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Abstract: Based on the concept of domain decomposition we construct a class of alternating group explicit method
for fourth order parabolic equations. Furthermore, an exponential type alternating group explicit method for 2D
convection-diffusion equations is derived, which is effective in convection dominant cases. Both of the two meth-
ods have the property of unconditional stability and intrinsic parallelism. Domain decomposition and group com-

puting can be obtained in both of the two methods.
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1 Introduction

Parabolic equations are important partial differential
equations. Finite difference method is one of the
most frequently used numerical methods in solving
differential equations [1-3]. As we all know, Most
of explicit methods are short in stability and accu-
racy, while implicit methods usually have good sta-
bility, but are complex in computing, and need to
solve large system of equations in the cost of large
memory spaces and CPU cycles. Thus it is neces-
sary to construct methods with the advantages of ex-
plicit methods and implicit methods, that is, simple for
computation and good stability. We notice that a so-
called AGE (alternating group explicit) method based
on the concept of domain decomposition is widely
cared for its intrinsic parallelism and absolute stabil-
ity, which was originally presented for solving diffu-
sion equations in [4] by Evans. The AGE method is
used in computing by applying the special combina-
tion of several asymmetry schemes to a group of grid
points, and the computation in the whole domain can
be divided into many sub-domains, Then the numeri-
cal solutions at each group can be obtained indepen-
dently, which highly cuts down the running computing
time, and is suitable for parallel computing. Further-
more, by alternating use of asymmetry schemes at ad-
jacent grid points and different time levels, the AGE
method can lead to counteraction of truncation error,
and then increase the accurate of numerical solution.
The AGE method was soon applied to convection-
diffusion equations and hyperbolic equations in [5-6].
In [7-8], AGE method was applied to solve two point
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boundary value problems. Based on the concept of
AGE method, a class of domain splitting method was
presented in [9-10]. The developed methods have the
same advantages of parallelism and absolute stability
as the AGE method in [4], but we notice that almost all
the methods have no more than four order accuracy for
spatial step. To our knowledge researches on alternat-
ing group explicit method for fourth order parabolic
equations and 2D convection-diffusion equations have
been scarcely presented.

Results about existence and uniqueness of theo-
retic solution for parabolic equations can be found in
[11-13].

We will organize this paper as follows: In sec-
tion 2, we present an O(72 + h®) order uncondition-
ally stable symmetry implicit scheme, and construct
an AGE method based on an the scheme for fourth or-
der parabolic equatuins. Stability analysis and conver-
gence analysis are given in section 3. In section 4, we
construct a new exponential type alternating group ex-
plicit method (EXPAGE) for 2D convection-diffusion
equations. Results of numerical experiment are pre-
sented at the end of the paper.

2 The AGE Method For Fourth Or-
der Parabolic Equations
In this section we consider the following periodic

boundary value problem of fourth order parabolic
equations:
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%+8 =0, —o<zr<oo, 0Kt<T
u(z,0) = f(z),
w(z +1,t) = u(x,t)

(1)

The domain 2 : [0, 1] x [0, 7] will be divided into (m x

¢) meshes with spatial step size hz% in x direction

T

and the time step size 7=+ . Grid points are denoted

by (zi,tn), z; = ih(i =0, 1,---,m), t, = n7(n =

0,1,---, ;) The numerical solution of (1) is denoted
by u', while the exact solution u(z;, t,).
Let +1
n n
(5tu? = 7,“1' — Ui
-
54un_u+2—4u?+1+6u —du |+ up 2
T T h4

We present an implicit finite difference scheme with
parameters for solving (1) as below:
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and obviously the truncation error of (3) is O(72+h5).
Let U™ = N = LE;PFT, then
from (3) we have

5tuz+2 (54 n+1+54 n) (3)
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Based on (4), we present eight saul’yev asymme-
try schemes to solve the solution at the n+1 time level
with the solution at the n time level known.
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(=24 r)ul ™t + (248 — dr)ul (4744 3r)ul =

