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Abstract: Based on an unconditionally stable finite difference implicit scheme, we present a concept of deriving
a class of effective alternating group explicit iterative method for periodic boundary value problem of convection-
diffusion equations, and then give two iterative methods. The methods are verified to be convergent, and have
the property of parallelism. Furthermore we construct an alternating group explicit difference method and another
iterative method. All of the methods are suitable for parallel computation. Results of numerical experiments show
that the methods are of higher accuracy than the known methods in [1,2,6], and will not lead to numerical instability
in convection dominant case.
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1 Introduction
In this paper, we will consider the following time-
dependent periodic initial boundary value problem of
convection-diffusion equations:


∂u
∂t + k∂u

∂x = ε∂2u
∂x2 , 0 ≤ t ≤ T

u(x, 0) = f(x),
u(x, t) = u(x + 1, t).

(1)

In scientific and engineering computation, with
the development of parallel computer technology, re-
searches on parallel finite difference methods are get-
ting more and more popular [1-3]. As we all know,
Most of explicit methods are short in stability and
accuracy, while implicit methods usually have good
stability, but are complex in computing, and need to
solve large equation set in the cost of large memory
spaces and CPU cycles. Thus it is necessary to con-
struct methods with the advantages of explicit meth-
ods and implicit methods, that is, simple for com-
putation and good stability. Many parallel numeri-
cal methods have been presented so far for parabolic
partial differential equations, in which a class of al-
ternating group explicit method (AGE) presented in
[4-6] is of special meaning for its parallelism and ab-
solute stability. The AGE method is derived by a spe-
cial composition of two asymmetry schemes, there-
fore the truncation error can be counteracted much,
which leads to high accuracy. Besides the above, In

solving large equation set, all the work in the whole
domain can be decomposed to many sub-domains for
the AGE method. The disadvantage of the original
AGE method is that numerical vibration will appear in
the case of convection dominant convection-diffusion
equations. Based on the original AGE method, many
alternating group methods have been presented such
as in [7-10]. Rohallah Tavakoli derived a class of
domain-split method for diffusion equations in [11-
12]. Most of the methods inherit the advantages of the
AGE method, that is, parallelism and absolute stabil-
ity. But we notice researches on alternating group iter-
ative methods are also scarcely presented, and effec-
tive methods for convection dominant problems have
been scarcely constructed.

We will try to establish a class of parallel uncon-
ditionally alternating group explicit method for solv-
ing (1). The rest of this paper will be organized as
follows:

In section 2, we will get the integral conservative
form of (1) by a kind of exponential type transforma-
tion [10]. Then a symmetry implicit finite difference
scheme based on the form will be presented. Based on
the scheme we give four asymmetry iterative schemes,
and then construct a class of alternating group explicit
iterative method(AGEI). In section 3, we will apply
the concept in section 2 to construct another four order
alternating group explicit iterative (FOAGEI) method.
In section 4, convergence analysis and stability analy-
sis are given. In section 5, we construct an alternating
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group explicit difference (AGED) method with the ac-
curate of order four in spatial step size. Stability anal-
ysis for the AGED method is presented in section 6.
In section 7, we apply the concept of constructing the
alternating group method to derive another alternating
group iterative method. In section 8, results of several
numerical examples are presented. Some conclusions
are given at the end of the paper.

2 The Parallel AGE Iterative(AGEI)
Method

The domain Ω : (0, 1) × (0, T ) will be divided into
(m × N) meshes with spatial step size h= 1

m in x di-

rection and the time step size τ= T
N . Grid points are

denoted by (xi, tn) or (i, n), xi = ih(i = 0, 1, · ·
·,m), tn = nτ(n = 0, 1, · · · , T

τ ). The numeri-
cal solution of (1) is denoted by un

i , while the ex-
act solution u(xi, tn). In this paper we let Un =
(un

1 , un
2 , · · · , un

m)T .
The purpose of this paper is to get the solution of

(n+1)−th time level with the solution of n−th time
level known. We notice that the equation (1) is equiv-
alent to e−

kx
ε

∂u
∂t = ε ∂

∂x(e−
kx
ε

∂u
∂x). Integral from

xi− 1
2

to xi+ 1
2

we have (∂u
∂t )

n+ 1
2

i

∫ x
i+1

2 h

x
i− 1

2 h
e−

kx
ε dx ≈

ε[e−
kh
2ε (∂u

∂x)
n+ 1

2

i+ 1
2

− e
kh
2ε (∂u

∂x)
n+ 1

2

i− 1
2

].
We can derive an implicit scheme for solving (1)

as below:

(e
kh
2ε − e−

kh
2ε )

un+1
i − un

i

τ
=

k

h
[e−

kh
2ε (

un+1
i+1 − un+1

i

2

+
un

i+1 − un
i

2
)− e

kh
2ε (

un+1
i − un+1

i−1

2
+

un
i − un

i−1

2
)]

Applying Taylor’s formula to the scheme at
(xi, tn+ 1

2
), we can easily have that the truncation

error of the scheme is O(τ2 + h2).

