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1 Introduction
Recently many authors have examined the following
system of the non-linear Partial Differential
Equations (PDEs) in [ °
~Viut+ggu=gw (1)
~Vig=qu’ ()
with  g(.) being a known function.
The system of (1) and (2) is called:

Schrodinger-Maxwell equations. This system of
Equations arises in many mathematical physics
contexts, such as in quantum electrodynamics,
in nonlinear optics, in nano-mechanics and in
plasma physics.

The greatest part of the literature focuses on the
study of the previous system for the very special
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nonlinearity g(U) =—-U+ |u|p71 u and existence,

nonexistence and multiplicity results are
provided in many papers for this particular
problem (see [18]+[28]).

In [29], Azzollini, D’Avenia and Pomponio that a
solution of a boundary problem of (1) and (2) yields
the minimization of some functional.

In this paper we will solve the boundary value
problem (i.e. Dirichlet problem) of

~V2u+qgu = g(u)
—Vig=qu’

(1)
2)

where g(.) is a known using Finite Difference
Schemes. Here also we consider ¢(.) as a
known differentiable function.
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2 The Existence and the Uniqueness of
the solution of the discretization of (1)
and (2)

For clarity only, in this paper, we will restrict
attention to boundary value problems defined
on rectangles. The ideas and methods extend in
a natural way to more complex regions.

Consider a cube I with vertices

(@,2,,8),(a,b,,8,),(8,8,,b,),(3,,b,,b,).

(b,a,,8,),(b,b,,,),(b,a,,b,),(b,b,,b;) and
let QQ be the interior of I

Discretization concerns the process of
transferring continuous models and equations
into discrete counterparts. One proceeds as
follows. Subdivide [&,,b ]into n, equal parts,
b —a
length h =——">-=",

n

each of subdivide

[a,,b,]into n, equal parts, each of length
b,—a
, = 2n 2, subdivide [a;,b,]into n, equal

2

h

b —
parts, each of length hy == N % )
3

This discretization in (1) leads from U(X, Y, Z)

to Uj,kJ where jk,I the spatial coordinates, i.e.
Uiy = u(a, +ih1=az + kh29a3 + |h3)

and ¢ ,, =¢4(a +ih,a, +kh,,a, +Ih,)
Therefore the steps of the discretization are
h,,h,, h, with respect to x,y,z

So, we have introduced a grid of points in the

0’ space of (X,y,2)
So from (1) one takes

uj+1,k,| _2uj,k,l +uj—1,k,| uj,k+1,| _2uj,k,l +uj,k—l,|

2 2
h1 hz
u. -2U. ., +U;

I,k 1+1 1,k,l J,k,I-1 _

+ > _q¢j,k,|uj,k,l __g(uj,k,l)
h3
(3)
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and from (2)
¢j+1,k,| _2¢j,k,| +¢j71,k,l n ¢j,k+1,| _2¢j,k,| +¢j,k—1,| "
h12 h22

Pikin — 2001t P 2

+ h2 = _qui,j,k
3
(4)

Eq.(3) can be written:

22 212
hyh; (Ujopr HUj )+ hyh; (Uj gy HU )+

+h12h22 (Uj e TU o) — 205 (h22h32 + h12hs2 + hlzhzz)

_qh12h22h32¢j,k,luj,k,l = _h12h22h329(uj,k,| )

)

Eq.(4) can be written:

h22 h32 (¢j+1,k,| + ¢j4,k,| )+ h12h3'2 (¢j,k+1,| + ¢j,k—1,| )+
+h'hy (Disers + Diai) =205, (hoh +h’h +h’hy)
= _th2 h22 hazuik,l

(6)
Considering these equations on each node, one can
write a mildly non-linear system.
What is mildly non-linear system.
We recall [31] that a mildly non-linear system is
a system of n equations in n

a X +a,X, +..+a,x,+ f(x)=0 (7.1)
a, X +a,X, +...+a,, X, + f,(X,)=0 (7.2)
a, X +a,X +..+a,x +f(x)=0 (7.n)

where

f,(x), ,(X,),...,

functions in only one variable. It can be easily
proved ([31]) that if the linear part our mildly non-
linear system is diagonally dominant (that means

n
|aii|22aij | :1,2,...,n
j=1
}ﬂ
with strict inequality for at least one value of i)

f.(X,)are non-linear
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and satisfy &; <0 and aij > 0 and in addition
jei
fi (X)), i=L2,...n are differentiable with
df; ()
dx

has one and only one solution.

