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Abstract: Based on eight saul’yev asymmetry schemes and the concept of domain decomposition, a class of finite
difference method (AGE) with intrinsic parallelism for 1D diffusion equations is constructed. Stability analysis
for the method is done. We also pay attention to the implementation of the parallel algorithms for 2D convection-
diffusion equations. Based on another group of saul’yev asymmetry schemes and the Crank-Nicolson scheme we
construct a class of alternating group explicit Crank-Nicolson method(AGEC-N). Both of the present methods are
suitable for parallel computation. Stability analysis are also given. In order to verify the methods, we present
several numerical examples at the end of the paper. Results of numerical examples show all the methods are of

high accuracy.
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1 Introduction

In scientific and engineering computing, we usually
need to solve large systems of equation. Many paral-
lel finite difference methods for parabolic equations
have been presented [1-4], which are sorted by ex-
plicit methods and implicit methods in general. Con-
sidering the stability and accuracy of explicit schemes
and the computation difficulty of implicit schemes,
it is necessary to construct methods with the advan-
tages of explicit methods and implicit methods, that
is, simple for computation and good stability. Re-
cently many scientists payed much attention to the
finite difference methods with the property of in-
trinsic parallelism. Evans [5] presented an uncondi-
tional stable AGE method based on the concept of
domain decomposition originally. The AGE method
is used in computing by applying the special combi-
nation of several asymmetry schemes to a group of
grid points, and the computation in the whole domain
can be divided into many sub-domains, Then the nu-
merical solutions at each group can be obtained inde-
pendently, which highly cuts down the running com-
puting time. So the AGE method is of obvious par-
allelism. Furthermore, by alternating use of asym-
metry schemes at adjacent grid points and different
time levels, the AGE method can lead to counterac-
tion of truncation error partly, and then increase the
accurate of numerical solution. The AGE method
was soon developed to solve other problems such as
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two-point linear and non-linear boundary value prob-
lems, hyperbolic equations, and poisson equations and
so on [6-10]. Evans [11] applied the AGE method
to 1D convection-diffusion equations. In [12, 13],
AGE methods for solving two-dimension convection-
diffusion equations were presented, But the accurate
of the two methods need to be increased. We will or-
ganize this paper as follows: In section 2, we present a
group of asymmetric schemes. Based on the schemes
a class of unconditionally stable alternating group ex-
plicit finite difference method (AGE) with accurate of
order four in spatial step size for 1D diffusion equa-
tions is derived. In section 3, stability analysis for
the AGE method is given. In section 4, we con-
struct a new alternating group explicit Crank-Nicolson
method (AGEC-N) for 2D convection-diffusion equa-
tions. Stability analysis for AGEC-N method will
be given in section 5. Results of comparison with
the methods in [5, 12, 13] are presented in section 6.
Some conclusions are given at the end of the paper.

2 The AGE Method

In this section, we will consider the periodic boundary
value problem of 1D diffusion equations:

Qu _ (0% <<
gt =gz 0stsT )
u(z,0) = f(z),

u(z,t) = u(z +1,1).
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The domain €2 : (0,1) x (0,7") will be divided into

(m x N) meshes with spatial step size h = %

in z direction and the time step size T=% . Grid
points are denoted by (z;,t,) or (i,n), x; = th(i =
0, 1,---,m), t, =n7(n =0, 1,---, % ). The numer-
ical solution of (1) is denoted by ', while the exact
solution u(x;, t,). Letr = 535>.

We first present eight asymmetry schemes to ap-
proach (1) at (i,n + 3) as follows:

(1+15r)u?+1—16ru;f11+ru?:21 = —2ru} o+32ru

+(1 — 45r)u;" + 16ruj’ | — rug g (2)

—14ru?j11—|—(1+29r)u?+1—16ru?f11+ru?f21 = —2ru;

+18rui’ | + (1 = 31r)ui + 16ru | — rui o (3)

rul S —16ruf T (1431 )ul T — 18ru +2ruly =

—rup_o 4+ 167w | 4+ (1 — 297)uf + 1drujy;  (4)

n+1

ru; s —167“u”f11+(1+45r)u?+1—32ru;‘j11+2ru?:21 =

i

—ruy_o + 16ui | + (1 — 15r)uf (5)

2Tu?f21 — 32ru?_+11 +(1+45r) u?‘H —1 67“u?f11 —i—ru?j_}l

= (1 = 157)ui 4+ 16ru’,; — rugy o (6)