Let p = e−
kh
2ε , q = e

kh
2ε , r = kτ

h(q−p) , then we have

−rq

2
un+1

i−1 + [1 +
r

2
(p + q)]un+1

i − rp

2
un+1

i+1

=
rq

2
un

i−1 + [1− r

2
(p + q)un

i +
rp

2
un

i+1 (2)

We denote it as AUn+1 = Fn. here Fn = (2I −
A)Un

In order to solve Un+1, we have to solve an im-
plicit equation set, which is complex in computation.
Then we will try to construct an alternating group ex-
plicit iterative method instead in the following.

First we will present four asymmetry iterative
schemes to solve un+1

i(k+1) with the value at k known.
Here k denotes the iterative number.

[1 +
r

2
(p + q)]un+1

i(k+1) −
rp

2
un+1

i+1(k+1)

= −rqun+1
i−1(k)+[1+

r

2
(p+q)]un+1

i(k) −
rp

2
un+1

i+1(k) (3)

−rq

2
un+1

i−1(k+1) +[1+
r

2
(p+ q)]un+1

i(k+1)− rpun+1
i+1(k+1)

= −rq

2
un+1

i−1(k) + [1 +
r

2
(p + q)]un+1

i(k) (4)

−rqun+1
i−1(k+1) +[1+

r

2
(p+ q)]un+1

i(k+1)−
rp

2
un+1

i+1(k+1)

= [1 +
r

2
(p + q)]un+1

i(k) −
rp

2
un+1

i+1(k) (5)

−rq

2
un+1

i−1(k+1) + [1 +
r

2
(p + q)]un+1

i(k+1)

= −rq

2
un+1

i−1(k)+[1+
r

2
(p+q)]un+1

i(k) −rpun+1
i+1(k) (6)

If we apply (3)-(6) to four adherent grid points
(i, n+1), (i+1, n+1), (i+2, n+1), (i+3, n+1),
then we have:

B1u
n+1
i(k+1) = C1u

n+1
i(k) + D1

here D1 = (−rqun+1
i−1(k))

T , 0, 0,−rpun+1
i+4(k))

T

B1 =
1 + r

2 (p + q) − rp
2 0 0

− rq
2 1 + r

2 (p + q) −rp 0
0 −rq 1 + r

2 (p + q) − rp
2

0 0 − rq
2 1 + r

2 (p + q)


C1 =

1 + r
2 (p + q) − rp

2 0 0
− rq

2 1 + r
2 (p + q) 0 0

0 0 1 + r
2 (p + q) − rp

2
0 0 − rq

2 1 + r
2 (p + q)


Then un+1

i(k+1) = B−1
1 (C1u

n+1
i(k) + D1), which

shows the values of (un+1
i(k+1), u

n+1
i+1(k+1), u

n+1
i+2(k+1),

un+1
i+3(k+1))

T can be worked out in one group explic-
itly.

Let Un+1
k+1 = (un+1

1(k+1), u
n+1
2(k+1), · · · , u

n+1
m(k+1))

T ,
m = 4s, s is an integer. we construct the iterative
method as below:
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First in order to get the solution of Un+1
k+1 with

Un+1
k known, we divide all the grid points into s

groups. Four grid points are included in each group,
and (3)-(6) are applied. Second in order to get the so-
lution of Un+1

k+2 with Un+1
k+1 known, we divide all the

grid points into s + 1 groups. (5) and (6) are used to
solve un+1

1(k+2) and un+1
2(k+2). The following 4(s − 1)

grid points are divided into s − 1 groups, and (3)-(6)
are used respectively in each group. (3) and (4) are
used to solve un+1

m−1(k+2) and un+1
m−2(k+2).

