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Abstract: - The method of superposition and separation variables is applied to gain analytical solutions to the 
transient heat conduction for a two dimensional cylindrical fin. The temperature distributions are generalized 
for a linear combination of the product of Bessel function, Fourier series and exponential type for nine different 
cases. The solutions presented in this study can be used to verify the two- or three-dimensional numerical 
conduction codes. Relevant connections with some other closely-related recent works are also indicated. 
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1 Introduction 
A systematic procedure for determining the 
separation of variables for a given partial 
differential equation can be found in [1] and [2]. 
Analytical solutions are particularly important and 
useful. However, a heat problem involving two 
dimensions and more general boundary conditions 
of the type considered in our present study is 
presumably not solved in the existing literature on 
this subject. The separation variables method is 
applied in this study. The partial differential 
equations are transferred into ordinary differential 
equations by separating the independent variables 
involved in the problem. 
The temperature distributions of fins under transient 
condition are important for proper prediction and 
control of the fin performance. Closed-form 
analytical solution for the transient temperature 
distribution would provide continuous physical 
insight which is much better than discrete numbers 
from a numerical computation. The main purpose of 
this study is to investigate the analytical transient 
solutions by using the method of separation of 

variables. A group of theory, being a systematic 
procedure of determining the separation variables 
can be found in [3-8]. However, a two-dimensional 
rectangular problem in present study is presumed to 
be absent. The superposition and the separation 
method are used in this study to get the analytical 
solutions for nine different cases. 
The superposition method is widely used in other 
research area, such as [9-11] V. M. Guibout, D. J. 
Scheeres [9] focuses on applications of a general 
methodology that we developed for solving two-
point boundary value problems. By the Hamilton-
Jacobi theory in conjunction with canonical 
transformation induced by the phase flow, they 
provided that the generating functions for the 
transformation solve any two-point boundary value 
problem in phase space. This paper solved optimal 
control problems without an initial guess, studied 
the phase structure and plan spacecraft formation 
flights. Sandberg [10] focused on continuous-space 
shift-invariant systems with continuous system 
maps and inputs and outputs. It presented that 
infinite superposition can fail in this important 
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setting and a continuous shift-invariant linear 
mappings need not commute with the operation of 
integration. JUAN ZAPATA and RAM´ON RUIZ 
[11] presented a modified snake model assisted by a 
hybrid force. The internal energy of the proposed 
snake model is given in terms of two geometric 
characteristics, the first derivative (tension) and the 
second derivative (rigidity) functions. When the 
proposed external energy is given in terms of a 
hybrid energy which combine short for a head in 
movement, and the target will be located in a close 
position. Then, the active contour will be extracted 
of a frame and it used like seed contour for the next 
frame. LIGIA and VETURIA [12] studied the 
motion of two pendulums coupled by an elastic 
spring. By extending the linear equivalence method 
(LEM), the solutions of its simplified set of 
nonlinear equations are written as a linear 
superposition of Coulomb vibrations. The motion of 
pendulum is describable as a linear superposition of 
cnoidal vibrations and additional terms, which 
include nonlinear interactions among the vibrations. 
The LEM represents of the solutions of the 
superposition of Coulomb vibrations. The cnoidal 
solutions are described as a superposition of cnoidal 
vibrations and nonlinear interactions among 
vibrations. The cnoidal method  generalize the 
Fourier series with the cnoidal wave as the 
fundamental basis function, but is a completely 
different than an ordinary Fourier series expressed 
as a linear superposition of sine waves. 
 
 
 
2 Problem Formulation 

One can apply Fourier’s law and energy 
conservation law to form a set of dimensionless 
governing equation, the initial condition and the 
boundary conditions as following. 
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 Where  denotes the 
temperature,  Biot number, L fin length. Note 
that a Bessel’s equation satisfied a cylindrical 
coordinate in 
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r -direction can be made orthogonal, 
one can separate the temperature distribution as 
follows: 
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Revised the boundary conditions to a homogeneous 

one which lead to the required coefficients are 
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In the last equation, mα  are the characteristic values 

of the transcendent equation (19), 

 

( )tan m L
m

m L

Bi BiL
BiBi

αα
α

+
=

− .  

