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Abstract: Many practical problems can be formulated as convex optimization problems over the cone of
nonnegative univariate polynomials. We use a cutting plane method for solving this type of optimization
problems in primal form. Therefore, we must be able to verify whether a polynomial is nonnegative,
i.e. if it does not have real roots or all real roots are multiple of even order. In this paper an efficient
method is derived to determine a scalar value for which the polynomial is negative and in the case that
such a value exists a feasible cut is constructed. Our method is based on Sturm theorem, which allows
to determine the number of distinct roots of a polynomial on a given interval, in combination with the
bisection method. For numerical stability we construct the associated Sturm sequence using Chebyshev
basis, and thus we can work with high degree polynomials, up to hundreds. Numerical results show the
efficiency of our new approach.
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1 Introduction

Nonnegative polynomials on the real line play
a fundamental role in systems and control the-
ory: e.g., robust control [11], filter design prob-
lems [10], etc. The set of nonnegative univari-
ate polynomials form a convex set, more pre-
cisely a convex cone and was recently studied
in the area of convex optimization [8]. Convex
optimization techniques allow us to efficiently
treat the cone of nonnegative polynomials, which
can be parameterized by semidefinite matrices
[9, 15]. In [8] it was shown that for a convex
optimization problem over this particular cone,
the corresponding dual problem leads to a special
semidefinite matrix structure, more specifically
a dual Hankel-matrix structure. Therefore, var-
ious interior-point and cutting plane algorithms
exploiting this dual semidefinite Hankel-structure
were proposed in [8].
However, for large-scale problems the existing
semidefinite interior-point based algorithms are

inefficient since we must solve linear systems
with large dimension matrices. Moreover, the
methods mentioned above utilize the classical
basis for polynomials which limit the polyno-
mial degree. This originates from the fact that
the polynomials are described using the natural
powers 1, x, x2, · · · , which lead to ill-conditioned
Hankel matrices.

In this article we also consider convex prob-
lems over the cone of nonnegative polynomi-
als on the real line, subject to linear constraints.
We restrict ourselves to first-order methods, i.e.
methods that use only first-order information
(function evaluation and gradient evaluation). In
particular we propose a cutting plane algorithm
[5] for solving this type of problems in primal
form without embedding it into a semidefinite
format corresponding to the dual formulation.
Tackling the problem directly in the primal form
permits us to remove some of the disadvantages
of the methods mentioned above, in particular it
allows us to take into account the structure of the
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given problem such as sparsity. Our contribution
is twofold.
First, for the numerical stability of our method
it is important that the polynomials are repre-
sented with respect to some orthogonal basis,
e.g. the Chebyshev basis. This approach per-
mits to work with high degree polynomials, up
to hundreds. The explanation is derived from
the observation that the Chebyshev polynomials
have Sturm sequences with small coefficients and
thus our method is numerically stable. Moreover,
using Chebyshev basis for representing noneg-
ative polynomials, the corresponding dual cone
leads to a semidefinite Toeplitz-plus-Hankel ma-
trix structure, i.e. with well-behaved matrices.
Second, for using a cutting plane algorithm we
need an efficient method to construct a feasible
cut. In our case this reduces to checking nonneg-
ativity of a polynomial. If the polynomial does
not have real roots or all real roots are multiple
of even order, then it is nonnegative. If the poly-
nomial is negative then, we propose an efficient
method for constructing a feasible cut using bi-
section in combination with Sturm theorem for
determining some scalar for which the polyno-
mial value is negative. We construct the Sturm
sequence in the Chebyshev basis and with Sturm
theorem we can determine the number of distinct
real zeros of a polynomial in a given interval. We
determine a scalar value for which the polyno-
mial is negative by Sturm theorem with bisection
and with this value a feasible hyperplane is con-
structed and used in the cutting plane method.

The layout of the paper is as follows. Sec-
tion 2 gives the problem formulation, the main
ingredients of a cutting plane method and the
mathematical definitions which are used to derive
Sturm theorem. In Section 3 we derive a method
for counting the real zeros of a given polynomial
within an interval. The method uses the notion
of Cauchy index, replacing the problem of count-
ing zeros lying in an interval, by the evaluation
of a Cauchy index of a rational function associ-
ated with that polynomial in the Chebyshev form.
In Section 4 we propose an efficient method for
constructing a feasible cut based on bisection and
Sturm theorem. We conclude with an application
in Section 5.

