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Abstract: In this paper, based on the concept of domain decomposition and alternating group, we construct a class
of Finite Difference method for fifth order dispersive equations, Stability Analysis for he method is given. Then
we construct a new alternating group explicit iterative method. Both the two methods are suitable for parallel
computation. Results of numerical experiments show the methods are effective in computing.
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1 Introduction

Finite difference method is one of the most frequently
used numerical methods in solving differential equa-
tions [1-5]. Many numerical methods have been es-
tablished for third order dispersive equations [6-9],
But researches on high order dispersive equations
have been scarcely presented. Recently with the de-
velopment of parallel computer many scientists pay
much attention to the finite difference methods with
the property of parallelism. D. J. Evans presented an
AGE method in [10] originally. The AGE method is
used in computing by applying the special combina-
tion of several asymmetry schemes to a group of grid
points, and then the numerical solutions at the group
of points can be denoted explicitly. Furthermore, by
alternating use of asymmetry schemes at adherent grid
points and different time levels, the AGE method can
lead to the property of unconditional stability. But
the original AGE method has only two order accurate
for spatial step. The AGE method is soon applied to
convection-diffusion equations and hyperbolic equa-
tions in [11,12]. In [13-16], AGE method is applied
to solve semi-linear and non-linear equations. Sev-
eral AGE methods are given for two-point linear and
non-linear boundary value problems in [17-18]. To
our knowledge AGE methods for fifth order disper-
sive equations have scarcely been presented.

In this paper we will consider the fifth order dis-
persive equations:

ut + auxxxxx = 0, 0 ≤ t ≤ T (1)

with initial and periodic boundary value:{
u(x, 0) = f(x),
u(x, t) = u(x + L, t).

(2)

The paper is organized as follows: In section 2,
we present a group of asymmetric schemes. Based
on the schemes a class of unconditionally stable al-
ternating group explicit finite difference method will
be derived. Stability analysis for the alternating group
method is given in section 3. In section 4, We con-
struct an iterative method based on the concept of
decomposition and alternating group. Convergence
analysis for the iterative method is given in section
5. Results of numerical experiments are presented in
section 6. Some conclusions are presented at the end
of the paper.

2 The Alternating Group Explicit Fi-
nite Difference (AGEFD) Method

The domain Ω : [0, L] × [0, T ] will be divided into
(m × N) meshes with spatial step size h= 1

m in x di-

rection and the time step size τ= T
N . Grid points are

denoted by (xi, tn) or (i, n), xi = ih(i = 0, 1, · ·
·,m), tn = nτ(n = 0, 1, · · · , T

τ ). The numerical so-
lution of (1) is denoted by un

i , while the exact solution
u(xi, tn). Let r = aτ

4h5 .
We first present twelve saul’yev asymmetry

schemes to approach (1) at (i, n + 1
2) as follows:

(1−2r)un+1
i +5run+1

i+1 −4run+1
i+2 + run+1

i+3 = 2run
i−3
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−8run
i−2+10run

i−1+(1−2r)un
i −5run

i+1+4run
i+2−run

i+3
(3)

−2run+1
i−1 +un+1

i +5run+1
i+1 −4run+1

i+2 +run+1
i+3 = 2run

i−3

−8run
i−2 + 8run

i−1 + un
i − 5run

i+1 + 4run
i+2 − run

i+3
(4)

3run+1
i−2 −5run+1

i−1 +un+1
i +5run+1

i+1 −4run+1
i+2 +run+1

i+3

= 2run
i−3−5run

i−2+5run
i−1+un

i −5run
i+1+4run

i+2−run
i+3

(5)

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +un+1

i +5run+1
i+1 −5run+1

i+2

+2run+1
i+3 = run

i−3−4run
i−2+5run

i−1+un
i −5run

i+1+3run
i+2

(6)

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +un+1

i +8run+1
i+1 −8run+1

i+2

+2run+1
i+3 = run

i−3−4run
i−2 +5run

i−1 +un
i −2run

i+1
(7)

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +(1−2r)un+1

i +10run+1
i+1

−8run+1
i+2 +2run+1

i+3 = run
i−3−4run

i−2+5run
i−1+(1−2r)un

i
(8)

−2run+1
i−3 +8run+1

i−2 −10run+1
i−1 +(1+2r)un+1

i +5run+1
i+1

−4run+1
i+2 +run+1

i+3 = (1+2r)un
i −5run

i+1+4run
i+2−run

i+3
(9)