2rul ™ty —18rul 4+ (14-31r)ul T —16ru +rulty)

= ldru} | + (1 —29r)u;’ + 167wy’ — ruj’ g (7)

ru?j; — 16ru?f11 +(1+ 29T)u?+1 — 14ruﬁr11

= —ruy_o+16ru; | +(1-31r)u; +18ru}, —27“u2{+§
8

ru?_"‘zl—16ru?f11+(1+157”)u?+1 = —ruj_o+16rul’

+(1 — 45r)uj’ + 32ruiy — 2rug, (9)

Using the schemes mentioned above, we will have
three basic point groups:

”G1”group: eight inner points are involved, and (2) —
(9) are used at each grid point respectively.
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G2 group: four inner points are involved, and (2) —
(5) are used respectively.

(3)’G3”group: two inner points are involved, and
(6) — (9) are used respectively.

Let m = 4s, here s is an integer. Based on the ba-
sic point groups above, the alternating group method
will be presented as following:

First at the (n + 1)-th time level, we will have s
point groups. ”G1” are used in each group.

Second at the (n + 2)-th time level, we will have
(s + 1) point groups. “G3” are used in the left four
grid points. ”G1” are used in the following (s — 1)
point groups, while ”G2” are used in the right four
grid points.

The alternating use of the asymmetry schemes
(2)-(9) can lead to partly counteracting of truncation
error, and then can increase the numerical accuracy.
On the other hand, grouping computation can be ob-
viously obtained. Thus computing in the whole do-
main can be divided into many sub-domains, and can
be worked out with several parallel computers. So the
method has the obvious property of parallelism.

Let U™ = (uf, ub, ---, u”)7, then we can de-
note the alternating group method as follows:

(I +rA)U™! = (I —rB)U" (10)
(I +rB) U2 = (I —rA)U™!
Aq
Ay
A:
Ay
Al mXm
Aj D
Ay
B = ,
Ay
E A2 mXxXm
15 —16
—14 29 -16
~-16 31 18 2
~16 45 32 2
Ay = 2  —32 45 -16
2 -—18 31 -16
~16 29
16
15 —16
| -14 29 —16
Az = -16 31 18
—16 45

Issue 4, Volume 8, April 2009

14
15




WSEAS TRANSACTIONS on MATHEMATICS

o O O O
o O O O
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—-16 15
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coc oo

Applying Taylor’s formula to (2)-(9) at (x;,t,),
we can easily obtain that the truncation error is
O(7% + 7h+ 7h? 4+ 7h® + h*) respectively, and alter-
nating use of (2)-(9) can lead to counteraction of the
truncation error for the items containing 7h, 7h? and
Th3. Then we can denote the truncation error of (10)
as O(12 + ).

3 Stability Analysis

Kellogg Lemmal'¥ Letr >0, and G is nonnegative
definite real matrix, then:

I +7G) Y2 <1
{ 1@ tra) o<t (D

Theorem 1 The alternating group method de-
noted by (10) is unconditionally stable.

Proof: From the construction of the matrices
above we can see A and B are both diagonally dom-
inant matrices, which shows A and B are both non-
negative definite real matrices. Then we have:

I +rA) 2 <L —rA) (I +rA) 2 <1

I(T+7B) 2 < 1T = rB)(T+7B) < 1.
Let n be an even integer, from (10) we have
Un=GU"? =G2U°,

here
G=I+rB)*I—-rA)I+rA)~YI-rB).
LetG = (I+7B)G(I+rB)™' = (I —rA)(I+
rA)~Y(I — rB)(I + rB)~!, then we have p(G) =

p(G) < |G| 2 < 1, which shows the AGE method
(10) is unconditionally stable.
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4 The Construction Of AGEC-N
Method

In this section, we will consider the 2D convection-
diffusion equation:

Ou —H<:a —l—ka 682u+582u
ot " ox T Moy Ttaar T TPey2
0<x<1,0<y<1,0<t<T,e1 >0,e0 >0
(12)
with initial and boundary conditions:

u(z,y,0) = f(=),

U(O, Y, t) =g (ya t)’ u(]-a Y, t) = g?(ya t))

u(z,0,t) = hyi(z,t),u(z,1,t) = ho(z,t).
(13)