2 Preliminaries
In this section we introduce the problem that we
are going to solve and the mathematical tools that

will be used in the paper.

2.1 Problem formulation
In this paper the following convex problem is
considered:

min
f

G(f)

s.t. Af ≤ b (1)

f ∈ KR,

where G : Rn+1 → R is a convex function, A is
aRm×(n+1) matrix and b ∈ Rm. We consider that
n is even and in general m ≤ n + 1. We assume
that the set {f ∈ Rn+1 : Af ≤ b} is bounded.
Moreover, KR is the convex cone of coefficients
of polynomials nonnegative on the interval (a, b),
i.e. for f = [f0 · · · fn]T

KR = {f ∈ Rn+1 : f0 + f1x+ · · ·+ fnx
n ≥ 0,

∀x ∈ (a, b)}.
There exist different methods for solving convex
problems of the form (1), such as interior-point
based methods in primal and dual form [8, 9],
first-order methods [7], etc.

In this paper we use a cutting plane method
for solving (1). The basic scheme of a cutting
plane method for solving a general convex prob-
lem

min
x∈Q

g(x),

where g is a convex function and Q is a convex
set in some vector space endowed with a scalar
product 〈·, ·〉, consists in the following steps:

Algorithm 1 (cutting plane method for solv-
ing convex problem g∗ = min

x∈Q
g(x))

1. choose an accuracy ε > 0 and a starting
point x0

2. kth iteration (k ≥ 0):

2.1 if xk 6∈ Q (feasibility cut)

∃ak, bk s.t. 〈ak, x−xk〉+bk ≤ 0 ∀x ∈ Q

2.2 if xk ∈ Q (optimality cut)

g(x) ≥ g(xk) + 〈∇g(xk), x− xk〉
∀x ∈ dom(g)
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3. compute xk+1

4. test g(xk+1)− g∗ ≤ ε.

Here, ∇g(x) denotes the (sub)gradient of the
function g and ε is the required accuracy of the
approximate solution. There are different strate-
gies to update xk+1 in step 3 of a cutting plane
method (Algorithm 1): e.g. center of gravity [9],
ellipsoid [6], analytic center [7], etc.

2.2 Sturm theorem
Note that in order to solve the optimization prob-
lem (1) using a cutting plane method we should
check if a polynomial belongs to the convex cone
KR. Sturm theorem allows us to decide if our
polynomial has real roots in the interval (a, b).
In the sequel we introduce the basic ingredients
for deriving Sturm theorem (see [3, 4] for more
details). Let f(x) be a real polynomial, i.e. in the
classical basis it can be written as:

f(x) =
n∑

k=0

fkx
k,

where fk are real numbers. In the next definition
we introduce the so-called Cauchy index:

Definition 1 The Cauchy index of a real rational
function R(x) between the limits a and b (nota-
tion Ib

aR(x); a and b are real numbers or ±∞)
is the difference between the number of jumps of
R(x) from −∞ to +∞ and that of jumps from
+∞ to −∞ as the argument changes from a to
b. In counting the number of jumps, the extreme
values a and b are not included.

One of the methods of computing the Cauchy
index Ib

aR(x) is based on the classical Sturm se-
quence:

Definition 2 We consider a sequence of polyno-
mials:

f0(x), f1(x), . . . , fm(x). (2)

Such a sequence is called a Sturm sequence on an
interval (a, b), where either a or b may be infinite,
if

(i) fm(x) does not vanish in (a, b);

(ii) at any zero of fk(x), k = 1, · · · ,m− 1, the
two adjacent functions are nonzero in (a, b)
and have opposite signs; that is,

fk−1(x)fk+1(x) < 0.

Definition 3 Let {fi(x)}i=0,...,m be a Sturm se-
quence on (a, b), and let x0 be a point of (a, b)
at which f0(x0) 6= 0. We define V (x0) to be the
number of changes of sign of {fi(x0)}i, zero val-
ues being ignored. If

(i) a is finite, then V (a) is defined as V (a +
ε), where ε is such that no fi(x) vanishes in
(a, a+ε) and similarly for b when b is finite;

(ii) a = −∞, then V (a) is defined to be the
number of changes of sign of { lim

x→−∞
fi(x)}i

and similarly for V (b) when b = ∞.

