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Abstract: - In this paper the Numerical Solution of the system of PDEs of Schrodinger-Maxwell equations 
(with a general nonlinear term) via Finite Elements and Genetic Algorithms with Nelder-Mead is proposed. 
The method of Finite Elements and Genetic Algorithms with Nelder-Mead that has been proposed by the 
author recently is also used. (Recently,  the existence of a nontrivial solution to the nonlinear Schrodinger-
Maxwell equations in R3, assuming on the nonlinearity the general hypotheses introduced by Berestycki & 
Lions has been proved) 
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1   Introduction 
Recently many authors have examined the following 
system of the non-linear Partial Differential 
Equations (PDEs) in  3

 
2 ( )u q u g uφ−∇ + =          (1) 

2 quφ−∇ = 2                  (2) 
 
with  being a known function.  
The system of (1) and (2) is called:  
Schrodinger-Maxwell equations. This system of 
Equations arises in many mathematical physics 
contexts, such as in quantum electrodynamics, 
in nonlinear  

(.)g

optics, in nano-mechanics and in plasma 
physics. 
The greatest part of the literature focuses on the 
study of the previous system for the very special 
nonlinearity 1( ) pg u u u u−= − +  and existence, 
nonexistence and multiplicity results are 
provided in many papers for this particular 
problem (see [18]÷[28]). 
In [29], Azzollini, D’Avenia and Pomponio that a 
solution of a boundary problem of (1) and (2) yields 
the minimization of some functional. 
In this paper solve the problem with the method 
of finite elements 
In this paper we will solve the boundary value 
problem of  

2 ( )u q u g uφ−∇ + =          (1) 

WSEAS TRANSACTIONS on MATHEMATICS Nikos E. Mastorakis

ISSN: 1109-2769 169 Issue 4, Volume 8, April 2009

mailto:mastor@wseas.org


2 quφ−∇ = 2                  (2) 
 
 
where  is known using Variational 
Techniques (Finite elements). In Section 2, we 
produce the appropriate functional for 
minimization. After finding this functional, the 
solution of (1) and (2) with the nexesary 
boundary conditions can be easily reduced to an 
Optimization problem that can be solved by 
Genetic Algorithms with Nelder-Mead. An 
early paper of the author with the title “Solving 
Differential Equations via Genetic Algorithms” 
was presented in [1]. 

(.)g

The author presented in 1996 the solution of 
ODE and PDE using Genetic Algorithms 
optimization, while the author use the same 
method to solve various problems in [2]÷[9].    
The main Results are given in Section 2 and a 
numerical example illustrates the method in 
Section 3. 
 
 
 
2   Variational Formulation of (1) and 
(2) and Finite Elements Approach with 
GA 
 
Consider that our functional is functional of 

,u φ , i.e. ( , )I I u φ=  
Let the “point” of 0 0,u φ  that minimize the 
I( ,u φ ). Then for another point ,u φ  we have 

0 1 1 0 2,u u u 1ε φ φ ε φ= + = +  
So, we must have the first order conditions 

1

( , ) 0I u φ
ε

∂
=

∂
 and 

2

( , ) 0I u φ
ε

∂
=

∂
 

Working first for (1) we can formulate: 
2 21 1( ) ( ) (

2 2V V V

I u dv q u dv G u dv B )φ φ= ∇ + − +∫∫∫ ∫∫∫ ∫∫∫
                                                                       (3) 
 
with  and ( ) ( )G u g u du= ∫ ( )B φ a function in φ  
It is easy to verify by replacing 0 1u u u1ε= + that 

the condition 
1

( , ) 0I u φ
ε

∂
=

∂
 leads to  

0 1 0 1 0 1( )( ) ( )
V V V

u u dv q u u dv g u u dvφ 0∇ ∇ + − =∫∫∫ ∫∫∫ ∫∫∫
Now by applying the Green's first identity we 
have  

2
1 0

0 1 0 1

( ) ( )

( ) 0
V

V V

u u n u u dv

q u u dv g u u dvφ

−

1∇ + −∇ +

+ − =

∫∫ ∫∫∫

∫∫∫ ∫∫∫
 

Considering appropriate  we can have 1u

1( )u u n
−

0∇ =∫∫  which means 
2

0 1 0 1 0 1( ) ( )
V V V

u u dv q u u dv g u u dvφ 0−∇ + −∫∫∫ ∫∫∫ ∫∫∫ =

0

or
 

 
2

0 0 0 1( ( ))
V

u q u g u u dvφ−∇ + − =∫∫∫  

But is arbitrary which implies 1u
2

0 0 0( ) 0u q u g uφ−∇ + − =  i.e. we have (1) 
 