−2run+1
i−3 +8run+1

i−2 −8run+1
i−1 +un

i +5run+1
i+1 −4run+1

i+2

+run+1
i+3 = 2run

i−1 + un
i − 5run

i+1 + 4run
i+2 − run

i+3
(10)

−2run+1
i−3 +5run+1

i−2 −5run+1
i−1 +un+1

i +5run+1
i+1 −4run+1

i+2

+run+1
i+3 = −3run

i−2+5run
i−1+un

i −5run
i+1+4run

i+2−run
i+3

(11)

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +un+1

i +5run+1
i+1 −3run+1

i+2

= run
i−3−4run

i−2+5run
i−1+un

i −5run
i+1+5run

i+2−2run
i+3

(12)

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +un+1

i +2run+1
i+1 = run

i−3

−4run
i−2 +5run

i−1 +un
i −8run

i+1 +8run
i+2−2run

i+3
(13)

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +(1+2r)un+1

i = run
i−3

−4run
i−2+5run

i−1+(1+2r)un
i −10run

i+1+8run
i+2−2run

i+3
(14)

Using the schemes mentioned above, we will
have three basic independent computation groups:
”ω1”group: twelve grid points are involved, and (3)−
(14) are used at each grid point respectively.
”ω2”group: six inner points are involved, and (3)−(8)
are used respectively.
”ω3”group: six inner points are involved, and (9) −
(14) are used respectively.

Based on the basic point groups above, we con-
struct the alternating group explicit (AGE) finite dif-
ference method in two cases as follows:

Case 1: Let m = 12s , here s is an integer. First
at the (n+1)-th time level, we divide all the m grid
points into s ”ω1” groups. Twelve grid points are
included in each group, named (i + k, n + 1), k =
0, 1, · · · , 11, and (2.1)-(2.12) are applied respectively.
Second at the (n+2)-th time level, we divide all the
m grid points into (s + 1) groups. ”ω3” group is
used to get the solution of the left six grid points
un+2

1 , un+2
2 , un+2

3 , un+2
4 , un+2

5 , un+2
6 . ”ω1” group is

used in each of the following s − 1 point groups,
while ”ω2” group is used in the right six grid points
un+2

m−5, u
n+2
m−4, u

n+2
m−3, u

n+2
m−2, u

n+2
m−1, u

n+2
m .

It is obvious that computation in the whole do-
main can be fulfilled in many sub domains indepen-
dently, and the basic computation groups above are
properly used in each sub domain. So the alternating
group method has the property of parallelism.

Let Un = (un
1 , un

2 , · · · , un
m)T , then we can

denote the AGE finite difference method method
(AGEFD1) as follows:{

(I + rH1)Un+1 = (I − rH2)Un

(I + rH2)Un+2 = (I − rH1)Un+1 (15)

H1 =


H11

H11

...
H11

H11


m×m

H2 =


H21 Q̃

H11

...
H11

Q̂ H22


m×m

,
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H11 =

(
H111 H112

H113 H114

)

H111 =



−2 5 −4 1
−2 0 5 −4 1
3 −5 0 5 −4 1
−1 4 −5 0 5 −5

−1 4 −5 0 8
−1 4 −5 −2


,

H112 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
−8 2 0 0 0 0
10 −8 2 0 0 0


,

H113 =



0 0 0 −2 8 −10
0 0 0 0 −2 8
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

H114 =



2 5 −4 1
−8 0 5 −4 1
5 −5 0 5 −4 1
−1 4 −5 0 5 −3

−1 4 −5 0 2
−1 4 −5 2


,

H22 =



−2 5 −4 1
−2 0 5 −4 1
3 −5 0 5 −4 1
−1 4 −5 5 5 −5

−1 4 −5 0 8
−1 4 −5 −2



Q̂ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
−8 2 0 0 0 0
10 −8 2 0 0 0


,

H21 =



2 5 −4 1
−8 0 5 −4 1
5 −5 0 5 −4 1
−1 4 −5 0 5 −3

−1 4 −5 0 2
−1 4 −5 2



Q̃ =



0 0 0 −2 8 −10
0 0 0 0 −2 8
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Case 2: Let m = 12s + 6 , here s
is an integer. First at the (n+1)-th time level,
we divide all the m grid points into (s + 1).
”ω1” group is used in each of the left s groups,
while ”ω2” group is used in the right six grid
points un+2

m−5, u
n+2
m−4, u

n+2
m−3, u

n+2
m−2, u

n+2
m−1, u

n+2
m . Sec-

ond at the (n+2)-th time level, we still divide all
the m grid points into (s + 1) groups. ”ω3”
group is used to get the solution of the left
six grid points un+2

1 , un+2
2 , un+2

3 , un+2
4 , un+2

5 , un+2
6 ,

while ”ω1” group is used in each of the following s
point groups.