The next theorem provides a way to compute
the Cauchy index:

Theorem 4 (Sturm theorem) [3] If {fi(x)}i is a
Sturm sequence in (a, b) and V (x) is the number
of variations of sign in the sequence, then

Ib
a

f1(x)

f0(x)
= V (a)− V (b). (3)

It is easy to see that by means of Sturm theorem
the number of distinct real roots of the polyno-
mial f(x) in the interval (a, b) is Ib

a
f
′
(x)

f(x)
, where

f
′
(x) denotes the derivative of f(x).

3 Sturm sequence in Cheby-
shev basis

Any algorithm for devising the Sturm sequence
(e.g. Euclidian algorithm) is numerically unsta-
ble when the polynomials are represented in the
classical basis since in general we have to per-
form polynomial division. Therefore, in this sec-
tion we derive the Sturm sequence associated to
a given polynomial using the shifted Chebyshev
basis. This type of polynomials are orthogonal
on the given interval and satisfies a three term re-
currence relation.
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3.1 Constructing Sturm sequence us-
ing shifted Chebyshev polynomi-
als

We define shifted Chebyshev polynomials on a
given interval (a, b) using the following linear
transformation [2]

s(x) =
2x− (a + b)

b− a
, x ∈ (a, b).

The shifted Chebyshev polynomials of the first
kind of degree i on (a, b) denoted Ti(x) satisfy
the following three-recurrence relation:

T0(x) = 1

T1(x) = s(x)

Ti+1(x) = 2s(x)Ti(x)− Ti−1(x), ∀i ≥ 1.

Shifted Chebyshev polynomials of the sec-
ond kind Ui(x) are defined as follows:

U0(x) = 1

U1(x) = 2s(x)

Ui+1(x) = 2s(x)Ui(x)− Ui−1(x), ∀i ≥ 1.

Given a polynomial f(x) using the shifted
Chebyshev basis, a Sturm sequence may be
formed using Euclid algorithm for computing the
greatest common divisor between f0(x) = f(x)
and f1(x) = f

′
(x). Divide f0(x) by f1(x) and

take f2(x) to be the negative of the resulting re-
mainder. Proceeding in this fashion, the degree
of fi(x) is always less than fi−1(x).

Let us assume that our polynomial can be
represented in the shifted Chebyshev basis of the
first kind as:

f(x) =
n∑

k=0

akTk(x), x ∈ (a, b).

It is easy to show the following relation be-
tween the first and second kind Chebyshev poly-
nomials:

[Tk(x)]
′
=

2k

b− a
Uk−1(x).

Based on this relation we find that

f1(x) =
n−1∑

k=0

bkUk(x),

where

bk =
2(k + 1)

b− a
ak+1, k = 0, . . . , n− 1. (4)

The remainder f2(x) can be computed as f2(x) =
(α1

1T1(x) + α1
2)f1(x) − f0(x), i.e. takes the fol-

lowing form:

f2(x) =[
1

2
a2 − a0 +

1

2
α1

1b1 + α1
2b0]U0(x)+

n−2∑

k=1

[
1

2
ak+2 +

1

2
α1

1bk+1+

1

2
α1

1bk−1 + α1
2bk − 1

2
ak]Uk(x),

where α1
1 =

an

bn−1

and α1
2 =

an−1 − bn−2α
1
1

2bn−1

.

For the general case (i.e. j ≥ 2) we as-

sume that fj−1(x) =
n−j+1∑

k=0

ckUk(x) and fj(x) =

n−j∑
k=0

dkUk(x). Writing the remainder fj+1(x) =

(αj
1U1(x) + αj

2)fj(x)− fj−1(x) we find that

fj+1(x) = [αj
1d1 + αj

2d0 − c0]U0(x)

+

n−j−1∑

k=1

[αj
1dk−1 + αj

1dk+1 + αj
2dk − ck]Uk(x),

where

αj
1 =

cn−j+1

dn−j

, αj
2 =

cn−j − dn−j−1α
j
1

dn−j

. (5)