The alternating use of the asymmetry schemes
(3)-(6) can lead to partly counteracting of truncation
error, and then can increase the numerical accuracy.
On the other hand, grouping explicit computation can
be obviously obtained. Thus computing in the whole
domain can be splitted into many sub-domains, and
can be worked out with several parallel computers in-
dependently. So the method has the obvious property
of parallelism.

We denote the alternating group explicit iterative
method described above as below:

{
(ρI + G1)Ũn+1

k+1 = (ρI −G2)Un+1
k + F̃n

(ρI + G2)Un+1
k+2 = (ρI −G1)Ũn+1

k+1 + F̃n k = 0, 1 · · ·

(7)
Here F̃n = 2Fn, ρ is an iterative parameter.

G1 =


B1

...
...

...
B1


m×m

G2 =


B2 C̃

B1

...
B1

Ĉ B2


m×m

B2 =

(
1 + r

2(p + q) − rp
2

− rq
2 1 + r

2(p + q)

)

C̃ =

(
0 −rq
0 0

)
, Ĉ =

(
0 0
−rp 0

)

3 The Fourth Order Alternating
Group Explicit Iterative(FOAGEI)
Method

In section 2, we present a class of alternating group
explicit iterative method with intrinsic parallelism.

The method is based on an O(τ2 + h2) order implicit
scheme, which is of absolute stability. Since the con-
struction of the method is universal, of course we can
establish another alternating group iterative method
based on another high order implicit scheme.

We present another implicit scheme with trunca-
tion error O(τ2 + h4) for solving (1) as below:

(e
kh
2ε − e−

kh
2ε )

un+1
i − un

i

τ

=
k

2
[e−

kh
2ε (

un+1
i+1 − un+1

i

h
−

un+1
i+2 − 3un+1

i+1 + 3un+1
i − un+1

i−1

h

+
un

i+1 − un
i

h
−

un
i+2 − 3un

i+1 + 3un
i − un

i−1

h
)

−e
kh
2ε (

un+1
i − un+1

i−1

h
−

un+1
i+1 − 3un+1

i + 3un+1
i−1 − un+1

i−2

h

+
un

i − un
i−1

h
−

un
i+1 − 3un

i + 3un
i−1 − un

i−2

h
)]

that is,

rqun+1
i−2 − (p + 27q)run+1

i−1 + [1 + 27(p + q)r]un+1
i

−(q+27p)un+1
i+1 +rpun+1

i+2 = −rqun+1
i−2 +(p+27q)run+1

i−1

+[1−27(p+q)r]un+1
i +(q+27p)un+1

i+1 −rpun+1
i+2 (8)

We denote (8) as AUn+1 = F
n. here

F
n = (2I −A)Un

Let
A =

1
2
(G1 + G2)

here G1=diag(G11, · · · , G11)m×m,

G2 =


G21 G

G11

...
G11

G G21


m×m

G =


0 0 2rq −2(p + 27q)r
0 0 0 2rq
0 0 0 0
0 0 0 0



G =


0 0 0 0
0 0 0 0

2rp 0 0 0
−2(q + 27p)r 2rp 0 0


G21 =

(
1 + 27(p + q)r −(q + 27p)r rp 0
−(p + 27q)r 1 + 27(p + q)r −(q + 27p)r rp

rq −(p + 27q)r 1 + 27(p + q)r −(q + 27p)r
0 rq −(p + 27q)r 1 + 27(p + q)r

)
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G11 =

(
G111 G112

G113 G114

)
G111 =(

1 + 27(p + q)r −(q + 27p)r rp
−(p + 27q)r 1 + 27(p + q)r −(q + 27p)r rp

rq −(p + 27q)r 1 + 27(p + q)r −(q + 27p)r
rq −(p + 27q)r 1 + 27(p + q)r

)

G112 =


0 0 0 0
0 0 0 0

2rp 0 0
−2(q + 27p)r 2rp 0 0



G113 =


0 0 2rq −2(p + 27q)r
0 0 0 2rq
0 0 0 0
0 0 0 0


G114 =(

1 + 27(p + q)r −(q + 27p)r rp
−(p + 27q)r 1 + 27(p + q)r −(q + 27p)r rp

rq −(p + 27q)r 1 + 27(p + q)r −(q + 27p)r
rq −(p + 27q)r 1 + 27(p + q)r

)
Then the fourth order alternating group explicit itera-
tive method can be derived as below: (ρI + G1)Ũn+1

k+1 = (ρI −G2)Un+1
k + F̂

n

(ρI + G2)Un+1
k+2 = (ρI −G1)Ũn+1

k+1 + F̂
n k = 0, 1 · · ·

(9)
Here F̂

n
= 2F

n, ρ is an iterative parameter.