Working analogously with (2) we could have 

2 21 ( ) (
2 V V

)I dv q u dv C uφ φ= ∇ − +∫∫∫ ∫∫∫         (4) 

with a function in u  ( )C u
 
We must compromise (3) and (4). To this end 
we multiply the right hand member of (4) with 
the coefficient -1/2 and finally we propose the 
functional 

2 2

2

1 1( ) ( )
2 4

1 ( )
2

V V

V V

I u dv dv

q u dv G u dv

φ

φ

= ∇ − ∇

+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

+

2

 

 
 
 
So, the solution of the problem of Schrodinger-
Maxwell equations  

2 ( )u q u g uφ−∇ + =       (1) 
2 quφ−∇ =                 (2) 

leads to 
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,
min

u
I

φ
 

where 
2 2

2

1 1( ) ( )
2 4

1 ( )
2

V V

V V

I u dv dv

q u dv G u dv

φ

φ

= ∇ − ∇

+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

+

 

                                                               (5) 
 
We consider that u is written as  

n n
n

u fλ=∑  and  
~

n n
n

fφ μ=∑  

or 

n
n

u =∑ f          
~

n
n

fφ =∑                 (6) 

where nλ  have been incorporated in nf  
So, we have the minimization problem of (5). 
One can select a triangular mesh and 

appropriate functions nf  and 
~

nf that have non-

zero value only in the n-th triangle (“finite 
elements”). So, in a triangular mesh, for 
example of , we can have 2

n n n nf a x b y c= + +  

and 
~ ~ ~ ~

n nn nf a x= + b y

2

c+ for the n-th triangle. 
Without loss of generality we consider the 
case here u in  (4). 
 
To avoid to write continuity conditions on the 
common vertices of the triangles of the mesh, 
one can find that in the n-th triangle of the 
points s,q,r  (see Figure 1) 
 

 
Fig.1 A triangle in a 2-D mesh 

 
 

s n s n s nu a x b y c= + +                                      (7.1) 

q n q n qu a x b y cn= + +                                      (7.2) 

r n r n ru a x b y cn= + +                                      (7.3) 
 

~ ~ ~

s n s n s na x b y cφ = + +                                    (7.4) 
~ ~

q n q n q na x b y cφ
~

= + +                                    (7.5) 
~ ~

r n r n ra x b y cφ
~

n= + +                                    (7.6) 
 
These 6 equations can be solved with respect to 

,  and give , ,n n na b c
~ ~ ~

, ,n n na b c
1
1
1

s s

q q

r r
n

u y
u y
u y

a
D

=                                           (8.1) 

1
1
1

s s

q q

r r
n

x u
x u
x u

b
D

=                                            (8.2) 

          
s s s

q q q

r r r
n

x y u
x y u
x y u

c
D

=                                         (8.3) 

~

1
1
1

s s

q q

r r
n

y
y
y

a
D

φ
φ
φ

=                                           (8.4) 

~

1
1
1

s s

q q

r r
n

x
x
x

b
D

φ
φ
φ

=                                            (8.5) 

          

~

s s s

q q q

r r r
n

x y
x y
x y

c
D

φ
φ
φ

=                                         (8.6) 

 
 
and 
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1
1
1

s s

q q

r r

x y
D x y

x y
=  (which is by the way 2*E 

where E is the algebraic area of the triangle) 
 
Hence, from the minimization problem 
 

,
min

u
I

φ
 

 
where 

2 2

2

1 1( ) ( )
2 4

1 ( )
2

V V

V V

I u dv dv

q u dv G u dv

φ

φ

= ∇ − ∇

+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

+

  

we find the equivalent minimization problem 
 

~ ~ ~
min ( , , , , , )n n n n n nW a b c a b c dv∫   (9)

 

where is the function that 
we find after replacing 

~ ~ ~
( , , , , , )n n n n n nW a b c a b c

n n n nf a x b y c= + +  and 
~ ~

n

~ ~

n n nf a x b y c= + +  in the above functional 

and , will be replaces using 
(8.1), (8.2), (8.3) (8.4), (8.5), (8.6)  for each 
triangle of the mesh. 

, ,n n na b c
~ ~ ~

, ,n n na b c

 
Equation (9) can be solved now by a variety of 
techniques. The author uses Genetic Algorithms 
with Nelder-Meade for Non-linear Problems as 
in [2], [3], [4], [5], [6], [7], [8]. 
The same optimization scheme: Genetic 
Algorithms with Nelder-Meade will be also 
applied for (9). 
 