It is important to see that for any scalar β ∈
(a, b), the evaluation of the Sturm sequence at
this value can be done recursively, without ex-
plicitly evaluating fj(x) at β. Indeed, given f0(β)
and f1(β) (these values can be computed since
we know explicitly the polynomial f(x)), we
have the following recurrent relation:

fj+1(β) = (αj
1U1(β) + αj

2)fj(β)− fj−1(β)

for all j ≥ 2. Therefore, for finding the num-
ber of changes of sign of the sequence {fi(β)}i≥0

we need to know the following two sequences
{αi

1}i≥0 and {αi
2}i≥0. From the above discussion

we can conclude that the computational complex-
ity for finding the Sturm sequence is O(n2).
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Remark 5 Note that we can also have the case
when the difference in the degree of two consecu-
tive polynomials in the Sturm sequence is larger
than one. In this case it is obvious that the quo-
tient is not linear. However, the derivation of
the coefficients of the quotient are computed sim-
ilarly as above for the linear case.

From the previous discussion we can derive
the following theorem:

Theorem 6 The number N of distinct real roots
inside the interval (a, b) of a given polynomial
f(x) written in the Chebyshev basis is given by

N = V (a)− V (b).

3.2 Destroying multiplicity
In this section we derive the Sturm sequence in
the case when the polynomial has multiple roots.
If we have multiple roots, we add a small positive
constant ε to our polynomial in order to destroy
its multiplicity. We construct the Sturm sequence
as in the previous section: let f ε

0 (x) be the per-
turbed polynomial, i.e.

f ε
0 (x) =

n∑

k=1

akTk(x) + [ε + a0]T0(x).

Note that f ε
1 (x) =

n−1∑
k=0

bkUk(x), where bk is de-

fined in (4). As in the previous section we obtain

f ε
2 (x) =[

1

2
a2 − (a0 + ε) + α1b1

1

2
+ α2b0]U0(x)

+
n−2∑

k=1

[
1

2
ak+2 + α1bk+1

1

2
+ α1bk−1

1

2
+

α2bk − 1

2
ak]Uk(x),

where α1 =
an

bn−1

and α2 =
an−1 − bn−2α1

2bn−1

.

By induction we can show the following:

(i) if j = 1 · · ·n/2

f ε
j+1(x) =

j−1∑

k=0

rk(ε)Uk(x) +

n−j−1∑

k=j

rkUk(x),

where for the coefficients rk(ε) the depen-
dence from ε is linear.

(ii) if j = n/2 + 1 · · ·n, taking into account (5)
we obtain

f ε
j+1(x) =

n∑

k=j+1

rn−k(ε)Un−k(x),

where for the coefficients rk(ε) the depen-
dence from ε is rational, i.e. rk(ε) =
P (ε)/Q(ε), with P (ε) and Q(ε) are real
polynomials, with deg(P ) = deg(Q) + 1.

Theorem 6 can also be applied in this case, which
allow us to determine the number of distinct real
roots of our original polynomial.

3.3 Comrade Matrix Approach
Using the Sturm sequence method developed in
Section 3 we can check if a given polynomial has
real roots or not on some interval. If the asso-

ciated Cauchy index Ib
a

f
′

f
= 0 then the polyno-

mial is nonnegative on the interval (a, b). An-
other method to decide if the polynomials is non-
negative or not on the interval (a, b) is given by
the comrade matrix approach.

For an orthogonal basis of polynomials satis-
fying a 3-term recurrence relation

f0(x) = α0,

f1(x) = α1x + β1,

fi(x) = (αix + βi)fi−1(x)− γifi−2(x),

i ≥ 2 (with γi > 0),

and a polynomial f represented in this basis as

f(x) = δ(fn(x) + a1fn−1(x) + . . . anf0(x)),

we define the comrade matrix

C =




− β1

α1

1
α1

0 . . . . . . − an

αn
γ2

α2
− β2

α2

1
α2

. . . . . . −an−1

αn

0 γ3

α3
− β3

α3

1
α3

. . . . . .

. . . . . . . . . . . . . . . − a3

αn

. . . . . . . . . . . . . . . −a2+γn

αn

. . . . . . . . . . . . γn−1

αn−1
−a1+βn

αn




It is known that the zeros of the polynomial
f are the eigenvalues of the above matrix C. Re-
cently methods with O(n2) complexity were de-
veloped to solve the comrade eigenvalue prob-
lem [17], [18]. The comrade matrix approach
consists in the following steps:
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• compute the eigenvalues of the matrix C as-
sociated to our polynomial

• take the middle points and evaluate f in
these points

• if all these values are nonnegative then f be-
longs to KR.