The domain Q : [0,1] x [0,1] x [0,7] will be di-
vided into (m x m x N) meshes with spatial step

size h = % in z,y direction and the time step size

T=% . Grid points are denoted by (x;,y;,t,) or

(Z,j,n),l'lzlh,y]:jh(27j207 17"'7m)7 tn =
nt(n = 0, 1,---, ;) The numerical solution of
(12)-(13) is denoted by U?J, while the exact solution
T
w(x;, Yj, tn). LetT = 72
Let
n n n
S (I R N S S B et B
{L'uz 7 - h, 9 fuz 7 h 9
S — Yit1,j — Wit Sl — Yij+1 — Ui
x i, 2h Y g h ’
n n
f - Ui,j t,j—1 S~ i1 Yig—1
1,] 7 Ty g 2h
nt+l _  n n _ n n
s = i UG gan Mg T 2t
tulmj - ) xulj 2
T h
TL n n
2 — Yt~ 2t
yUij = 12 :

We first present sixteen saul’yev asymmetry
schemes to approach (12)-(13) at (i, j,n + %) as fol-
lows:

n+1 _an n+1 _n )
Yig Tt k1 (Um,j Y1 Sl )
T 2 2h T 7h]
+1
ko uiiiq— 1
7( 7‘7.7+ ’.7 + 5’\u )
2 2h Yy
n+1 n+1
(it ~ i — Uiyt 8%
€1 12 2 Ui,
n+1 n+1 n n
4,j+1 i,J t,J mfl 2,,n
+€2( 2 5y 7,]) (14)
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n+l n. n+l n )
ij Uy n ﬁ(UiJrl,j i—1,5 PR u"“)
T 2 2h b
n+1 n
@(ui,jﬂ — U ) =
2 2h Yy
n+1

Uit1,j i.j

61(

n+1

Usd oy — U s
2,7+1 i,

+62( J J

n+1 _an
ij Wi n
T 2

n n+1
kq (U’H—l,j —Uio1,
2h T,

= ul. 1
_“ Z:]+ 1,]— ) —
+ 5 (—Zh + 5yuw) =
n n n+1
ui-l—l,j - uz,] - uzy +
51( h2
n+1 n+1 n n
i,j+1 i,J i,J i,j—1 2. n
% + 6,ui';) (16)

n+1
i—1g +52 n+1)

+€2(

up -l
’7’_}_

T 2

1
Ky nh

Ui, — Wil n

—( o7 + 5xum-)
n+1 n

k2 (“i,j+1 — Ujj1

n —
2 2h +o5uiy) =

n I n+1 n+1
(ui-i-l,j Ui5 — Uy, Uy 1,5 _,_52 n )
€1 h2
n+1 n+1 n
Uij+1 — Uiy — Ui
h2

+uli
‘H—IQ( LJ

Ly s2upy) (17)

n+1 o n n+1 _an
ij Wi +@(“i+1,j SE PR
T 2 2h T 0

n+1 n
@(“z‘,jﬂ L S
2 2h y ey
n+1 n+1 n
u: L — U
i+1,j 1,J
61(

n+1

- —U; ; — U

i,7+1 7, 7

+€2( J J
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€1

h2

+1
kg Ui — Ui Suntl
5 2 +oguiy ) =

n+1

n n n+1
U — U —w,
i+1, %, i—1, 2

51( J J J 5 n)

17-]
h2
n+1 n+1 n
1,7+1 i, i, ,J—1 1
J J h2 J ] +62 nj— ) (21)

+€2(

2h vl

n+1
i+1,j %]
81(

,]_H uﬂtj o un—i—l + un+1
+52(

n+1 _an
4,J

n . n+l
@(“i,jﬂ =L ot =
2 2h b
n+1 n+1
(“z'+1,j Uiy T

n n
Ui+ Uity
€1

2. n+1
h2 637 z] )
n+1 + un+1

2 =4 Syui ) (23)