(—2—7)ui’ o+ (248+4r)ui | +(474=9r)u +8ru | —2rui, o

(12)
If we apply (5)-(12) to (z—i—k: n), k=0,1,---,7,
and let U = (u*h, il o ulE)T, then it
follows
A UM = B U + FP (13)
Here F* = (—2ru} o + 8ruj’ , —2ru} ;,
0,-+,0,=2rul, g, —2rul’ g + 8rufg)”
A Ar
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W= 2y 124450 474—9r 124+ 7r
—2—1r 248 +4r 474 —9r

Based on (5)-(12), we construct three basic ex-
plicit computing point groups:
“v1”group: eight grid points are involved, and
(5)-(12) are used respectively. From (13) we have
Ut = AT (BIUT + FY) (14)
Then the numerical solution at the eight grid
nodes can be obtained independently.
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”v2”group: four inner points are involved. Let

ﬁ?ﬂ = (uftt, u;’fll, --o,uﬁr?})T, then it follows
AQU;H_l = BZU’: + F? (15)
Here F; = (—2rul o + 8rul ;, —2ru? ,,
= 2rufy, —2rully + 8ru)T
474+ 3r 248 —4r 2471 1
A, — 124 —r 474 +3r 124 —3r 241l
27 —24r 124—5r 474+9r 124—7rl
—247r 248 —4r 474+ 9r1
474 —9r 2484+ 4r —-2-—r
B, — 124 +T7r 474 —9r 124 +5r —-2-—7r
27 —2—r 124+43r 474—3r 124+7r
—2—1r 248 +4r 474 — 3r

And we have

U = 4 Y(BUY + F))

”v3”group: four inner points are involved. Let

rrm+1 n+1 n+1 n+1I\T .
U™ = (ui™, wihy, -+ w3 )", then it follows

Agﬁin—’—l = Bgﬁln + ﬁln (16)
Here E” = (—27’u?_+21 + 8Tuf_+11,
—2rul ™, —2rup, 4, —2rufy s + 8rufi )’
474 +9r 248 —4r —2+47r
A — 124 —7r 474+ 9r 124 —5r —2+7r
ST —24r 124—3r 474+3r 124—7
—247r 248 —4r 474+ 3r
474 — 3r 248 +4r —-2-—7r
B 124 +r 474 —-3r 124+3r —-2—7r
57| —2—r 124+5r 474—9r 124+ 7r
—2—7r 248 +4r 474 —9r

Thus we have:
UMt = Ay Y(BsU + F})

Applying the basic point groups above we con-
struct the alternating group method in two cases as
follows:

Case 1: Let m—1 = 8s, here s is an integer. First
at the (n + 1)-th time level, we divide all of the m — 1
inner grid points into s ”v1” groups, and (14) is used
in each group. Second at the (n + 2)-th time level,
we will have (s + 1) point groups. “v3” group are
applied to get the solution of the left four grid points
(I,n+2),(2,n+2),3,n+2),(4,n+2). (14) are
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used in the following (s — 1) ”v1” groups, while 712
group are used in the right four grid points (m—4, n+
2),(m—-3n+2),(m—2,n+2),(m—1,n+2).

By alternating use of the asymmetry schemes
(5)-(12), the computing in the whole domain can be
divided into many sub-domains, and grouping ex-
plicit computation can be obtained obviously. So the
method has the obvious property of parallelism.

Let U" = (u}, u}, ---, u®)T. Considering
under periodic boundary conditions it follows ) =
U s We can denote the alternating group explicit

method I (AGEI) as follows:

AU™ ! = BU™
{ AUnt? = BUnt 1)
here A, B, ﬁ, B are all m x m matrices.
A =diag(Ai, A1, -+, A1, Av)
B= diag(B1, Bi, --+, B, B1)
A3 _B4
Ay
A f—
Aq
—BF Ao
BQ B4
By
B=
B
Bf Bs
0 0 —2r 8r
00 0 -—2r
Bi=1 90 0o o
00 O 0
— Bi1 Bio
Bi=| =5 =
! ( B3 B >
474 — 3r 248 +4r —-2-—7r
B 124 +r 474 —-3r 1244+3r —-2-—7r
= —2—1r 124+5r 474 —9r 124+ Tr
—2—1r 248 +4r 474 —9r
0 0O 0 O
_ 0 0O 0 0
Bu=| 9 o 00
& —2r 0 O
0 0 —2r 8r
— 00 0 —2r
Bis=14 0 o 0
0 0 O 0
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AT4 —Or 248 +4r 27
5 o_ | 12447 4T4-9r 124450 27
W= 9 12443r 474—3r 12447

—2—r 248+4r 474 -—3r

Case 2: Let m — 1 = 8s + 4, here s is an
integer. First at the (n + 1)-th time level, we di-
vide all of the m — 1 inner grid points into s + 1
groups, “v2” group are used in the right four grid
points (m —4,n+1),(m —3,n+1),(m — 2,n +
1), (m—1,n41), while "v1” group is used in each of
the rest s groups. Second at the (n + 2)-th time level,
we will still have (s+ 1) point groups. ”v3” group are
applied to get the solution of the left four grid points
(I,n+2),(2,n+2),(3,n+2), (4,n+2), while "v1”
group is used in each of the rest s groups.

We can denote the alternating group explicit
method II (AGEII) as follows:

Aurtt = BU"
{ (18)
AUn+2 BUn-H

here ﬁ, E, E, B are all m x m matrices.

Ay
Ay
A=
Ay
—-BF As
Bs By
_ B,
EZ )
B,
B
A3 By
- Ay
A=
Ay
Ay
B,
~ B,
B= :
B,
BT By
00 0O0O0O0 —2r 8r
§4: 00 0O0O0OO0O O =2r
00 0O0O0O0O O 0

00 0O0O0OO0O O 0

We point out that computation in each group can
also be finished independently. So the parallelism of
the AGEII method is obvious.
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3 Stability and Convergence Analy-
Sis

In order to verify the stability of (17), we present the

following lemma [14]:

Lemmal If M=(m;;) is a n X n diagonal dom-
inant L-matrix, while N=(n;;) is a n X n nonnegative
definite matrix, then it follows:

miin(z nij/ Z mi;) < p(M

TIN) < [MTIN |

< mlax(z nij/ Z mij) (19)
j j

Theorem 1 The AGEI method defined by (17) is
unconditionally stable.

Proof: From (17) we have U™ = GU™, here
G = A'BA"'B is the growth matrix. From the
construction of the matrixes above we can see A and
A are both strictly diagonally dominant L-matrixes,
while B and B are both nonnegative definite real ma-
trixes. Then from lemma 1 we have:

p(AT1B) <1, < p(A'B) <1

Then we have p(G) = p(A'BA™'B) <
p(A™1B)p(A='B) < 1, which shows the AGE
method (17) is of unconditional stability

(L = (~DM L7, applying
Taylor’s formula to (5)-(12) we can easily obtain that
the truncation error is O(h24+h*+74+1h?+7h* 412+
hY) respectively. Furthermore alternating use of (5)-
(12) can lead to counteraction of the truncation error
for the items containing h?, h*, 7, Th, Th?, Th?.
Then it follows the truncation error of (17) is O(72 +
hG), which shows (17) is compatible with (1).
According to Lax theorem, (17) is convergent un-
der the fact of unconditional stability. So we have:

Theorem 2 The AGEI method defined by (17) is
convergent.
Similarly we have:

Theorem 3 The AGEII method defined by (18)
is also unconditionally stable and convergent.

Considering

4 Construction Of EXPAGE
Method For 2D Convection-
Diffusion Equations

In section 2, we present a class of alternating group
explicit method with intrinsic parallelism.  The
method is based on an O(72 + h®) order implicit
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scheme, which is of absolute stability. We notice the
construction of the method is universal, and of course
we can apply the concept to other problems.