We denote the AGE finite difference method II
(AGEFD2) as follows:{

(I + rH̃1)Un+1 = (I − rH̃2)Un

(I + rH̃2)Un+2 = (I − rH̃1)Un+1 (16)

H̃1 =


H11

H11

...
H11

H22


m×m

H̃2 =


H21 P̃

H11

...
H11

P̂ H11


m×m

,

P̃ =



0 0 0 0 0 0 0 0 0 −2 8 −10
0 0 0 0 0 0 0 0 0 0 −2 8
0 0 0 0 0 0 0 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


,
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P̂ =



0 0 0 0 0 0 0 0 0 2 −8 10
0 0 0 0 0 0 0 0 0 0 2 −8
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



T

.

The alternating use of the asymmetry schemes
(3)-(14) can lead to partly counteracting of truncation
error, and then can increase the numerical accuracy.

3 Stability Analysis

Kellogg Lemma[19] Let r >0, and G + GT is non-
negative definite real matrix, then:{

‖(I + rG)−1‖ 2 ≤ 1
‖(I − rG)(I + rG)−1‖2 ≤ 1

(17)

Theorem 1 The AGEFD1 method denoted by
(15) is unconditionally stable.

Proof: Obviously H1+HT
1 and H2+HT

2 are both
nonnegative definite real matrices. Then we have:

‖(I +rH1)−1‖ 2 ≤ 1, ‖(I−rH1)(I +rH1)−1‖2 ≤ 1

‖(I+rH2)−1‖ 2 ≤ 1, ‖(I−rH2)(I+rH2)−1‖2 ≤ 1.

Let n be an even number. From (15) we have

Un = HUn−2

here

H = (I + rH2)−1(I− rH1)(I + rH1)−1(I− rH2).

Let H = (I + rH2)H(I + rH2)−1 = (I −
rH1)(I+rH1)−1(I−rH2)(I+rH2)−1, then we have
ρ(H) = ρ(H) ≤ ‖H‖ 2 ≤ 1, which shows the alter-
nating group method given by (15) is unconditionally
stable. So theorem 1 is proved.

Analogously we have:

Theorem 2 The AGEFD2 method denoted by
(16) is also unconditionally stable.

4 The AGE Iterative Method
We first present an implicit scheme for (1) as follows:

−run+1
i−3 +4run+1

i−2 −5run+1
i−1 +un+1

i +5run+1
i+1 −4run+1

i+2 +run+1
i+3

= run
i−3−4run

i−2+5run
i−1+un

i −5run
i+1+4run

i+2−run
i+3

(18)
Applying Taylor’s formula to (18), we can easily

have that the truncation error is O(τ2 + h2).

We use Fourier method to analyze the stability of
(18). Let un

i = V nejαxi , here j is the unit of imagi-
nary number. Then from (18) we have

V n+1 =
1 + (−10rsinαh + 8rsin2αh− 2sin3αh)j
1 + (10rsinαh− 8rsin2αh + 2sin3αh)j

V n

(19)

Let E = 1 + (−10rsinαh + 8rsin2αh− 2sin3αh)j
1 + (10rsinαh− 8rsin2αh + 2sin3αh)j .

Obviously |E| = 1, which shows (18) is uncondition-
ally stable.

Let Fn
i = run

i−3 − 4run
i−2 + 5run

i−1 + un
i −

5run
i+1 + 4run

i+2 − run
i+3. In order to get the solu-

tion of Un+1 with Un known, we first present a group
of asymmetry iterative schemes based on (18). Here k
is the iterative number.

un+1
i(k+1) + 5run+1

i+1(k+1) − 4run+1
i+2(k+1) + run+1

i+3(k+1)

= 2run+1
i−3(k) − 8run+1

i−2(k) + 10run+1
i−1(k) − un+1

i(k)

−5run+1
i+1(k) + 4run+1

i+2(k) − run+1
i+3(k) + 2Fn

i (20)