3.4 Example
We consider the polynomial

f =
n∑

k=0

akTk(x)

on the interval (a, b). We take a polynomial of
degree n = 24 on the interval (1, 10). The corre-
sponding Chebyshev coefficients for this polyno-
mial are given in the following table:

a0 = 2.63 a1 = 1.70 a2 = 0.28
a3 = 0.27 a4 = 0.29 a5 = 0.37
a6 = 0.25 a7 = 0.47 a8 = 0.18
a9 = 0.52 a10 = 0.15 a11 = 0.53
a12 = 0.24 a13 = 0.51 a14 = 0.47
a15 = 0.47 a16 = 0.69 a17 = 0.39
a18 = 0.72 a19 = 0.26 a20 = 0.50
a21 = 0.12 a22 = 0.22 a23 = 0.03
a24 = 0.04

For a = 1 the values of the Sturm sequence
are displayed in the following table and the num-
ber of sign changes is 13:

f0 = 1 f1 = −65.54 f2 = 11.12
f3 = −84.61 f4 = 9.105 f5 = −59.44
f6 = 6.60 f7 = −36.87 f8 = 4.38

f9 = −19.62 f10 = 1.95 f11 = −4.74
f12 = −0.44 f13 = −44.73 f14 = 0.062
f15 = 71.57 f16 = −0.02 f17 = −182.48
f18 = −0.14 f19 = −819.89 f20 = −1.14

f21 = −4987.3 f22 = −0.051 f23 = −1445.83
f24 = −0.026

For b = 10 the values of the Sturm sequence
are given below and the number of sign changes

are 11:

f0 = 12.42 f1 = 341.76 f2 = 52.53
f3 = 344.69 f4 = 36.54 f5 = 209.95
f6 = 22.01 f7 = 104.07 f8 = 8.68
f9 = 7.87 f10 = −6.25 f11 = −88.40

f12 = −21.44 f13 = −2882.2 f14 = 1.18
f15 = −1962.3 f16 = 0.70 f17 = −1718.1

f18 = 0.66 f19 = −1464.6 f20 = 0.25
f21 = 4587.4 f22 = −0.09 f23 = 2935.0
f24 = −0.02

In conclusion, I10
1

f
′

f
= V (1) − V (10) = 13 −

11 = 2 and so our polynomial has 2 real roots on
this interval.

2 3 4 5 6 7 8 9 10

 
n=24 interval [1 10]

Figure 1: A polynomial of degree n = 24

From Figure 1 we can see that our polyno-
mial has indeed two real roots in the interval
(1, 10), in the neighborhood of x = 1.

For the same polynomial, represented using
shifted Chebyshev basis on the interval (a, b),
we calculated the zeros of this polynomial us-
ing comrade matrix approach and we obtain ex-
plicitly the following two roots: 1.02445 and
1.06061.

4 An efficient method for con-
structing a feasible cut

In the introduction we have described the main
steps of a cutting plane method (Algorithm 1) for
solving convex problems. As we have seen, the
main difficulty in application of the cutting plane
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method is to derive an efficient method for con-
structing the feasible cut. In this section we pro-
vide such a method in the case when we solve
convex problems over the cone of nonnegative
polynomials of the form (1). Our method com-
bines bisection with the Sturm theorem (see The-
orem 6) in order to find a scalar value for which
the polynomial takes a negative value. Once this
scalar is determined, we can derive a feasible hy-
perplane in an straightforward manner. We also
discuss the complexity of our method.

4.1 Checking nonnegativity of a
polynomial

In the sequel we present an algorithm for ver-
ifying the nonnegativity of a given polynomial
f(x)1. The output of this algorithm is either a
scalar value α for which the polynomial value is
negative or our polynomial is nonnegative.

Algorithm 2
1. Given a polynomial f(x) written in the

shifted Chebyshev basis on the interval
(a, b) as f(x) =

∑n
k=0 ckTk(x), where

c0 · · · cn are real coefficients.

2. Find N = V (a) − V (b) the number of dis-
tinct real roots of f(x) in (a, b), using Theo-
rem 6.

2.1 if N = 0 then our polynomial is non-
negative and stop.

2.2 if N = n then go to step 4.