n n
2,7+1 7,
—|—€2( J i
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n+l _ ,n n+1
ulv] ul»] + kl( Z+17] 7' 1,5 +5 un+1>
T 2 2h g
n+1
k2 uz
R2 Mg+l T Phig—1 n+1
5 ( o7 + 5yu” ) =
n _ ,n+l n+1
c (UHLJ Uij — Wiy +u; 1,j 52 n+1)
1 h2 z ZJ
1 n+1
U ul, — u”+ +
1,J+1 %,J i,J J—1 2, n+1
+eal - +OuTH) (24)
n+1 n n n+1
Uig  — Wi ky Wiy T Uiy 5
A L R )
+1
ko Ui, uy
5 (—Qh +5yu” )=
n _an _ . ntl n+1
(“i+1,j g ~ Uiy Tl s "y
€1 2 a Wi,
1 n+1
ur. —ul. — n+ + U
i,j+1 ©,J 1,j—1 2, n+1
+eo hQ 5y i ) (25)
n+1 n n+1 n
Ui — Uiy ky Wiy — U 5
I L TR
n n+1
@(“i,jﬂ — Ui Foan) =
2 2h + oGt
n+1 n+1
Uity — Wiy — Uiy H UL 4 S2un
61( 2 x Z])
1 n+1
ult. o —ul —u"+ + ul
4,j+1 i,J 3,j—1 2 u”
el - +82ul) (20)
n+1 o n n+1 o n
Yig Uy k1 (“m,j i1, )
T 2 2h T
n n+1
Byt S B S B S
2 2h yUii
n+l _  n+l _  n n
(qu,j Uiy~ — U+ Uiy 82t
€1 72 z Wi,
1 n+1
1,J+1 1,J ¥ m—l 2, n
+eaf % (5y ”) (27)
n+1 n n n+1
Yig — g ﬁ(uiﬂd Ui-1, + st
T 2 2h o)
+1
ko u;”' —
4 7]+1 7’7]_1 PUTIL —
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n P n+1 n+1
(it T = iy Ty s )
€1 h2 a Wi,
n n n+1 n+1
4,j+1 i,J %] t,j—1 2,,n
+eaf - + o) (29)
n+1 o n n o n+1
Yig Uy k1 (“z’+1,j LJ | gy )
T 2 2h z g
n ’I’L+1
@(Mﬁ‘dﬂlj )
2 2h Yy
n _am n+1 n+1
Uiy — Uij ~ Uiy T U1y soon
51( h2 + 03 zg)
1 n+1
ul o —ul —u"Jr +u;
i,7+1 7, J—1
+€2( J J 1,J— 52 n) (29)

h2 Y 1]

In the construction of AGEC-N method, we will
use the Crank-Nicolson scheme as follows:

un'!_l —um.

K3 (2 k
) 5 _1_71(5

n+1 5/\
pn 5 +0~u,

k
n+1 2
Sup g Hosug )+2(5

ex(Gup ! + 03uity) + ea(Oyuf ! + dyuil;) (30)

Using the schemes mentioned above, we will
have nine basic computing point groups:

”wl”group: (20)? grid points (i + p,j + q,n +
1,2,---,2l are involved. Here | > 3.

15), ( 6) (17) are used to get the solution of
n+1 n+1 )
+1’ 1+l]+17 i+l+1,j+17 z+2l,]+1

19), (20? (21) are used to get the solution of
+ n n+1
-H’ Wit j+1> i+l+1,j+l?ui+2l,j+l)'
23), (24) g25) are used to get the solution of
n+1 n+1
1,j+1+1 2+l,j+l+1’ Ui 141, +14+1 ui+2[,j+l+1)‘
26 ( 7),(28),(29) are used to get the solution of
nfll gl L ). (30) are
z+1,]+2l7 H—l 420 H—H—l,j—i—?l’ it2l, 5420
used to get the solution of other grid points.

From (14)-(29) we notice that the solution at the
sixteen grid points can be obtained independently in
the group.

w2”group: [? inner points are involved, named
(i+p,j+qgn+1),4i,j=1,2,---,1. (24) is used to

n+1 . n+1 .
solve w1y 51 1. (25) is used to solve u; 1. (28) is
n+1

used to solve u?ﬁl’ 41+ (29) is used to solve w}'; .
(30) are used for the rest grid points.

w3”group: [? inner points are involved, named
(i+p,j+qgn+1)d,j=12---,1 (22)is used to

i—‘\_/
s
’_‘/\,,Q

@:
++

oo
~
k}

1

—

2

)
~

)

S
s
be‘\

/-\/-\ A~~~ /\/-\
@::
\/ —+
o+
<.

n+1 . n+1 .
solve w1y ;1. (23) is used to solve u; - . (26) is
n+1 : n+1
used to solve ;7 ;. (27) is used to solve u}'[; .