−5run+1
i−1(k+1) +un+1

i(k+1) +5run+1
i+1(k+1)−4run+1

i+2(k+1)

+run+1
i+3(k+1) = 2run+1

i−3(k)−8run+1
i−2(k)+5run+1

i−1(k)−un+1
i(k)

−5run+1
i+1(k) + 4run+1

i+2(k) − run+1
i+3(k) + 2Fn

i (21)

4run+1
i−2(k+1) − 5run+1

i−1(k+1) + un+1
i(k+1) + 5run+1

i+1(k+1)

−4run+1
i+2(k+1) + run+1

i+3(k+1) = 2run+1
i−3(k) − 4run+1

i−2(k)

+5run+1
i−1(k)−un+1

i(k) −5run+1
i+1(k)+4run+1

i+2(k)−run+1
i+3(k)+2Fn

i

(22)

−run+1
i−3(k+1) + 4run+1

i−2(k+1) − 5run+1
i−1(k+1) + un+1

i(k+1)

+5run+1
i+1(k+1) − 4run+1

i+2(k+1) + 2run+1
i+3(k+1)

= run+1
i−3(k) − 4run+1

i−2(k) + 5run+1
i−1(k) − un+1

i(k)

−5run+1
i+1(k) + 4run+1

i+2(k) + 2Fn
i (23)

−run+1
i−3(k+1) + 4run+1

i−2(k+1) − 5run+1
i−1(k+1) + un+1

i(k+1)

+5run+1
i+1(k+1)−8run+1

i+2(k+1)+2run+1
i+3(k+1) = run+1

i−3(k)

−4run+1
i−2(k) + 5run+1

i−1(k) − un+1
i(k) − 5run+1

i+1(k) + 2Fn
i

(24)
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−run+1
i−3(k+1) + 4run+1

i−2(k+1) − 5run+1
i−1(k+1) + un+1

i(k+1)

+10run+1
i+1(k+1)−8run+1

i+2(k+1)+2run+1
i+3(k+1) = run+1

i−3(k)

−4run+1
i−2(k) + 5run+1

i−1(k) − un+1
i(k) + 2Fn

i (25)

−2run+1
i−3(k+1)+8run+1

i−2(k+1)−10run+1
i−1(k+1)+un+1

i(k+1)

+5run+1
i+1(k+1) − 4run+1

i+2(k+1) + run+1
i+3(k+1) = −un+1

i(k)

−5run+1
i+1(k) + 4run+1

i+2(k) − run+1
i+3(k) + 2Fn

i (26)

−2run+1
i−3(k+1) +8run+1

i−2(k+1)−5run+1
i−1(k+1) +un

i(k+1)

+5run+1
i+1(k+1)−4run+1

i+2(k+1)+run+1
i+3(k+1) = 5run+1

i−1(k)

−un+1
i(k) − 5run+1

i+1(k) + 4run+1
i+2(k) − run+1

i+3(k) + 2Fn
i

(27)

−2run+1
i−3(k+1) +4run+1

i−2(k+1)−5run+1
i−1(k+1) +un+1

i(k+1)

+5run+1
i+1(k+1)−4run+1

i+2(k+1)+run+1
i+3(k+1) = −4run+1

i−2(k)

+5run+1
i−1(k)−un+1

i(k)−5run+1
i+1(k)+4run+1

i+2(k)−run+1
i+3(k)+2Fn

i

(28)

−run+1
i−3(k+1) + 4run+1

i−2(k+1) − 5run+1
i−1(k+1) + un+1

i(k+1)

+5run+1
i+1(k+1) − 4run+1

i+2(k+1) = run+1
i−3(k) − 4run+1

i−2(k)

+5run+1
i−1(k)−un+1

i(k)−5run+1
i+1(k)+4run+1

i+2(k)−2run+1
i+3(k)+2Fn

i

(29)

−run+1
i−3(k+1) + 4run+1

i−2(k+1) − 5run+1
i−1(k+1) + un+1

i(k+1)

+5run+1
i+1(k+1) = run+1

i−3(k) − 4run+1
i−2(k) + 5run+1

i−1(k)

−un+1
i(k) − 5run+1

i+1(k) + 8run+1
i+2(k) − 2run+1

i+3(k) + 2Fn
i

(30)

−run+1
i−3(k+1) + 4run+1

i−2(k+1) − 5run+1
i−1(k+1) + un+1

i(k+1)

= run+1
i−3(k) − 4run+1

i−2(k) + 5run+1
i−1(k) − un+1

i(k)

−10run+1
i+1(k) + 8run+1

i+2(k) − 2run+1
i+3(k) + 2Fn

i (31)

Using the schemes mentioned above, we will
have three basic independent computation groups:
”κ1”group: twelve grid points are involved, and
(20)− (31) are used at each grid point respectively.
”κ2”group: six grid points are involved, and (20) −
(25) are used respectively.
”κ3”group: six grid points are involved, and (26) −
(31) are used respectively.

