will be
given. Next the application of the method to the direct
evaluation of the integrals Jk(a, x), will be explained.
A possible improvement in the method implementa-
tion will be considered.

Suppose that F (u) is the Fourier Transform of the
function f ∈ L2(IR):

F (u) =
1√
2π

∫ +∞

−∞
f(t) exp(iut) dt .

If:
F (u) ≡ 0 for u 6∈ [−σ , +σ] ,

the function f(t) is said bandlimited with radian band-
width σ, and this is denoted by f ∈ Wσ.

The formula (see [16]):

∫ +∞

−∞
f(t) dt ' h

+∞∑

j=−∞
f(jh) , (24)

is especially simple since it uses only values of f(t)
at the nodal points jh (j ∈ Z) with equal weights h.
From the sampling theorem, the quadrature is exact
for f ∈ Wσ provided h ≤ π/σ. However, for f ∈
L2(R)\Wσ, the quadrature rule (24) is in error.

D. L. Jagerman proposes to evaluate non elemen-
tary Laplace transforms by means of the method in-
spired by formula (24). The functions Jk(a, x) may
be defined as:

Jk(a, x)=
∫ +∞

0
e−t(1 + t/a)x−1(t/a)[ln(1 + t/a)]k dt.

(25)

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 328 Issue 7, Volume 8, July 2009

By recurring to the change of variable z = ln t one
obtains from (25):

Jk(a, x) =
∫ +∞

−∞
ψk(z) dz,

where:
ψk(z) =

1
a

exp (2z − ez + (x− 1) ln(1 + ez/a)) ×

× lnk(1 + ez/a). (26)

Function ψ(z) must be evaluated by expression (26) in
order to avoid overflow problems for very high values
of the parameters a and x.

The quadrature rule obtained from the cardinal se-
ries is based on the following formula:

Jk(a, x) ≈ h
+∞∑

j=−∞
ψk(jh)

To define the algorithm, h must be specified and a
truncation error associated with the summation pro-
cess occurs:

Jk(a, x) ≈ h
∑

j∈Z
pk(jh)>ε

ψk(jh) .

After some experimentation it is proposed h = 0.01
and ε = 10−15 for a good trade-off between precision
and efficiency of the quadrature algorithm.

Acknowledgements: The research was supported
by the Center for Research on Optimization and
Control (CEOC), University of Aveiro, Portugal,
from the “Fundação para a Ciência e a Tecnologia”
(FCT), co-financed by the European Community Fund
FEDER/POCI 2010.

References:

[1] M. Abramowitz and I. Stegun. Handbook of
Mathematical Functions. Dover Publications,
9th edition, 1970.

[2] H. Akimaru and T. Nishimura. The derivatives
of the Erlang’s B formula. Rev. Electr. Commun.
Labr., NTT, 11(9–10):428–445, 1963.

[3] H. Akimaru and T. Nishimura. The derivatives
of the Erlang’s C formula. Rev. Electr. Commun.
Labr., NTT, 12(5–6):325–401, 1964.

[4] H. Akimaru and H. Takahashi. Asymptotic ex-
pansion for Erlang loss function and its deriva-
tive. IEEE Transactions on Communications,
29(9):1257–1260, 1981.

[5] L. C. Andrews. Special Functions of Mathe-
matics for Engineers. Oxford University Press,
1998.

[6] E. Brockmeyer, H. L. Halstrom, and A. Jensen.
The Life and Works of A. K. Erlang. Danish
Academy of Technical Sciences, Copenhagen,
1948.

[7] S. Chung and J. You. Call admission control in
CDMA cellular networks with grade of service
and quality of service dimensioning. WSEAS
Transactions on Communications, 5(12):2182–
2189, 2006.

[8] R. Cooper. Introduction to Queueing Theory.
North Holland, 1981.

[9] A. Costescu, S. Spanulescu, and C. Stoica. An-
alytical properties and numerical calculations of
high transcendental functions involved in the rel-
ativistic amplitudes of two photon atomic pro-
cesses. WSEAS Transactions on Mathematics,
8(1):21–31, 2009.

[10] Jorge Sá Esteves, J. Craveirinha, and D. Car-
doso. Computing Erlang-B function derivatives
in the number of servers — a generalized re-
cursion. ORSA Communications in Statistics,
Stochastic Models, 11(2):311–331, 1995.

[11] Jorge Sá Esteves, J. Craveirinha, and D. Car-
doso. A reduced recursion for computing
Erlang-B function derivatives. In Proceedings of
the 15th Int. Teletraffic Congress, pages 1315–
1326. Elsevier Science B. V., 1997.

[12] N. Garnett, A. Mandelbaum, and M. Reiman.
Designing a call center with impatient cus-
tomers. Manufacturing and Service Operations
Management, 4(3):208–227, 2002.

[13] A. Girard. Routing and Dimensioning in Circuit-
Switched Networks. Addison-Wesley, 1990.

[14] N. Goans, G. Koole, and A. Mandelbaum. Tele-
phone call centers: Tutorial, review, and re-
search prospects. Manufacturing and Service
Operations Management, 5(2):79–141, 2003.

[15] D. L. Jagerman. Some properties of the Erlang
loss function. The Bell System Technical Jour-
nal, 53(3):525–551, 1974.

[16] D. L. Jagerman. Mathcalc. Technical Report
WPN 311521–0101, FC 40416, AT&T Bell Lab-
oratories Technical Memorandum, March 1987.

[17] D. L. Jagerman and B. Melamed. Models and
approximations for call center design. Method-
ology and Computing in Applied Probability,
5:159–181, 2003.

[18] A. A. Jagers and E. A. Van Dorn. Convexity
of functions wich are generalizations of the Er-
lang loss function and the Erlang delay function.
SIAM Review, 33(2):281–283, June 1991.

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 329 Issue 7, Volume 8, July 2009

[19] G. Koole and A. Mandelbaum. Queueing mod-
els of call centers: An introduction. Annals of
Operations Research, 113:41–59, 2002.

[20] E. Lee, K. Koh, H. Choi, and H. Bahn. On
the parallelism of I/O scheduling algorithms in
MEMS-based large storage systems. WSEAS
Transactions on Information Science ans Appli-
cations, 6(5):920–923, 2009.

[21] P. M. Papazoglou, D. A. Karras, and R. C. Pa-
pademetriou. Improved integral channel alloca-
tion algorithms in cellular communication sys-
tems enabling multimedia QoS services. WSEAS
Transactions on Communications, 7(10):1014–
1024, 2008.

[22] E. Szybicki. Some numerical methods used for
telephone traffic applications. Ericsson Tech-
nics, 22:203–229, 1964.

WSEAS TRANSACTIONS on MATHEMATICS Jorge Sa Esteves

ISSN: 1109-2769 330 Issue 7, Volume 8, July 2009