 (19) 

Thus only time variable is left and the ordinary 

differential equation could be written as  

2 2 2( ) ( ) ( )nm
n m nm n n

u t u t C
t

β α β m
∂

= − + +
∂

 

 (20) 

  

(0)nm nmu C=      

 (21) 

In the last equation,  are the values of the 

equation (22), 

nmC

2

[ ( ) ](cos sin )

(cos sin )

m m
m

nm

m m
m

BiAz L A B z z dz
C Biz z dz

α α
α

α α
α

+ − +
=

+

∫

∫
 (22) 

The analytic solution and the initial condition is 

shown as 
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 The analytical temperature profile for above 
governing equation and initial condition and 
boundary conditions obtained by the method of 
separation variables and the method of  
superposition is shown below. The temperature of 
lateral surface is the temperature of surrounding, 
heat dissipates rapidly through lateral surface, and 
heat flux can dissipate through tip and lateral 
surface. The temperature profile involved nine 
different boundary conditions in z direction are 
presented. 
 
 
3 Problem Solution 

Case 1: Bi = constant, LBi = constant 

Bi , , are the base Biot number; tip Biot 
number; lateral Boit number respectively. 
While constant, heat convection condition on 
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the tip of the fin, the larger  will result in the 
faster heat dissipation though the fin. The analytical 
solution is 
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mα are the positive roots of equations (29),  and nβ  
are the positive roots of equations (30) which fits all 
following cases.  
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Case 2: 0Bi = , 0LBi =  

 As 0iB = , the fin roots is constraint to 
constant heat flux and a constant heat flux conduct 
into fin through fin roots. While , the tip of 
the fin is adiabatic, heat cannot dissipate though the 
fin and the lateral surface also adiabatic. All energy 
will be stored in the fin.  
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Case 3: 0Bi = ,  LBi →∞

 While , the tip of the fin is 
isothermal to environment, the lateral surface also 
isothermal and heat dissipates fast though the fin. 
The temperature of the fin, left sitting on the base 
temperature, will fall until it reaches the surrounding 
temperature. The equations (5) and (6) are revised to 
be 
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Case 4: 0Bi = , LBi = constant 

 While constant, heat convection 
condition on the tip of the fin, the larger B  will 
result in the faster heat dissipation though the fin tip 
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Case 5: , Bi →∞ 0LBi =  

 As ∞→iB , the fin root is constraint to 
isothermal conductivity, the root interface 
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Case 6: ,  Bi →∞ LBi →∞

 While , the tip and root of the fin 
are isothermal, heat dissipates fast though the tip of 
the fin. 
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The equations (5) and (6) are revised to be 
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Case 7: , Bi →∞ LBi = constant 

The equations (5) and (6) are revised to be 
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Case 8: Bi =  constant,  0LBi =

 The equations (5) and (6) are revised to be 
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And the relating coefficients are as following: 
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+
 (105) 

n

L

gA B
LBi

= = ,            (106) 

mα are the positive roots of the following equation  

tanm mL Biα α = .          (107) 

 

Case 9: Bi =  constant,  LBi →∞

The equations (5) and (6) are revised to be 

( ,0, ) ( ,0, )zu r t Biu r t Bi q− + = +         (108) 

( , , ) 0u r L t =             (109) 

The analytical temperature profile is 

1

0
1

( , , ) { ( )

sin ( )( ) } ( )
sin

n

m
nm n

m m

u r z t Az L z B

L zu t J r
L

α β
α

∞

=

∞

=

= + −

−
+

∑

∑
        (110) 

And the relating coefficients are as following: 

1

2( )
( )n

n n

Bi qg
Jβ β
+

=           (111) 

2

2 2

2 2 2

2[( ) cos

( )sin (

( )[cos sin

2 cos ( 2 ) ]

nm

m m

m m

m m m

m m m m

EC
F

E A B ABiL L

A L ABi BBi L A B BBiL

F Bi L L

Bi L L Bi L Bi

α α

) ]mα α α

α α α

α α α α

=

= − − −

+ + − − − −

= −

− + + +

  (112) 

( )
n

L L

gA
Bi Bi LBiBi L

=
+ +

;  

( )tan m
m

m L

LBi BiL
BiBi

αα
α

+
=

−
.            (114) 

.  
 
 
4 Conclusion 
The principle of superposition and separable 
variables are applied to the transient heat conduction 
in a cylindrical fin subjected to convective lateral 
surface to provide a simplified formulation that can 
be used to identify the temperature distribution. The 
temperature distributions are formed in a Fourier 
Bessel series and exponential type and are given by 
nine different cases.  
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