Let Un+1(k) = (un+1
1(k) , u

n+1
2(k) , · · · , u

n+1
m(k))

T . Based
on the basic point groups above, we construct the al-
ternating group explicit iterative method in two cases
as follows:

Case 1: Let m = 12s , here s is an integer.
First in order to get the solution of Un+1(k+ 1

2
) with

Un+1(k) known, we divide all the m grid points into
s ”κ1” groups. Twelve grid points are included in
each group, named (i + p, n + 1), p = 0, 1, · · · , 11,
and (20)-(31) are applied to get the solution of
un+1

i+p(k+ 1
2
)
, p = 0, 1, · · · , 11 respectively. Sec-

ond in order to get the solution of Un+1(k+1)

with Un+1(k+ 1
2
) known, we divide all the grid

points into s + 1 groups. ”κ3” group is used
to get the solution of the left six grid points
un+1

1(k+1), u
n+1
2(k+1), u

n+1
3(k+1), u

n+1
4(k+1), u

n+1
5(k+1), u

n+1
6(k+1).

”κ1” group is used in each of the following s − 1
point groups, while ”κ2” group is used in the right six
grid points un+1

m−5(k+1), u
n+1
m−4(k+1), u

n+1
m−3(k+1),

un+1
m−2(k+1), u

n+1
m−1(k+1), u

n+1
m(k+1).

It is obvious that the computation in the whole do-
main can be fulfilled in many sub domains indepen-
dently, and the basic computation groups above are
properly used in each sub domain. So the alternat-
ing group explicit iterative method has the property of
parallelism.

We denote the AGE iterative method I (AGEI1)
as follows:{

(I + rA1)Un+1(k+ 1
2
) = (I − rA2)Un+1(k) + F̂n

(I + rA2)Un+1(k+1) = (I − rA1)Un+1(k+ 1
2
) + F̂n

(32)

A1 =


A11

A11

...
A11

A11


m×m

A2 =


A21 B̃

A11

...
A11

B̂ A22


m×m

,
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A11 =

(
A111 A112

A113 A114

)

A111 =



0 5 −4 1 0 0
−5 0 5 −4 1 0
4 −5 0 5 −4 1
−1 4 −5 0 5 −4
0 −1 4 −5 0 5
0 0 −1 4 −5 0


,

A112 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
−8 2 0 0 0 0
10 −8 2 0 0 0


,

A113 =



0 0 0 −2 8 −10
0 0 0 0 −2 8
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

A114 =



0 5 −4 1 0 0
−5 0 5 −4 1 0
4 −5 0 5 −4 1
−1 4 −5 0 5 −4
0 −1 4 −5 0 5
0 0 −1 4 −5 0


,

A22 =



0 5 −4 1
−5 0 5 −4 1
4 −5 0 5 −4 1
−1 4 −5 0 5 −4

−1 4 −5 0 5
−1 4 −5 0



B̂ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
−8 2 0 0 0 0
10 −8 2 0 0 0


,

A21 =



0 5 −4 1
−5 0 5 −4 1
4 −5 0 5 −4 1
−1 4 −5 0 5 −4

−1 4 −5 0 5
−1 4 −5 0



B̃ =



0 0 0 −2 8 −10
0 0 0 0 −2 8
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

F̂n = 2(I − rFn)Un

Fn =

(
Fn

1 Fn
2

Fn
3 Fn

4

)

Fn
1 =



0 5 −4 1 0 0
−5 0 5 −4 1 0
4 −5 0 5 −4 1
−1 4 −5 0 5 −4
0 −1 4 −5 0 5
0 0 −1 4 −5 0