4 Convergence Analysis and Stabil-
ity Analysis

Lemma 1[10] Let θ >0, and G + GT is nonnega-
tive, then (θI + G)−1exists, and{

‖(θI + G)−1‖ 2 ≤ θ−1

‖(θI −G)(θI + G)−1‖2 ≤ 1
(10)

Theorem 1 The alternating group explicit itera-
tive method given by (7) is convergent.

proof: From the construction of the matrixes we
can see G1, G2, (G1 + GT

1 ), (G2 + GT
2 ) are all non-

negative matrixes. Then we have ‖(ρI − G1)(ρI +
G1)−1‖2 ≤ 1, ‖(ρI −G2)(ρI + G2)−1‖2 ≤ 1.

From (7), we have Un+1 = GUn + 2(ρI +
G2)−1[(ρI −G1)(ρI + G1)−1Fn + Fn], G = (ρI +
G2)−1(ρI −G1)(ρI +G1)−1(ρI −G2) is the growth
matrix.

Let Ĝ = (ρI + G2)G(ρI + G2)−1 = (ρI −
G1)(ρI +G1)−1(ρI−G2)(ρI +G2)−1, then ρ(G) =
ρ(Ĝ) ≤ ‖Ĝ‖2 ≤ 1, which shows the alternating group
method given by (7) is convergent.

Analogously we have:

Theorem 2 The fourth order alternating group
explicit iterative method given by (9) is convergent.

In order to analyze the stability of (2) We will use
the Fourier method. Let un

i = ûneiαxj , x = r
2(p +

q) − r
2(p + q)cos(αh), y = r

2(p − q)sin(αh), then
from (2) we have

ûn+1 = ûn 1− x + iy

1 + x− iy
(11)

Considering x ≥ 0, it follows that

|1− x + iy

1 + x− iy
|2 =

(1− x)2 + y2

(1 + x)2 + y2
≤ 1

So we have:

Theorem 3 The scheme (2) is unconditionally
stable.

In order to analyze the stability of (8) Let un
i =

V neiαxj , x̂ = 27(p + q)r + r(p + q)cos(2αh) −
28(p+ q)rcos(αh), ŷ = (p− q)rsin(2αh)− 26(p−
q)rsin(αh), then from (8) we have

V n+1 =
1− x̂ + iŷ

1 + x̂− iŷ
V n (12)

Considering x̂ ≥ 0, it follows that

|1− x̂ + iŷ

1 + x̂− iŷ
|2 =

(1− x̂)2 + ŷ2

(1 + x̂)2 + ŷ2
≤ 1

So we have:

Theorem 4 The scheme (8) is unconditionally
stable.

5 Alternating Group Explicit Differ-
ence (AGED) Method

In this section we will construct another alternating
group explicit difference (AGED) method for solving
the periodic boundary value problem of convection-
diffusion problem denoted by (1). Let

r̂ =
τ

24h2 (13)

We first present eight asymmetry schemes to approach
(1) at (i, n + 1

2) as follows:

[1+(15ε−kh)r̂]un+1
i +(8kh−16ε)r̂un+1

i+1 +(ε−kh)r̂un+1
i+2

= −2(kh + ε)r̂un
i−2 + (16kh + 32ε)r̂un

i−1

+[1−(45ε+kh)r̂]un
i −(8kh−16ε)r̂un

i+1−(ε−kh)r̂un
i+2

(14)

WSEAS TRANSACTIONS on MATHEMATICS Qinghua Feng, Bin Zheng

ISSN: 1109-2769 141 Issue 3, Volume 8, March 2009



−(6kh + 14ε)r̂un+1
i−1 + [1 + (29ε− kh)r̂]un+1

i

+(8kh−16ε)r̂un+1
i+1 +(ε−kh)r̂un+1

i+2 = −2(ε+kh)r̂un
i−2

+(10kh + 18ε)r̂un
i−1 + [1− (31ε + kh)r̂]un

i

−(8kh− 16ε)r̂un
i+1 − (ε− kh)r̂un

i+2 (15)