<0 then the system of (7.1),(7.2)....,(7,n)

(€2 is the interior of I).

—gh’hyh; (
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From (6) we obtain

hohs (Pips T+ h?hs (Pisors T )+

22 2lh2K2,,2
+hrh; Piin T )+ ah’h; h3uj,k,|

= _h12h22h3zg(uj,k,l )

Pisa = 2(R2h? +h?h? +h’h?)
So, we can see the system of (5) and (6) can be
written as a system of 2(n, —1)(n, —=1)(n; —1) (8)
Equations in 2(n, —1)(n, —=1)(n, —1) unknowns.
Our equations are (5) and (6) at the points of Q2 Introducing it in (5) we obtain Eq.(9)
h22 h32 (Ujppr U )+ h12h32 (Uj oy TUj )+
+h’hy (Uj e FU ) =205 (h7hy +h’hy +h’h))
hohs (Piiwa TP+ h?hs Py T i)+ h'h; (Piin T i)+ thzhzzhazuik,l )
ikl
2(h;h? +h’h? +h’h) !
9)

or

h22h32 (Dips T 900+ h12h32 (Pisors T i)+ h12h22 (Pisio T 9ixa)

(_thzhzzhf(

2.2 212 212
+hyh; U g tU )+ h'h; Uy HU DT h’hy (u

gh’h;hs
2(2h2 + h2h? + hZh?)

+h12h22h329(uj,k,| ) - thzhzzhsz(

=0

One can easily see that the Equations (10) with
(8) is asystem of 2(n, —1)(n, —1)(n, —1)
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2(h;h} +h’h; +hh?)

u

>—xww+wm+wwﬂmw

Pkl +uj,k,|—1)

(10)

equations in 2(n, —1)(n, —=1)(n; —1) unknowns

After these mathematical preparations we can prove
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the following Theorem 1. i.e. greater than
Theorem 1: 212 22 212
N solution i : . 2h;hy +2h7hy +2h'h
A solution in the mildly non-linear system of 2 b 12

2(n, ~1)(n, —1)(n, —1) equations in (sum of absolute values of the coefficients
2(n, =1(n, =1(n; —1) unknowns of (5) and (6) Hence, we have that the linear part of the non-linear

(discretization of the Dirichlet problem of (1), (2) system of (10) is diagonally dominant.
in ) exists and is unique if for the known

Ofuj-v-l,k,l ’ l"Ij—l,k,l ’uj,k+l,l ’ l"Ij,k—l,l ’uj,k,l+l ’ l"Ij,k,l—l

function g:
On the other hand, let us consider the fulfillment of
df (x

3 h2h2h2 ) (Ij—g() < O
'(U) <= 12 3 u 11
O e e D

In (10), we must have

For € where g'(u) is the derivative of g d(h*h2h2a ) — gh2h2h? gh’hzhy Y/ du<0

( 12 39(“) q 172 3(2(h22h32+h12h32+h12h22))u ) us
Proof:

Suppose that ¢ is positive, then at any iterative Q.E.D. {quod erat demonstrandum)

numerical scheme this positivity is maintained

because of (8).