In this section, we will consider the 2D
convection-diffusion equation:

u g Ou y0u_ Ou Ou
ot Moz T ay T o2 T2
0<z<1,0<y<1,0<t<Te1 >0,e9 >0
(20)
with initial and boundary conditions:
u(x,y,()) = f(x)a
U(Oa Y, t) = gl(ya t)v u(la Y, t) = 92(y7 t)7
u(x,0,t) = hy(x,t),u(z, 1,t) = ha(z,t).
(21)
The domain © : [0,1] x [0,1] x [0,7] will be di-

vided into (m x m x N) meshes with spatial step
size h = % in zx,y direction and the time step size

T=% . Grid points are denoted by (z;,y;,t,) or
(i7j7n)’ x; = ih, Yy; = ]h(%] =0,1,-- '7m)7 tn =
nt(n = 0, 1,---,%). The numerical solution of

(20)-(21) is denoted by qu, while the exact solution

=_ T
u(zi, yj, tn). LetT = 22
Let
n n n n
Sl = itlg T Yeg s Mg T Minlg
x - x -
1,7 h ’ (2] h ’
n n n n
st — ity —Yimlj s m  Yigtl T Ui
xX Zvj - 2h ’ Yy Z7j - h ’
n n n n
ol = —d ~ Mgl g Mgl — it
yUi; h y g 2h
n+1l n n
St = Ui T g2 Uiy~ 2 Uiy,
tU; 5 = z Ui 5 2
T h
n n n
2yt = i1 T 2Uig F
yUij = 12 :
T o _ (,m . n T ,n_ (,n
Let U™ = (uf,uf, -, ur_q) > Uj = (uLja
UG Gy Uy g j)T. We present the following expo-

nential type implicit scheme for approaching (20)-
21):

un+1 um. kl

[2¥) %] n+1 n
k:g n+1 klh klh 2, n+1 2. n
+?(6y ] +5y 1]) 760th( % )(51 ’Lj +6m 1]
koh  koh., o .
+ 2 coth (S22 + o) (22)

In order to fulfil the parallel computation, based
on the scheme, we give sixteen asymmetry schemes as
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follows. Let klhcoth(klh) = K1, k2 hcoth(th) —
K2.
n+1 n+1
Uig Uiy + ﬁ(“iﬂ,j — Ui Tl
T 2 2h (V]
n+1
@(um‘ﬂ Ui Foul) =
2 2h y g
+1, ; 0,J i Lj 2
(s +62ul)
u’?fll uttl oy + u"
g (o +82ul;) (23)
n+1 n+1
Mig Ui R Mg TG s
T 2 2h x,]
+1
by e T UGt sy
2 2h gt
uttl gt u +
+1, z 1,5 2 1
,{1( — - h2 Jr(sz ;L;r )
n+1 n+1 n
il T W — U 1
+112( 1,7+ 1,J - ,j ,] +5§ ?j) (24)

n+1 n n n+1
Ui~ — Ui ﬁ(“mu‘ Uil s )
T 2 2h TN
+1 n
k2 u? — U
7]+1 7,7 1 n
_'_7 S + 5/\”. L) =
2( 2h Yy Z,j)
n n n+1 n+1
(Lot = Mg~ T g2, nily
k1 72 i j
n+1 n+1 n
4,j+1 %,J ,J J 1 2,,n
+KL2( 2 +6y lj) (25)
n+1 n n n+1
Yig Uy k1 (“z’+1,j “ UL sy
T 2 2h z g
n+1 .
@(ui,j+1 Uig1 St ) =
2 2h Y
n n n+1 n+1
Uil — Uig — Uiy U1y soom
Rl( B2 + 03 zg)
n+1 n+1
W T — U — u ;T ug
7".7+1 1, 7] 1 2 7L
ra - +62ul;) (26)
n+1 n n+l . n
Yig "% @(UHLJ NG )
T 2 2h =g
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n+1 R )
k2 (“z‘,j+1 Uij-1 st =
o2h y i
n+1 n+l n
i+1, ~ Wi jtu
Iﬂ( h2
n+1 n+1 n
Uighr — Wig — Uiy Ul

h2 2] 52 n]+1) (27)