(ε + kh)r̂un+1
i−2 − (8kh + 16ε)r̂un+1

i−1

+[1 + (31ε− kh)r̂]un+1
i + (10kh− 18ε)r̂un+1

i+1

+2(ε−kh)r̂un+1
i+2 = −(ε+kh)r̂un

i−2+(8kh+16ε)r̂un
i−1

+[1− (29ε + kh)r̂]un
i − (6kh− 14ε)r̂un

i+1 (16)

(ε+kh)r̂un+1
i−2 −(8kh+16ε)r̂un+1

i−1 +[1+(45ε−kh)r̂]un+1
i

+(16kh−32ε)r̂un+1
i+1 +2(ε−kh)r̂un+1

i+2 = −(ε+kh)r̂un
i−2

+(8kh + 16ε)r̂un
i−1 + [1− (15ε + kh)r̂]un

i (17)

2(ε+kh)r̂un+1
i−2 −(16kh+32ε)r̂un+1

i−1 +[1+(45ε+kh)r̂]un+1
i

+(8kh−16ε)r̂un+1
i+1 +(ε−kh)r̂un+1

i+2 = [1−(15ε−kh)r̂]un
i

−(8kh− 16ε)r̂un
i+1 − (ε− kh)r̂un

i+2 (18)

2(ε+kh)r̂un+1
i−2 −(10kh+18ε)r̂un+1

i−1 +[1+(31ε+kh)r̂]un+1
i

+(8kh−16ε)r̂un+1
i+1 +(ε−kh)r̂un+1

i+2 = (6kh+14ε)r̂un
i−1

+[1−(29ε−kh)r̂]un
i −(8kh−16ε)r̂un

i+1−(ε−kh)r̂un
i+2

(19)

(ε+kh)r̂un+1
i−2 −(8kh+16ε)r̂un+1

i−1 +[1+(29ε+kh)r̂]un+1
i

+(6kh−14ε)r̂un+1
i+1 = −(ε+kh)r̂un

i−2+(8kh+16ε)r̂un
i−1

+[1−(31ε−kh)r̂]un
i −(10kh−18ε)r̂un

i+1−2(ε−kh)r̂un
i+2

(20)

(ε+kh)r̂un+1
i−2 −(8kh+16ε)r̂un+1

i−1 +[1+(15ε+kh)r̂]un+1
i

= −(ε + kh)r̂un
i−2 + (8kh + 16ε)r̂un

i−1+

[1−(45ε−kh)r̂]un
i −(16kh−32ε)r̂un

i+1−2(ε−kh)r̂un
i+2

(21)
Using the schemes mentioned above, we will have
three basic point groups:
”ω1”group: eight inner points are involved, and

(14)− (21) are used at each grid point respectively.
”ω2”group: four inner points are involved, and (14)−
(17) are used respectively.
”ω3”group: two inner points are involved, and (18)−
(21) are used respectively.

Let m = 4s , here s is an integer. Based on the ba-
sic point groups above, the alternating group method
will be presented as following:

First at the (n + 1)-th time level, we will have s
point groups. ”ω1” are used in each group. Second at
the (n + 2)-th time level, we will have (s + 1) point
groups. ”ω3” are used in the left four grid points.
”ω1” are used in the following s − 1 point groups,
while ”ω2” are used in the right four grid points.

As the AGEI method in section 2, We notice the
computing in the whole domain can be divided into
many sub-domains independently. So the method has
also the property of parallelism. We denote the AGED
method as follows:{

(I + rA)Un+1 = (I − rB)Un

(I + rB)Un+2 = (I − rA)Un+1 (22)

A =


A1

A1

...
A1

A1


m×m

B =


A3 D

A1

...
A1

E A2


m×m

,

A1 =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



A11 =

(
15ε− kh 8kh− 16ε

−(6kh + 14ε) 29ε− kh

)

A12 =

(
ε− kh 0

8kh− 16ε ε− kh

)

A21 =

(
ε + kh −(8kh + 16ε)

0 ε + kh

)

A22 =

(
31ε− kh 10kh− 18ε

−(8kh + 16ε) 45ε− kh

)
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A13 = A14 = A24 = O

A23 =

(
2(ε− kh) 0

16kh− 32ε 2(ε− kh)

)

A31 = A41 = A42 = O

A32 =

(
2(ε + kh) −(16kh + 32ε)

2(ε + kh)

)

A33 =

(
45ε + kh 8kh− 16ε

−(10kh + 18ε) 31ε + kh

)

A34 =

(
ε− kh 0

8kh− 16ε ε− kh

)