(30) are used for the rest grid points.
“w4”group: [? inner points are involved, named
(i+p,j+qgn+1),i,5=12--- 1. (16) is used to
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n+1

n+1
solve w4y i yq.

i+l,j+1"
used to solve w7 ;1. (21) is used to solve u
(30) are used for the rest grid points.
"w5”group: [? inner points are involved, named
(i+p,j+q,n+1),i,j—12 J. (14)isusedt0
solve uljl j+1- (15) is used to solve “z+l a1 (18) s

n+1 n+1
used to solve w7 .. (19) is used to solve u" .

(30) are used for the rest grid points.
w6 group: 212 inner points are involved, named
(Z+p)J+Qan+1))Z = 1)2)"'52l7j = ]-725”'7l'

(22) is used to solve u;’jllﬁl (23) is used to solve
(25) is

n-l—l
Wity 41
n+1
used to solve u i1
(28) is used to solve

n+1
i+ol,j+1- (30) are

(17) is used to solve u
+

(20) is
n+1
i+1,j+1"

+
(24) is used to solve u;"")\q i1y
n+1

itolj+1- (26) is used to solve u

n+1
(27) is used to solve w; ).
n+1

w5 gy (29) is used to solve u
used for the rest grid points.
“wT”group: 21% inner points are involved, named
(i+p,j+q,n+1) i_ 1 2,20, =1,2,--- 1.
(14) is used to solve u;’ +1 j+1- (15) is used to solve

+1 -
Ui (Jlj) is
n

used to solve u i1
(20) is used to solve

n+1
ih2l, i+ (30) are

+
(16) is used to solve whh e
n+1

itolj11- (18) is used to solve u

n+1
(19) is used to solve w5 ).
n+1

w5 gy (21) is used to solve u
used for the rest grid points.

w8 group: 2I? inner points are involved, named
(Z+p7]+Qan+1)7l = 1727"'alaj = 1>27"'a2l'

(16) is used to solve u?jﬁjﬂ. (17) is used to solve
ntl (21) is used

n+1
i+1,5+10"

i1
to solve u’ (24) is used to solve

) (20) is used to solve u

z+l j+l

(25) is used to solve ;"' 1
n+1

w; g (29) is used to solve u
used for the rest grid points.
w9 group: 212 inner points are involved, named
(i+pj+qgn+1),i=12---1,j=1,2--- 2l
(14) is used to solve unjllﬁl (15) is used to solve
um z+1 jp1- (19) is used

Uiy ,J+1°
n+1
to solve u (22) is used to solve w7 ;1) 5.
n+1

L1 (26) is used to solve
?fllng (27) is used to solve u” (30) are
used for the rest grid points.

o (,m ,n n
LetU —(U17UQ,"' um 1

z+1 JH+1
(28) is used to solve

n+1
i+l 2 (30) are

(18) is used to solve u;"

n+1
LG+
(23) is used to solve u
z—l—l j+2l
)T’ u;l = (u? g0

Uy Uy g ]) Based on the basic point groups
above the AGEC-N method will be presented as fol-
lowing:

Let m — 1 = 2lk, here k is an positive integer,
k > 2. First in order to get the solution of U"+! with
U™ known, we divide all the (m — 1)? grid points into
k? »w1” groups, and computation in each group can
be finished independently.

Second in order to get the solution of U™*?2 with
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U™t known, we divide all the grid points into (k +

1) groups.
w?2” group are used to solve

n+2 n+2 n+2 n+2
(“1 17“2 1y Uy, 2, U 2)-
w3” groug is used to solve

n+2 n+2 n+2
(um 2,1 Um 1,1 Um—2 2 Um—1,2)-
w4’ groug is used to solve
n+2 n+2 n+2
(u1m27u2m 2> Ul m—1> U2 m— 1)-
”wb” group is used to solve
n+2 n+2 n+2
(um727 m—2 um.fl, m—2> um72, m—1»
”w6” group is used to solve

W%Aprp 1,2,---,2l,g = 1,2,
&L , el
7” group is used to solve
Uygt1p, ¢ P = 1,2,---,2l,g =m—1,m —
1)7"'am )’a_0717"'am_211_4l'
w8” group is used to solve
1,2,---,0,g = 1,2,---

n+2 )

umfl, m—1/*

), a =

( n+2

(-

( 2la+l+q7 b=
0 m—1-—41
T2l

”w9” group is used to solve
() Hasirg P =m—lm—(1=1),---,m
1,2,--,2l,a=0,1,---, 2=

We point out that computation in each group can
also be finished independently. So the parallelism of
the AGEC-N method is obvious.