Before proceeding in the solution of the 
problem, some background on GA (Genetic 
Algorithms) and Nelder-Mead is necessary. In 
[4], the author has also proposed a hybrid 
method that includes  a) Genetic Algorithm for 
finding rather the neiborhood   of the global  
minimum than the global minimu itself and  b) 
Nelder-Mead algorithm to find the exact point 
of the global minimum itself.  

 
So, with this Hybrid method of Genetic 
Algorithm + Nelder-Mead we combine the 
advantages of both methods, that are a) the 
convergence to the global minimum (genetic 
algorithm) plus b) the high accuracy of the 
Nelder-Mead method.  
 
If we use only a Genetic Algorithm then we 
have the problem of low accuracy. 
 
If we use only Nelder-Mead, then we have the 
problem of the possible convergence to a 
local (not to the global) minimum.  
 
These disadvantages are removed in the case 
of our Hybrid method that combines Genetic 
Algorithm with Nelder-Mead method. We 
recall the following definitions from the 
Genetic Algorithms literature:  
 
 
Fitness function is the objective function we 
want to minimize.   
Population size specifies how many individuals 
there are in each generation. We can use various 
Fitness Scaling Options (rank, proportional, top, 
shift linear, etc), as well as various Selection 
Options (like Stochastic uniform, Remainder, 
Uniform, Roulette, Tournament). Fitness 
Scaling Options: We can use scaling functions. 
A Scaling function specifies the function that 
performs the scaling. A scaling function 
converts raw fitness scores returned by the 
fitness function to values in a range that is 
suitable for the selection function.  
 
We have the following options:  
Rank Scaling Option: scales the raw scores 
based on the rank of each individual, rather than 
its score. The rank of an individual is its 
position in the sorted scores. The rank of the 
fittest individual is 1, the next fittest is 2 and so 
on. Rank fitness scaling removes the effect of 
the spread of the raw scores.  
Proportional  Scaling Option: The Proportional 
Scaling makes the expectation proportional to 
the raw fitness score. This strategy has 
weaknesses when raw scores are not in a "good" 
range.  
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Top Scaling Option: The Top Scaling scales the 
individuals with the highest fitness values 
equally.  
 
Shift linear Scaling Option: The shift linear 
scaling option scales the raw scores so that the 
expectation of the fittest individual is equal to a 
constant, which you can specify as Maximum 
survival rate, multiplied by the average score.  
We can have also option in our Reproduction in 
order to determine how the genetic algorithm 
creates children at each new generation.  
For example,  
Elite Counter specifies the number of 
individuals that are guaranteed to survive to the 
next generation.  
Crossover combines two individuals, or parents, 
to form a new individual, or child, for the next 
generation.  
Crossover fraction specifies the fraction of the 
next generation, other than elite individuals, that 
are produced by crossover.   
Scattered Crossover:  Scattered Crossover 
creates a random binary vector. It then selects 
the genes where the vector is a 1 from the first 
parent, and the genes where the vector is a 0 
from the second parent, and combines the genes 
to form the child.  
Mutation: Mutation makes small random 
changes in the individuals in the population, 
which provide genetic diversity and enable the 
GA to search a broader space. Gaussian 
Mutation: We call that the Mutation is Gaussian 
if the Mutation adds a random number to each 
vector entry of an individual. This random 
number is taken from a Gaussian distribution 
centered on zero. The variance of this 
distribution can be controlled with two 
parameters. The Scale parameter determines the 
variance at the first generation. The Shrink 
parameter controls how variance shrinks as 
generations go by. If the Shrink parameter is 0, 
the variance is constant. If the Shrink parameter 
is 1, the variance shrinks to 0 linearly as the last 
generation is reached. 
Migration is the movement of individuals 
between subpopulations (the best individuals 
from one subpopulation replace the worst 
individuals in another subpopulation). We can 

control how migration occurs by the following 
three parameters.  
Direction of Migration: Migration can take 
place in one direction or two. In the so-called 
“Forward migration” the nth subpopulation 
migrates into the (n+1)'th subpopulation. while 
in the so-called “Both directions Migration”, the 
nth subpopulation migrates into both the (n-1)th 
and the (n+1)th subpopulation.  
Migration wraps at the ends of the subpopulations. 
That is, the last subpopulation migrates into the first, 
and the first may migrate into the last. To prevent 
wrapping, specify a subpopulation of size zero.  
Fraction of Migration is the number of the  
individuals that we move between the 
subpopulations. So, Fraction of Migration is the 
fraction of the smaller of the two subpopulations 
that moves. If individuals migrate from a 
subpopulation of 50 individuals into a population of 
100 individuals and Fraction is 0.1, 5 individuals 
(0.1 * 50) migrate. Individuals that migrate from 
one subpopulation to another are copied. They 
are not removed from the source subpopulation. 
Interval of Migration counts how many 
generations pass between migrations. 
 