A43 =

(
ε + kh −(8kh + 16ε)

0 ε + kh

)

A44 =

(
29ε + kh (6kh− 14ε)

−(8kh + 16ε) 15ε + kh

)

A2 =

(
A21 A22

A23 A24

)

A21 =

(
15ε− kh 8kh− 16ε

−(6kh + 14ε) 29ε− kh

)

A22 =

(
ε− kh 0

8kh− 16ε ε− kh

)

A23 =

(
ε + kh −(8kh + 16ε)

0 ε + kh

)

A24 =

(
31ε− kh 10kh− 18ε

−(8kh + 16ε) 45ε− kh

)

E =


0 0 0
0 0 0 0

2(ε− kh) 0 0 0
16kh− 32ε 2(ε− kh) 0 0


A3 =

(
A31 A32

A33 A34

)

A31 =

(
45ε + kh 8kh− 16ε

−(10kh + 18ε) 31ε + kh

)

A32 =

(
ε− kh 0

8kh− 16ε ε− kh

)

A33 =

(
ε + kh −(8kh + 16ε)

0 ε + kh

)

A34 =

(
29ε + kh (6kh− 14ε)

−(8kh + 16ε) 15ε + kh

)

D =


0 0 2(ε + kh) −(16kh + 32ε)
0 0 0 2(ε + kh)
0 0 0 0
0 0 0 0


Applying Taylor’s formula to (14)-(21) at

(xi, tn), we can easily obtain that the truncation error
is O(τ2 + τh + τh2 + τh3 + h4) respectively, and al-
ternating use of (14)-(21) can lead to counteraction of
the truncation error for the items containing τh, τh2

and τh3. Then we can denote the truncation error of
(22) as O(τ2 + h4).

6 Stability Analysis

Theorem The alternating group method denoted by
(22) is unconditionally stable.

Proof: From the construction of the matrices
above we can see A and B are both diagonally dom-
inant matrices, which shows A and B are both non-
negative definite real matrices. Then we have:

‖(I + r̂A)−1‖ 2 ≤ 1, ‖(I − r̂A)(I + r̂A)−1‖2 ≤ 1

‖(I + r̂B)−1‖ 2 ≤ 1, ‖(I − r̂B)(I + r̂B)−1‖2 ≤ 1.

Let n be an even integer, from (2.9) we have

Un = ÃUn−2 = Ã
n
2 U0

here

Ã = (I + r̂B)−1(I − r̂A)(I + r̂A)−1(I − r̂B).

Let

A = (I + r̂B)Ã(I + r̂B)−1

= (I − r̂A)(I + r̂A)−1(I − r̂B)(I + r̂B)−1

then we have ρ(Ã) = ρ(A) ≤ ‖A‖ 2 ≤ 1, which
shows the presented method (22) is unconditionally
stable.
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7 The Further Application Of The
Concept Of Alternating Group

We notice that the construction of the methods in sec-
tion 2,3,5 is an universal process. Based on an im-
plicit symmetry scheme, we present some asymmetry
schemes, based on which several independent compu-
tation groups are presented. Then with the concept
of domain decomposition we construct the alternating
group methods. We present an implicit scheme for
solving (1) as below:

un+1
i − un

i

τ

+
k

2
[(

un+1
i+1 − un+1

i−1

2h
−

un+1
i+2 − 2un+1

i+1 + 2un+1
i−1 − un+1

i−2

12h
)

+(
un

i+1 − un
i−1

2h
−

un
i+2 − 2un

i+1 + 2un
i−1 − un

i−2

12h
)]

=
ε

2
[(

un+1
i+1 − 2un+1

i + un+1
i−1

2h

−
un+1

i+2 − 4un+1
i+1 + 6un+1

i − 4un+1
i−1 + un+1

i−2

12h
)

+(
un

i+1 − 2un
i + un

i−1

2h
−

un
i+2 − 4un

i+1 + 6un
i − 4un

i−1 + un
i−2

12h
)]

Applying Taylor’s formula to the scheme at
(xi, tn+ 1

2
), we can easily have that the truncation

error of the scheme is O(τ2 + h4).