+ra(

n+l _  n
4,3 i,J

S o S
o7 + 5yui7j ) =
ul =t — ur.H_l + n+1
s ( i+1,5 ,J g i—1j + 52 n+1)
1 B2 i,J
n+1 n+1
i1 — Ui

—u +uJ

ol - Liszurth) (20)

n+1 n n n+1
i Wigo k1 Ui —

u u, .
5] 1 1,] (3 1,]

+1
kg Wijp1 — Ui Syt
5 ( 2h +oguiy ) =

ul. — n+1+ n+1

ul o — . — T
i+1,5 ,J ,J i—1j 2 n
I€1( h2 + 5 )
un—.’—l — un—f'_l —ul. +ul.
Za]+1 1,] 1,] l’]fl 62 n+1) (30)
h2 2y

+H2(

7.1—{'_1 —qun. kl UT.H—ll —yLL 1.5
2] %] i+1,5 =14 n
T 2 ( 2h 2i)

n 7L+1
ko Uiji1 — Ui o nt1
2 (Lhart Tl | gt =
2 2h
n+1 n+1 n n
Uiy — Uiy — Uiy + Uy
Iﬂ( h2

52 nj)
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1 n+1
Zv]+1 1,] 2, la]_l 2, n+1
o » o2t (31)
n+l _  n n+1 n
Ui Ui j + ﬁ( i+1,j i—1j + 5Aun+1>
T 2 2h b
n +1
@(ui,j‘i‘l tj—1 + 6~ un-i—l) _
2 2h b
n+1 n+1 n n
U; = U T — W U )
7‘+17.7 2,) 2¥) ’L—l,j 2 TL+1
K’l( h2 + 5$uz Yl )
1 n+1
7*7]"'_1 1,] 2,] la]_l 2, n+1
+ra( % +oyu; ;) (32)
n+1 n n n+1
Uiy T Uij ﬁ( i+1,j Li | gynty
T 2 2h Y
1
k;Q( i,j+1 ’;F 1 + 6~ un-i—l)
2 2h b

n n n+1 n+1

Ut = —u

i+1, 7, Z i—1, 2 1
K,l( J J J J 5 n-+ )

72 Wi
1 n+1
ult g —ul —ul T 4l
i,7+1 i, , J—1
'Hiz( J J h2 % i,j— +52 n+1) (33)
n+1 n n n+1
i,J i,J 1, %i+1,) — 1,j
+ = + o-u
T 2 ( 2h )
n 7L+1
@(ui,j‘i‘l 1,j—1 + 5Aun+1)
2 2h hJ
n n n+1 n+1
Uil — Uig — Uiy Uil oom
Rl( B2 + xui,j)
u® n+1 n+1
gl T Wi T Wi U
+f€2( J 1,J 3 6,j— +52 n+1) (34)
n+1 . n n+1 _an
Yig T Uiy @(Uﬁl,j S R SO
T 2 2h 2t

+1
ko u? —
7.]+1 Z».Jil n _
e T ) =

2 2h
n+1 n+1 n n
i+1,5 i,J i,J =17 2. n
’%1( B2 + 61“’@',]’)
+1 n+1
—ul - u" + uf
J"rl i,J i,j—1 2. n
+/€2( 72 5yui,j) (35)
n+1 n n+l _  n
Uij Ui +ﬁ(ui+1,j Mg s s
T 2 2h bJ
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+1
ko Ui — Ui
nt+l ntl
p (uz‘+1,j Ui j Uiy Uiy 4 §2uth
1 h2 ali,j
1 n+1
’L’]+1 2,) 1,] Z:]_]- 2 n
+/€2( 2 5y 1_7) (36)
n+1 n n TL—I—I
ui’j uvj + @(uz—"lﬂ 7' 17.7 +5 uTL+1)
T 2 2h o)
1
+7€2( g+l ,j_l boun ) =
2 2h + oGt
n n+1 n+1
(it Uij — Uij + Uiy 4 o2urt)
1 h2 a Ui j
n+1 n+1
g+l Wi — Ui s2m
+ra( % +5y zj) (37)
n+1 n n+1
Wiy — Ui +@(“z+1,y Uiy, o)
T 2 2h T 0]
un
ko ui;
K2 Uiger — U1 .
+5 2h +oguiy) =
n n n+1 n+1
Uig1y — Uig — Uiy + Uiy L §2un
’%1( h2 z Zj)
1 n+1
ul =yl — gt i
7”.7+1 2,] 1,] 7‘7‘771 2 n
+/€2( 12 5y z]) (38)