The AGEC-N method can be denoted as follows:

_1)7q:

(31)

(I +rG) U™ = (I —rGa)U™ + F
(I +71Go)U"2 = (I —rGy) U™ + Fy

Here F7* and I are known vectors relevant to
the boundary value conditions.

Let (m —1)* = 51, 2l(m — 1) = 59, b= —5 +
kb e=—£ —E then

Gh1 = diag(G11,G11, -+, G11, G11) s, x5,

Gll = diag(Zth, T 7Z17Z1)52X52

m:(@ SAE)
513 514
A Axp
Ap Ay App
5= IO
Az Agp A
Arg Asz ) @2 @2
2 2
O O O O O
O O O O O
O O O O O
A34 O O O O MXM
2 2
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O O O O A
O O O O O
O O O O O
OOOOOMX@
2 72
Asgz Airg
Arp Az Ap
514 =
Az Az A
A An ) ez @2
2 72
b
c%sb
c%gb
c 2 2b
An = 2¢c 2 b
c%b
C%Eb
c ¢
=y
c 2 b
c 2 b
3 9p
Aoy = © 25
20%()
c 2 b
c 2 b
2¢ b
c%b
c%b
c 3¢ 2b
Ass = 2 3 b
c%sb
c%eb
c 2¢

Aip = diag(b,b, -

"7b7b)7 Z12 - diag(c,c,- : '7070)7

Azy = 2A19, A3y =241
A1, Agg, Az, Arg, A, Aza, Azy are all (21) x

(21) matrices.

MT

P
M P MT

Ga

M
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Bss
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Al
Bas
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EY
E, By ET
El Bl 52X 89
Si
Sa
Arz
A1g By Aip
Az Bsz ) @2
2
Arz
A1z By Arp
Az B ) e,
2
.
=)
c 2
2 b
5
c 5 b
C
2 b
3e
¢ 8
2 4 ,
2
c 2 b
c 2
C
3
5 b
c €
b
3¢
5 b
¢ 3
c

Bi1, Bag, Bss are all (21) x (21) matrices.

Issue 4, Volume 8, April 2009

w
o <




WSEAS TRANSACTIONS on MATHEMATICS

E

(20)2x(21)2

En (21)2x (20)2

— O 2c
) , B = < )
20 x 21 21 x 21

O 0O

M,y

M,
52X 82

O M
O O

My — (
(0%
(20)2 x (21)2

My = diag(2b,2b, - - -, 2b)ax2
My = diag(2¢c,2c, -, 2¢)9x91-

) (20)2 % (21)2

O Mn
O O

S Stability Analysis

Theorem 2 The alternating group method (AGEC-N)
defined by (31) is unconditionally stable.

Proof: From the construction of the matrices
above we can see G1 and G are both diagonally dom-
inant matrices, which shows G1 and G5 are both non-
negative definite real matrixes. Then from Kellogg
lemma we have:

(T +7G) 2 < LI =G +7G1) |2 < 1

[(I4+7G2) 7 2 < 1, |(I-FG2)(I+7G2) |2 < 1.

Let n be an even integer, from (31) it follows
U =GU" + (I +7Go) ' Fy

+(I +7Go) NI —TG1) (I +7G) L.
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Here
G=I+7G) NI —7G)(I +7G1)" (I —7Gs)

is the growth matrix.
Let

~

G=(I+7G2)G(I +7G) ™ =
(I —7G1)(I +7G1) NI —TGo) (I +7Ga) ™1,

~
~ =

then p(G) = p(G) < |G| » < 1. So the method
defined by (31) is unconditionally stable.