2.3 else use Theorem 6 for the perturbed
polynomial f(x) + ε and find Nε =
Vε(a) − Vε(b) (where ε > 0 is suffi-
ciently small).

2.3.1 if Nε = 0 then f(x) is nonneg-
ative but has multiple roots and
stop.

2.3.2 if Nε = N go to step 4.
2.3.3 else (i.e. 0 < Nε < N) go to step

4 for f(x) = fε(x).

3. if this interval contains more than one
root, we divide it into two subintervals

1Note that any polynomial written in the classical basis
can be also represented using shifted Chebyshev basis for
a given interval.

(
a,

(a + b)

2

]
and

(
(a + b)

2
, b

]
. We eval-

uate the given polynomial in
(a + b)

2
. If

f

(
(a + b)

2

)
< 0, then α =

(a + b)

2
. We

interrupt this process and we construct the

feasibility cut using α =
(a + b)

2
.

4. Obtain an interval (ai, bi].

4.1 if the interval has more than one root
we evaluate f(x) in

ai + bi

2
and pro-

ceed as in step 3.

4.2 if the interval has one root we will ver-
ify the function values in ai and bi. If
the function values in ai and bi are pos-
itive, then we will discard this interval.
Otherwise α is either ai or bi.

4.3 else continue this process discarding
intervals that contain no roots.

If we did not receive a negative function value
during this algorithm, then it means that we have
a nonnegative polynomial. Note that our Algo-
rithm 2 is different from the bisection method for
isolation of the roots of a polynomial since we
interrupt the iteration at the first time when an α,
for which our polynomial has a negative value, is
found.

4.2 Feasibility/Optimality cuts for
the cone of nonnegative polyno-
mials

We assume that the convex optimization problem
(1) has the following reformulation when using
shifted Chebyshev basis:

min
f

Gs(p)

s.t. Asp ≤ bs (6)

p ∈ Ks,

where p = [c0 · · · cn]T and

Ks = {p ∈ Rn+1 : c0 T0(x) + c1T1(x) + · · ·+
cnTn(x) ≥ 0, ∀x ∈ (a, b)}.
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Note that optimization problem (6) is also
convex since the relation between the coefficients
of a polynomial in the classical basis and shifted
Chebyshev basis is linear, i.e. if f(x) can be
represented as f(x) = f0 + f1x + · · · + fnxn

in the classical basis and as f(x) = c0 T0(x) +
c1T1(x) + · · · + cnTn(x) in the shifted Cheby-
shev basis, then there exists an invertible matrix
B such that Bp = f .

Since the intersection of a polytope de-
scribed by Asp ≤ bs with the convex cone Ks

is a convex set, an oracle can be written for the
convex set

Qs =
{
p ∈ Rn+1 : p ∈ Ks, Asp ≤ bs

}
.

The steps 2.1 and 2.2 in the cutting plane
method (Algorithm 1) for our problem (1) can
be derived using the following reasoning: given
pk = [c0 · · · cn]T , if during the bisection process
explained in Algorithm 2 we are able to find an
interval (ai, bi) ⊆ (a, b) that contains a scalar α
for which

pk(α) = 〈pk, π(α)〉 < 0,

where

π(α) = [T0(α) T1(α) · · ·Tn(α)]T ,

then for any p ∈ Ks define

0 ≤ min
x∈(a,b)

p(x) =

min
x∈(a,b)

[p(x)− pk(α) + pk(α)] ≤

min
x∈(a,b)

[p(x)− pk(α)] + pk(α) ≤ p(α)− pk(α).

In conclusion the following cuts can be con-
structed:
2.1 Feasibility cut: if pk 6∈ (Qs ∩ Ks), then

∃ α s.t. 〈pk, π(α)〉 < 0,

In this case we construct the following feasi-
ble hyperplane: for some δ ≥ 0 sufficiently
small

δ + 〈pk, π(α)〉 ≤ 〈p, π(α)〉.
2.2 Optimality cut: if pk ∈ Qs, then the follow-

ing hyperplane is constructed

Gs(p) ≥ Gs(p
k) + 〈∇Gs(p

k), p− pk〉.
There are several ways of enforcing the lin-

ear constrains Asp ≤ bs. The simplest one is to
explicitly take it into account in the query point
generator.