The schemes (23)-(38) compose the ”16-point”
group, which will be applied to get the solution on 16
grids points (7, j,n+1), (i+1,j,n+1),(i+2,j,n+
1),(@+3,4,n+1),06,j+1,n+1),i+1,j+1,n+
1),0+2,j+1,n+1),(i+3,j+1,n+1),(,j5+
2,n+1),(i+1,7+2,n+1),(i+2,7+2,n+1), (i+
3,7+2,n+1),3,j+3,n+1),6G@+1,7+3,n+
1),(i+2,7+3,n+1),(i+3,7+3,n+1). Similar to
the w;” group, computation in ”16-point” group can
also be done independently.

Let (m—1) = 4s, s is an integer. We describe the
exponential type alternating group method (EXPAGE)
as follows:

First at the (n + 1)-th time level, we will have
s? point groups. “16-point” group is applied in
each group. Let ', = (u},ul y,uj, o, u?+3)T,
u™ n u™ u™ u™ T —

]+k ( Uy gtk z+1,]+k’ z+2,]+ka Ujts ]+k) ’ k=
0,1,2,3, then the solution of u”j’l can be solved in
each’ 16 -point” group independently.

Second at the (n + 2)-th time level, we will have
(s + 1)? point groups:
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(33),(34),(37),(38) are applied to solve
(ulJ{2, 31’2,1&?'5 ,uSJgQ), which marks “HI”
group.

31),(32),(35),(36) are applied to solve
(7;1%?271, u%tgm, UZQL,QM, u’,}jﬁz), which marks
29 2 gr0up

(25),(26),(29),(30) are applied to solve
(u{‘;{n Q,USJ;? Q,UIJ{n l,ugff 1), which marks
”H 2 group

(23),(24),(27),(28) are applied to solve

n+2 n—+2 n n+2
(um—2,m—2’um—1,m—27um 2,m— 1> U — 1,m— 1)

which marks “H4” group.

(25),(26), (29) (30), (33) (34) (37), (38) are apphed
to solve (u;f; ,u2] ,uy ]+1,u2]+1,u1 ]+2,u2]+2,
n

u’fJﬁrS,uQﬁg) j = 37" — 6, which marks
”Lx”group.
(23),(24),(27),(28),(31),(32),(35), (36) are applied
to solve (u :Ln+2p“nm+ 1g=unm+ 2]+17um 1j+1’
n+2 w2 w2 w2
um 2,5+20 Uy — 1,5+2> Uy — 2,7+3> Uy — 1,]+3)
j=3,7,---,m — 6, which marks "Rx”group.

(31), (32) (33) (34), (35) (36), (37) (38) are apphed

n+2 n+2 n+2 n—+ n-+ n—+
to solve (u;'7~, wlyy 'y, ui'ys 17u2+3 15 U 2 7uz+1 2
n+2 n+2 . .
U5 0, Uis0), 4 = 3,7,---,m — 6, which marks
”Ly” group.

(23),(24),(25),(26),(27), (28) (29) (30)
are applied to solve (u; ;22 2 ulJrl "2 Z+2 25
2 2 2 2 2
:L—:_Sm 27“?:; 17“2?1 m—1 u?—:_Qm 17“2?3 m—1)s
1= 3 7,---,m—0, which marks ”Ry”group.