Let Un = (un
1 , un

2 , · · · , un
m)T , r= τ

24h2 , then we
have:

(ε+kh)run+1
i−2 −(16ε+8kh)run+1

i−1 +(1+30εr)un+1
i

+(8kh−16ε)run+1
i+1 +(ε−kh)run+1

i+2 = −(ε+kh)run
i−2

+(16ε+8kh)run
i−1+(1−30εr)un

i −(8kh−16ε)run
i+1

−(ε− kh)run
i+2 (23)

We denote (23) as ÂUn+1 = Fn. here
Fn = (2I − Â)Un.

The alternating group iterative method will be
constructed in two conditions as follows:

First let m = 8k, k is an integer. Let Â =
1
2(Ĝ1 + Ĝ2), here

Ĝ1 =


G2p

...
...

...
G2p


m×m

Ĝ2 =


Gp1 Ĝ

G2p

...
G2p

Ĝ Gp1


m×m

Ĝ =


0 0 0 0
0 0 0 0

2(ε− kh)r 0 0 0
2(8kh− 16ε)r 2(ε− kh)r 0 0



Ĝ =


0 0 2(ε + kh)r −2(16ε + 8kh)r
0 0 0 2(ε + kh)r
0 0 0 0
0 0 0 0


Gp1 =

(
Gp11 Gp12

Gp13 Gp14

)

Gp11 =

(
1 + 30εr (8kh− 16ε)r

−(8kh + 16ε)r 1 + 30εr

)

Gp12 =

(
(ε− kh)r 0

(8kh− 16ε)r (ε− kh)r

)

Gp13 =

(
(ε + kh)r −(8kh + 16ε)r

0 (ε + kh)r

)

Gp14 =

(
1 + 30εr (8kh− 16ε)r

−(8kh + 16ε)r 1 + 30εr

)

G2p =

(
G2p1 G2p2

G2p3 G2p4

)

G2p1 =

(
1 + 30εr (8kh− 16ε)r (ε− kh)r

−(8kh + 16ε)r 1 + 30εr (8kh− 16ε)r (ε− kh)r
(ε + kh)r −(8kh + 16ε)r 1 + 30εr (8kh− 16ε)r

(ε + kh)r −(8kh + 16ε)r 1 + 30εr

)

G2p2 =


0 0 0 0
0 0 0 0

2(ε− kh)r 0 0 0
2(8kh− 16ε)r 2(ε− kh)r 0 0



G2p3 =


0 0 2(ε + kh)r −2(8kh + 16ε)r
0 0 0 2(ε + kh)r
0 0 0 0
0 0 0 0


G2p4 =

(
1 + 30εr (8kh− 16ε)r (ε− kh)r

−(8kh + 16ε)r 1 + 30εr (8kh− 16ε)r (ε− kh)r
(ε + kh)r −(8kh + 16ε)r 1 + 30εr (8kh− 16ε)r

(ε + kh)r −(8kh + 16ε)r 1 + 30εr

)
Then the alternating group iterative method I can be
derived as below:

{
(ρI + Ĝ1)Ũn+1 = (ρI − Ĝ2)Un + 2Fn

(ρI + Ĝ2)Un+1 = (ρI − Ĝ1)Ũn+1 + 2Fn

(24)
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Let m = 8k+4, k is an integer. Let A = 1
2(Ĝ1+

Ĝ2), here

Ĝ1 =


G2p

...
...

G2p

Gp1


m×m

Ĝ2 =


Gp1 Ĝ

G2p

...
...̂̃

G G2p


m×m

̂̃
G =

(
O O

Ĝ O

)
8×8

Then the alternating group iterative method II can be
derived as below:

 (ρI + Ĝ1)Ũn+1 = (ρI − Ĝ2)Un + 2Fn

(ρI + Ĝ2)Un+1 = (ρI − Ĝ1)Ũn+1 + 2Fn

(25)
Similar to the contents in section 2, the method

(25) has also the property of intrinsic parallelism.
Also we have:

Theorem 6 The scheme (24)and (25) are con-
verge.

8 Numerical Experiments
Example 1: We consider the following problem:

∂u
∂t + k∂u

∂x = ε∂2u
∂x2 , 0 ≤ t ≤ T

u(x, 0) = sin(2πx),
u(X, t) = u(x + 1, t).