4.3 Complexity
In this section we derive the complexity of Algo-
rithm 2. First, the following lemma is an imme-
diate consequence of our discussion from Section
3.1:

Lemma 7 There is an O(n2) time algorithm for
computing the Sturm sequence in the Chebyshev
basis.

From the previous lemma we can see that
for a given polynomial f(x), the computational
complexity of the number of changes of sign
in the corresponding Sturm sequence is of or-
der O(n2). It remains to derive the complex-
ity of the bisection method. However, given an
irreducible polynomial with integer coefficients
f(x) = f0 + f1x + · · · + fnxn, with the roots
x1, · · · , xn, the minimum root separation is de-
fined as sep(f) = mini 6=j |xi − xj|. There is a
well-known bound for the minimum root separa-
tion of such a polynomial [16]:

sep(f) > 2n−n/2−1/2‖f‖−n+1,

where ‖f‖ = maxi |fi| is the max norm of the
polynomial. Note that such a bound can be ex-
tended easily to polynomials with rational coef-
ficients as well. Moreover, the data in computer
are represented in rational form. Since for a given
interval (a, b) and a minimum root separation
sep(f) for a polynomial f(x), the complexity of
the bisection method is log( b−a

sep(f)
), we obtain the

following complexity for bisection in terms of the
degree n of the polynomial:

O(n log n + n log ‖f‖).
Using a bisection search ofO(n log n) stages

in Algorithm 2 (assuming ‖f‖ ≤ n) we arrive
at the following complexity per iteration for our
method:

O(n3 log n).

However, our numerical results show only a
complexity of order O(n2).

5 Application
In this section we consider the interval (a, b) =
(1, 10) and Tk(x) are shifted Chebyshev polyno-
mials of order k on this interval. Given scalars
α0, · · · , αm ∈ (1, 10), let us define the vectors
ai = [T0(αi) · · ·Tn(αi)]

T for i = 0, · · · ,m.
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We consider the following optimization
problem

min
f

cT
0 p

s.t. aT
i p = bi ∀i = 1, · · · ,m

p ∈ KR,

n m nr. of bisection iter. outer iter.
22 10 2 46
52 30 6 141
72 60 5 90
102 40 12 128
222 80 25 251

The table displays the average number of it-
erations for the bisection and the number of it-
erations of the cutting plane method for different
values of n (dimension of the polynomial) and m
(number of interpolation constraints).

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Figure 2: The optimal polynomial satisfying the
given interpolation constraints.

Figure 2 corresponds to an optimization
problem with the following data: dimension of
the polynomial is n = 72, the number of in-
terpolation constraints is m = 60 and the accu-
racy of solution is ε = 10−4. Moreover α0 = 2

and αi =
(a + b)

2
+

(b− a)

2
cos

(
(2i− 1)π

2m

)
,

bi = arctan(αi) for all i = 1, . . . , m. The soft-
ware2 OBOE was used to solve the above prob-
lem.

2https://projects.coin-or.org/OBOE

6 Conclusions
We developed a cutting plane method for solv-
ing convex optimization problems over the cone
of nonnegative polynomials with linear inequali-
ties. The main difficulty in using a cutting plane
method for solving this type of problems con-
sists in providing an efficient method for check-
ing nonnegativity of a polynomial. In this paper
an efficient method was devised to determine a
scalar value for which the polynomial is nega-
tive and in the case that such a value exists a
feasible cut can be constructed. Our method is
based on Sturm theorem, which allows to deter-
mine the number of distinct real roots of a poly-
nomial on a given interval, in combination with
a bisection method. For numerical stability we
constructed the associated Sturm sequence us-
ing Chebyshev polynomials although other or-
thogonal bases could be also used such as Her-
mite polynomials, Laguerre polynomials, Legen-
dre polynomials, etc. It turns out that the com-
plexity of our method is of the order O (n3 ln n).
However, in practice we observed an O (n2) com-
plexity. Numerical results show also the effi-
ciency of our new approach.

Note that there are other options besides
Sturm theorem to count the number of distinct
real roots of a polynomial in a given interval such
as methods based on Descartes rule of signs [1],
Sylvester theorem [13], etc. In a future work we
intend to investigate in more detail these meth-
ods. Furthermore, it will be interested to study
the effect of the accuracy on the minimum root
separation for the iterates.
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