6 Numerical Experiments

Example 1: Consider (1) with the initial conditions:
u(x,0) = sin(27x)

The exact solution of the problem above is de-

noted as:u(z,t) = e 4 tsin(2ra).
Let AE = |u — u(x,ty)|, PE =
n P .
w denote maximum absolute error and
u(xg, ty)

relevant error respectively. we compare the numerical
results of (10) with the results in [5] as follows:
Table 1: Results of comparisons m = 16, a =1

7=10"%1t=1007 | 7 =10"%,¢ = 10007
A.E. 6.448 x10~° 1.869 x10~°
A.E.0 3.384 x1073 9.913 x10~*
P.E. 9.755 x10~3 9.769 x10~2
p.E.N 5.068 x10~! 5.139

Table 2: Results of comparisons m = 24, a = 0.1

r=10"%¢t=1007 | 7 = 10~% ¢t = 10007
AE. 1.965 x10~° 1.371 x107°
A.E.1] 2.162 x10~4 1.517 x10~3
PE. 2.264 x10™4 2.062 x1073
P.E.M 2.251 x1072 2.252 x1071

Table 3: Results of comparisons m = 32, a = 0.01

7 =10"%t=1007 | 7 =10"%,¢ = 10007
A.E. 6.474 x1078 6.247 x10~7
A.E.0 2.241 x10~° 1.218 x10~*
P.E. 6.670 x10~6 6.536 x10~°
pP.E.N 2.250 x1073 1.267 x10~2

The results in Table 1-3 show that the method (10)
is of higher accurate than the original AGE method in
[5].

Example 2: Consider the following problem:

&u

Ou _ 97u
oy  Oz?

du
ot

ou

ou 0*u
ox

oy?
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0<2<20<y<20<t<T (32

with initial and boundary conditions:

u(@,y, ) - e*’”p( (z —0. 5)2 — (y —0.5)?),

o e A it

) = syt - )

e 0.0) = qriepesn(— (_4;f T (1)55)2 - %4?2?))2),

w2 = e - D)
()

The exact solution of the problem above is de-
noted as below:
(x —t—0.5)?
(4t +1)

(y —t —0.5)*
O (4t+1)

)

L eup(
a1

u(z,y,t) =
We compare the numerical results of (31) with

Crank-Nicolson (C-N) scheme denoted by (30) and
the methods in [12, 13] in Table 4.

Table 4: Results at m = 13,1 = 3,7 = 1072

t = 1007 t = 10007
AE.(AGEC-N) | 7.064 x107° | 1.946 x10~®
PE.(AGEC-N) | 3.094 x10~2 | 1.598 x102
AE.[12] 4216 x10~* | 5.938 x10~ "
PE.[12] 3.124 x107! | 6.627 x10!
A.E.[13] 2.305 x107% | 2.014 x10~7
PE.[13] 1.876 x10~1 | 3.172 x10~!
A.E.(C-N) 3.241 x107° | 0.937 x10~8
PE.(C-N) 1.014 x10~2 | 0.894 x102

The results in Table 4 show that the AGEC-N
method (31) is of higher accurate than the methods
in[12, 13].,

Example 3: We will consider a convection domi-
nant problem.

Let k1 = k9 = 1, €1 = €9 = 0.1, then the exact
solution of the problem above is denoted as below:

(x —t—0.5)?

(y —t —0.5)*

exp(—10

1

(4t +1) (4t +1)

Under the condition of m = 81, the implicit C-
N scheme is difficult to implement for computation.
But the present methods can be fulfilled effectively
because of its intrinsic parallelism. The numerical re-
sults of comparisons with the methods [12, 13] are
listed in Table 2.

ISSN: 1109-2769 157

Bin Zheng, Qinghua Feng

Table 5: Results at m = 81,1 = 5,7 = 1073,

t = 1007 t = 10007
A.E.(AGEC-N) | 1.197 x10~* | 3.358 x10~°
PE.(AGEC-N) | 6.626 x1072 | 7.684 x10~°
AE.[12] 4.426 x1073 | 1.869 x10~*
PE.[12] 6.871 x10~! | 8.723 x10~!
A.E.[13] 1.078 x1073 | 0.685 x10~*
PE.[13] 3.261 x10~! | 1.325 x10!

The results in Table 5 show that the AGEC-N is
still of higher accurate than the methods in [12, 13],
even in convection dominant cases.

7 Conclusions

In this paper, we present a class of alternating group
explicit method for 1D diffusion equations, which is
suitable for parallel computation, and verified to be
unconditionally stable. Then we apply the concept to
2D convection-diffusion equations, and construct an-
other AGEC-N method. From Table 1-5 we can see
that the numerical results for the two methods are of
higher accurate than the original AGE method and the
methods in [12,13]. Based on the property of domain
decomposition, the two methods are more effective
than the transitional implicit methods in solving large
system of equations.
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