(26)

The exact solution of the problem above is denoted as
below:

u(x, t) = e−4επ2tsin[2π(x− kt)]

Let A.E.I. denotes maximum absolute error of
the alternating group explicit iterative (AGEI) method
(7), while P.E.I. denotes maximum relevant error. Let
A.E.II. denotes maximum absolute error of the fourth
order alternating group explicit iterative (FOAGEI)
method (9), while P.E.II. denotes maximum relevant
error. Let ρ = 1. Using the iterative error 1 × 10−10

to control the process of iterativeness, We com-
pare the numerical results by the presented method in
the paper with the results in [4] in the following tables:

Table 1: Results at m = 28, k = ε = 1

τ = 10−5, t = 100τ
A.E.I. 1.624 ×10−5

A.E.II. 8.499 ×10−6

A.E.[4] 8.879 ×10−2

P.E.I. 8.211 ×10−3

P.E.II. 6.221 ×10−3

P.E.[4] 8.150 ×10−1

Table 2: Results at m = 28, k = ε = 1

τ = 10−5, t = 1000τ
A.E.I. 1.132 ×10−4

A.E.II. 5.953 ×10−5

A.E.[4] 9.876 ×10−2

P.E.I. 6.761 ×10−2

P.E.II. 5.505 ×10−2

P.E.[4] 27.757

Table 3: Results at m = 32, k = ε = 1

τ = 10−5, t = 100τ
A.E.I. 1.244×10−5

A.E.II. 6.487×10−6

A.E.[4] 8.837×10−2

P.E.I. 6.290 ×10−3

P.E.II. 4.762 ×10−3

P.E.[4] 1.059

Table 4: Results at m = 32, k = ε = 1

τ = 10−5, t = 1000τ
A.E.I. 8.743×10−5

A.E.II. 4.558×10−5

A.E.[4] 8.424×10−2

P.E.I. 5.177 ×10−2

P.E.II. 4.214 ×10−2

P.E.[4] 34.996

Table 5: Results at m = 28, k = 1, ε = 0.01

τ = 10−4, t = 100τ
A.E.I. 3.517 ×10−4

A.E.II. 3.492 ×10−4

A.E.[4] 1.138 ×10−2

P.E.I. 1.180 ×10−1

P.E.II. 9.757 ×10−2

P.E.[4] 4.341

Table 6: Results at m = 28, k = 1, ε = 0.01

τ = 10−4, t = 1000τ
A.E.I. 6.305 ×10−3

A.E.II. 3.315 ×10−3

A.E.[4] 3.780 ×10−1

P.E.I. 7.892 ×10−1

P.E.II. 5.541 ×10−1

P.E.[4] 234.206
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Example 2:

Let P.E = |un
i − u(xi, tn)|
u(xi, tn) denotes maximum

relevant error. We compare the numerical results of
(22) with the results in [5] and [10] in the follow ta-
bles:

Table 7: Results of comparisons at m = 16

τ = 10−4, t = 100τ, ε = 1
P.E. 6.487 ×10−2

P.E.[5] 4.229 ×10−1

P.E.[10] 3.673 ×10−1

Table 8: Results of comparisons at m = 16

τ = 10−5, t = 100τ, ε = 1
P.E. 7.654 ×10−3

P.E.[5] 9.456 ×10−2

P.E.[10] 8.218 ×10−2

Table 9: Results of comparisons at m = 24

τ = 10−4, t = 100τ, ε = 0.1
P.E. 1.520 ×10−2

P.E.[5] 4.250 ×10−1

P.E.[10] 1.241 ×10−1

Table 10: Results of comparisons at m = 24

τ = 10−4, t = 1000τ, ε = 0.01
P.E. 9.285 ×10−2

P.E.[5] 5.364 ×10−1

P.E.[10] 2.758 ×10−1

Results in Table 7-10 show that the method in-
troduced in (22) is superior to the methods in [5,10],
especially in convection dominant cases.

9 Conclusions
In this paper, based on several unconditionally stable
implicit schemes, we present a concept of construct-
ing a class of alternating group method, and derive
several alternating group methods. The AGEI method
and the FOAGEI method have the property of intrinsic
parallelism, and is verified to be convergent. Results
of Table 1-4 show that the two methods are of higher
accuracy than the original AGE method in [4]. Re-
sults of Table 5-6 shows the methods can obtain high
accuracy even in the convection dominant case. Con-
sidering the construction of the AGEI method men-
tioned in this paper is a universal process, so we
construct another alternating group explicit difference
(AGED) method and another alternating group itera-
tive method. All of the methods have the property of

intrinsic parallelism. Computation in the whole do-
main can be divided into many sub-domains and be
worked out with several parallel computers indepen-
dently. Numerical results show the present methods
are superior to the known methods in [4,5,10].
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