The Nelder-Mead simplex algorithm appeared 
in 1965 and is now one of the most widely used 
methods for nonlinear unconstrained 
optimization [33]÷[35].  The Nelder-Mead 
method attempts to minimize a scalar-valued 
nonlinear function of n real variables using only 
function values, without any derivative 
information (explicit or implicit).  
 
The Nelder-Mead method thus falls in the 
general class of direct search methods. The 
method is described as follows: Let f(x) be the 
function for minimization.  
x is a vector in n real variables. We select n+1 
initial points for x and we follow the steps:  
 
Step 1. Order. Order the n+1 vertices to satisfy 
f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), using the tie-breaking 
rules given below. 
Step 2. Reflect. Compute the reflection point xr 
from  11 )1()( ++ −+=−+= nnr xxxxxx ρρρ  , 

where ∑
=

=
n

i
i nxx

1

/  is the centroid of the n best 

points (all vertices except for xn+1). Evaluate 
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fr=f(xr). If f1 ≤ fr < fn , accept the reflected point 
xr and terminate the iteration. 
 
Step 3. Expand. If fr < f1 , calculate the 
expansion point xe,  
 

11 )1()()( ++ −+=−+=−+= nnre xxxxxxxxx ρχρχρχχ
 
and evaluate fe=f(xe). If fe < fr, accept xe and 
terminate the iteration; otherwise (if fe ≥ fr), 
accept xr and terminate the iteration. 
 
Step 4. Contract. If fr ≥ fn, perform a 
contraction between x  and the better of xn+1 
and xr.  
Outside. If fn ≤ fr < fn+1 (i.e. xr is strictly better 
than xn+1), perform an outside contraction: 
calculate 
 

11 )1()()( ++ −+=−+=−+= nnrc xxxxxxxxx ργργγργ
 
and evaluate fc = f(xc). If fc ≤ fr, accept xc and 
terminate the iteration; otherwise, go to step 5 
(perform a shrink). 
 
b. Inside. If fr ≥ fn+1, perform an inside 
contraction: calculate  
 

11 )1()( ++ +−=−−= nncc xxxxxx γγγ , and evaluate 
fcc = f(xcc). If fcc < fn+1, accept xcc and terminate 
the iteration; otherwise, go to step 5 (perform a 
shrink). 
 
Step 5. Perform a shrink step. Evaluate f at the 
n points vi = x1 + σ (xi – x1), i = 2, … , n+1. The 
(unordered) vertices of the simplex at the next 
iteration consist of x1, v2, … , vn+1.   
 
After this preparation, we are ready to solve the 

min ( ) p
nu dφ∫ v  of (9) as minimization 

problem.  
 
The minimization is achieved by using Genetic 
Algorithms (GA) and the method of Nelder-
Mead exactly as we described previously. We 
can use the MATLB software package  
(MATLAB, Version 7.0.0, by Math Works).  
 

In the next numerical example (Section 3) our 
GA has the following Parameters 
 
Population type:  
Double Vector Population size: 30 
 
Creation function: Uniform 
 
Fitness scaling: Rank 
 
Selection function: roulette 
 
Reproduction: 6 – Crossover fraction 0.8 
 
Mutation:  Gaussian – Scale 1.0,  
Shrink 1.0 
 
Crossover: Scattered 
 
Migration: Both – fraction 0.2, interval: 20 
 
Stopping criteria: 50 generations 
 
EXAMPLES 
For numerical examples the reader can see the 
paper: “Genetic Algorithms with Nelder-Mead 
Optimization  for the Finite Elements Methods 
applied on Non-linear Problems in Fluid 
Mechanics”  in the Proceedings of the 2nd 
WSEAS International Conference on  FINITE 
DIFFERENCES -  FINITE ELEMENTS -  
FINITE VOLUMES -  BOUNDARY 
ELEMENTS  (F-and-B'09) Tbilisi, Georgia, 
June 26-28, 2009. See [30]. 
 
3   Conclusion 
 
In [29],  the existence of a nontrivial solution to the 
nonlinear Schrodinger-Maxwell equations in R3, 
assuming on the nonlinearity the general hypotheses 
introduced by Berestycki & Lions has been proved. 
In this paper the Numerical Solution of the system 
of PDEs of Schrodinger-Maxwell equations (with a 
general nonlinear term) via Finite Elements and 
Genetic Algorithms with Nelder-Mead is proposed. 
The method of Finite Elements and Genetic 
Algorithms with Nelder-Mead that has been 
proposed by the author recently is also used. 
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