Fn
2 =



0 0 0 −1 4 −5
0 0 0 0 −1 4
0 0 0 0 −1
1 0 0 0 0 0
−4 1 0 0 0 0
5 −4 1 0 0 0



Fn
3 =



0 0 0 −1 4 −5
0 0 0 0 −1 4
0 0 0 0 0 −1
1 0 0 0 0 0
−4 1 0 0 0 0
5 −4 1 0 0 0



Fn
4 =



0 5 −4 1 0 0
−5 0 5 −4 1 0
4 −5 0 5 −4 1
−1 4 −5 0 5 −4
0 −1 4 −5 0 5
0 0 −1 4 −5 0


Case 2: Let m = 12s + 6 , here s is an

integer. First in order to get the solution of
Un+1(k+ 1

2
) with Un+1(k) known, we divide all

the m grid points into (s + 1)groups. ”κ1”
group is used in each of the left s groups, while
”κ2” group is used in the right six grid points
un+1

m−5(k+1), u
n+1
m−4(k+1), u

n+1
m−3(k+1), u

n+1
m−2(k+1), u

n+1
m−1(k+1),

un+1
m(k+1). Second in order to get the solution of

Un+1(k+1) with Un+1(k+ 1
2
) known, we still divide all

the m grid points into (s + 1) groups. ”κ3” group
is used to get the solution of the left six grid points
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un+1
1(k+1), u

n+1
2(k+1), u

n+1
3(k+1), u

n+1
4(k+1),

un+1
5(k+1), u

n+1
6(k+1), while ”κ1” group is used in each of

the following s point groups.
We denote the AGE iterative method II (AGEI2)

as follows:{
(I + rÃ1)Un+1(k+ 1

2
) = (I − rÃ2)Un+1(k) + F̂n

(I + rÃ2)Un+1(k+1) = (I − rÃ1)Un+1(k+ 1
2
) + F̂n

(33)

Ã1 =


A11

A11

...
A11

A22


m×m

Ã2 =


A21 C̃

A11

...
A11

Ĉ A11


m×m

,

C̃ =


0 0 0 0 0 0 0 0 0 −2 8 −10
0 0 0 0 0 0 0 0 0 0 −2 8
0 0 0 0 0 0 0 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 ,

Ĉ =


0 0 0 0 0 0 0 0 0 2 −8 10
0 0 0 0 0 0 0 0 0 0 2 −8
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



T

.

5 Convergence Analysis For The
AGE Iterative Method

Theorem 3 The AGEI1 method denoted by (32) is
convergent.

Proof: Obviously A1 +AT
1 and A2 +AT

2 are both
nonnegative definite real matrices. Then from Kellogg
lemma we have:

‖(I + rA1)−1‖ 2 ≤ 1, ‖(I − rA1)(I + rA1)−1‖2 ≤ 1

‖(I +rA2)−1‖ 2 ≤ 1, ‖(I−rA2)(I +rA2)−1‖2 ≤ 1.

Let n be an even number. From (32) we have

Un = AUn−2

+[(I+rA2)−1(I−rA1)(I+rA1)−1+(I+rA2)−1]F̂n,

here

A = (I + rA2)−1(I − rA1)(I + rA1)−1(I − rA2)

is the growth matrix.
Let A = (I + rA2)H(I + rA2)−1 = (I −

rA1)(I+rA1)−1(I−rA2)(I+rA2)−1, then we have
ρ(A) = ρ(A) ≤ ‖A‖ 2 ≤ 1, which shows the method
given by (32) is convergent. So theorem 3 is proved.

Similarly we have:

Theorem 4 The AGEI2 method denoted by (33)
is also convergent.

6 Numerical Experiments
Example 1: Let a = 1, L = 2.0, u(x, 0) = cos(πx),
then the exact solution of (1.1) is denoted as below:

u(x, t) = cos(πx− π5t)

Let A.E. = |un
i − u(xi, tn)|, P.E =

|un
i − u(xi, tn)|
u(xi, tn) denote maximum absolute error and

relevant error respectively. we compare the numeri-
cal results of the presented AGEFD method in this pa-
per with the results of the full implicit Crank-Nicolson
scheme(IC-N) as follows:

Table 1: results of comparison m = 96, r = 0.5

t = 1000τ t = 3000τ t = 7000τ
A.E. 3.618 ×10−6 1.112 ×10−5 2.623 ×10−5

A.E.(IC−N) 3.462 ×10−6 1.030 ×10−5 2.405 ×10−5

P.E. 5.453 ×10−3 1.813 ×10−2 5.004 ×10−2

P.E.(IC−N) 5.319 ×10−3 1.749 ×10−2 4.923 ×10−2

Table 2: results of comparison m = 96, r = 2

t = 1000τ t = 3000τ t = 7000τ
A.E. 1.426 ×10−5 4.125 ×10−5 9.631 ×10−5

A.E.(IC−N) 1.375 ×10−5 4.114 ×10−5 9.597 ×10−5

P.E. 2.506 ×10−2 1.147 ×10−1 3.589 ×10−1

P.E.(IC−N) 2.440 ×10−2 1.121 ×10−1 3.505 ×10−1

Table 3: results of Comparison m = 120, r = 2

t = 1000τ t = 3000τ t = 7000τ
A.E. 2.942 ×10−6 8.713 ×10−6 2.085 ×10−5

A.E.(IC−N) 2.918 ×10−6 8.651 ×10−6 2.017 ×10−5

P.E. 5.717 ×10−3 2.014 ×10−2 6.647 ×10−2

P.E.(IC−N) 5.706 ×10−3 1.988 ×10−2 6.616 ×10−2

Table 4: results of Comparison m = 120, r = 10

t = 1000τ t = 3000τ t = 7000τ
A.E. 1.454 ×10−5 4.362 ×10−5 1.024 ×10−4

A.E.(IC−N) 1.443 ×10−5 4.317 ×10−5 1.006 ×10−4

P.E. 3.933 ×10−2 8.412 ×10−1 1.854
P.E.(IC−N) 3.915 ×10−2 8.393 ×10−1 1.838
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Results of Table 1-4 show the presented AGEFD
method is stable even in large r, and is of nearly
the same accuracy as the full implicit Crank-Nicolson
scheme. With the increase of grid points, we can ob-
tain higher accuracy.

Example 2: Let a = 1, L = 2.0, u(x, 0) =
cos(πx), ω denotes the parameter of the SOR itera-
tive method. We use the iterative error 1 × 10−6 to
control the process of iterativeness, and the results of
comparison between AGEI method and the SOR iter-
ative method are listed in the following tables:

Table 5: Results at m = 96, r = 0.5, ρ = 106

t = 1000τ
average iterative times 1.999

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 6: Results at m = 96, r = 0.5, ρ = 106

t = 3000τ
average iterative times 1.956

average iiterative times(SOR): can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 7: Results at m = 96, r = 0.5, ρ = 106

t = 7000τ
average iterative times 1.637

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 8: Results at m = 96, r = 0.5, ρ = 106

t = 10000τ
average iterative times 1.637

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 9: Results at m = 96, r = 0.01, ρ = 1

t = 1000τ
average iterative times(AGE) 1.499

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 2.646
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 10: Results at m = 96, r = 0.01, ρ = 1

t = 3000τ
average iterative times(AGE) 1.500

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 2.759
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 11: Results at m = 96, r = 0.01, ρ = 1

t = 7000τ
average iterative times(AGE) 1.500

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 3.394
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 12: Results at m = 96, r = 0.01, ρ = 1

t = 10000τ
average iterative times(AGE) 1.500

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 3.563
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 13: Results at m = 96, r = 2, ρ = 10−6

t = 1000τ
average iterative times(AGE) 2

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 14: Results at m = 96, r = 2, ρ = 10−6

t = 3000τ
average iterative times(AGE) 2

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Table 15: Results at m = 96, r = 2, ρ = 10−6

t = 7000τ
average iterative times(AGE) 2

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge
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Table 16: Results at m = 96, r = 2, ρ = 10−6

t = 10000τ
average iterative times(AGE) 2

average iiterative times(SOR):ω = 10−6 can’t converge
average iiterative times(SOR):ω = 10−3 can’t converge

average iiterative times(SOR):ω = 1 can’t converge
average iiterative times(SOR):ω = 10 can’t converge
average iiterative times(SOR):ω = 103 can’t converge

Results of Table 5-16 show the presented AGEI
method is superior to the known SOR iterative method
obviously.

7 Conclusions
In this paper, we present a class of alternating group
explicit finite difference method (AGEFD) and an al-
ternating group explicit iterative method (AGEI) for
fifth order dispersive equations, which are both of in-
trinsic parallelism. Numerical results show that both
of the two methods are effective. Considering the
absolute stability of the AGEFD method, it doesn’t
lead to numerical vibration in computation. Numeri-
cal results of comparison between the presented AGEI
method and the SOR iterative method show that the
AGEI method is superior to the SOR method.
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