Now, for every ¢,,, from (8), the (10) forms a

(n, =1)(n, =1)(n, —1) equations in _ _

(n, —1)(n, —1)(n, —1) unknowns 3 Numerical Scheme for the solution
of (1) and (2)

So, the system of (10) the coefficient of U;, , is

hoh; (Bioss + i)+ From (8), using ([31]), we have
hlzh32 (¢j,k+1,l + ¢j,k—1,| ) + ¢(n+1)_ —
212 Jkl
h'h i + @; n n+ n n+
—gh’h’h; e (B * 6y0) hohs (4 )j+l,k,l + ¢ l)j—l,k,l)+ h?hy (4 )j,k+l,l +¢ I)j,k—1,|)+

2(h;h; +h’h) +h’h))

_ "‘h12hz2 (¢(n)j,k,l+1 + ¢(n+1)j,k,l—1) + thzhzzhszu(n)?,k,l
2(h;hf +h’h] +h’h))

-2(hh; +h’h +h’h))

L. . Where(n) and (n+1) denote the n, n+1 iterations
which in absolute value is

h22h32 (¢j+l,k,l + ¢j—l,k,| )+
h12h32 (Pisors T i)+

h12h22 (Pixan T Pisas)
2(h;h? +h’h; +h’hy)

ah’h;hs

+2(h7h; +h’hy +h’hy)

Denoting now for sake of abbreviation :
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YL TV ARV S L1 AT AT T) Ry A AT YRR AT NIRRT
2(h2h? +h’h? + h*h?)

then (10) can be written

Cu(n+l)j,k,l + h22h32 (U g TU )+ h12h32 (Uj gy FU )+ h12h22 Ui TUj )
gh’h;h;

2(h;h} +h’h; +h’h))

+h12h22h32g(uj,k,l )— qh12h22h32(

3
)uj,k,l

=0
and so
(n) 212 (n) (n+1) 21,2 (n) (n+1)
(Cu ikt T hyhy (u ks TUT )+ h7hy (u jkerg TU j,k—1,|)+
2152 (n) (n+1)
+hh; (u i U )+
2l2Rk2
2282 (n) 2l2Rk2 th h2h3 (M3
+h1 hzh3 g(u j,k,l)_th h2h3( 212 212 212 uJ',k,l
2(h2h2 + h*h? + hh?)
u(n+1) _u(n) - 2°73 1°3 12
ikl j.k,l qh2h2h2
21n 2182 (n) 21n 2112 1'2'53 (2
C+h’hyh;g'(u j,k,,)—3thhzh3( )b

2(h2h2 + h?h? + h?h?)
That means that finally we can have the following numerical scheme

(n+1) _
O ik =

2102 (n) (n+1) 2102 (n) (n+1)
hyhy (¢ a TO ) hhy (¢ e TO )
212 ¢ 4(N) (n+1) 2 2R2 (M2
_ +h'hy) (¢ i T ) ghyh;yhju ikl
- 212 212 212
2(N2h2 + h?h? + h*h2)

) 22 /i () (n+1) 212 11 () (n+1)
(Cu™,  + hyh; (u e TUT Dt h'h; (u e TUT )+

212 74 4(N) (n+1)
+h7hy (U™ F U )

. 2h2h2 ]
T 1 SOLLALLL S

3 22 2|2 22 Jsk,l
u(n+1) _ u(n) _ 2(h2 h3 + h1 h3 + hl hz )
il =Yk @ gh’hZh?
C+h?h2h2g'@™., ,)—3gh?hZh3( 123 2
ikl 1'2'13 21n2 2112 2112 isk,l
2(h2h2 +h°h2 +h’h?)
where C is given by
C= _thzhzzh32(hzzh32 ¢(n)j+l,k,l +¢(n+l)j—1,k,l)+ hlzh;(f(n:j,k+l,lz +2¢(n+12)j,lz<—l,l)+ h12h22(¢(n)j,k,l+1 +¢(n+l)j,k,l—1))_2(h22h3z + h12h32 + h12h22)
2(h;h; +h’h; +h'h))
3 Conclusion In this paper, the Numerical Solution of the system
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of PDEs of Schrodinger-Maxwell equations (with a
general nonlinear term) via an appropriate Finite
Difference Scheme is introduced. The Existence
and Uniqueness of the discretization of the system
of the PDEs of Schrodinger-Maxwell equation is
also provided. The problem has been also solved by
the method of Finite Elements and Genetic
Algorithms with Nelder-Mead in [32].
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