16 point” group are applied to solve
(u ”;rQ, i,7=3,7,--+-,m — 6) respectively.

Thus the EXPAGE method is established by al-
ternating use of the schemes (23)-(38) in the two time
levels, and computation in each group can be done in-
dependently, which shows the method is suitable for
parallel computation.

We denote the method as following:

(I+7G)0 = (I -TG)U" +F7
(I +7Go)U" 2 = (I —7G,)U" + F}

Here F'} and F, are known vectors related to
boundary.

Leta = (m —1)2, b = 4(m — 1), then
~ G
G =
Gu axa
Ay
G = R
A )55
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Goy E AGE method, we present the numerical results of
F Gy FE comparisons with implicit Crank-Nicolson scheme
Gy = (C-N) in the following tables:
Ia Gy E Table 1: Numerical results at m = 16, ¢ = 1007
FoGn Jyg 7=103% | r=10"
i, B 1 E1]| o 1.570 x10~* | 2.086 x10~°
¢ A, B [|E1||oo(C' — N) | 1.214 x10™* | 1.673 x107°
Gy = | E2|] oo 4.106 ><10*2 5.452 ><10*§
¢ A, B || E2||oo(C — N) | 3.717 x10 4.561 x10
¢ A BB Table 2: Numerical results at m = 24, ¢t = 1007
B 000 0 r=10° | r=10"
B B B = 0 000 1 E1]]oo 5.839 x107° | 1.295 x10~°
By 0 000 |E1||oo(C — N) | 3.479 x1075 | 0.976 x10~°
By -» 000 1 B2 |oo 1.279 x1072 | 5.004 x1073
||E2|]oo(C — N) | 0.931 x1072 | 3.547 x1073
Cy . 000 —¢ Table 3: Numerical results at m = 40, ¢t = 1007
G- Ch ~ G — 000 O
Ch ot 000 O 7=103 |[m=24,7=10"¢
4 000 O [1E1]|oo 9.157 x107° 3.883 x10°°
||E1||o0(C — N) | 8.204 x10~6 2917 x1076
-p 0 0 0 || E2||oo 5.860 x10~3 1.933 x1073
B ( o 0 ) 5o ( 0 —p 0 0 || E2||oo(C — N) | 4.658 x1073 1.041x1073
“\EB o)™ | 0o 0o —p o
0 0 0 —p From Table 1,2,3 we can see that the present AGE
method has nearly the same accurate as the implicit
C-N scheme. Furthermore, we notice the method is
—q 0 0 O suitable for parallel computing.
P ( 0 F > P = 0 —¢g 0 O Example 2: Consider the following problem:
o o)’ 0 0 —q O
0 0 0 —g ou  Ou  du _du  Ou
ot oz oy o2 8y2

Applying the analysis in section 3, we also have

0<<2,0<y<20<tLT 42
Theorem 4 The EXPAGE method defined by =essisy=atists (42)
(40) is also unconditionally stable and convergent. with initial and boundary conditions:
U(l’, Y, 0) = exp(f(:L' - 05)2 - (y - 05)2)7
S Numerical Experiments w(0,y,1) = t}r 16$p(7(€4+ 0,51))2 W (—4t _ (1)55)2)
W=7 i+ t+ ’
Example 1: We consider the following example: 9 yt) = 1 (15—t (y—t—0.5)?
u( 'Yy )_ Zlmexp(_ (4t+ 1) - (4t+ 1) )a
2 2
oy o'y w(z,0,t) = 4t}&- 1exp(— (x —4;5 ; ?5) _ (t4-|t— 051) ),
G =00<r<am 0<t<T | (x(iti())&z (35:))2
u(z,0) = sin, (41) W@ 20 = grprerC gy ) )
u(0,t) = u(2m,t) = 0. (43)

The exact solution of the problem above is de-

The exact solution for the problem is u(x,t) =
t noted as below:

e 'sinx. Let ||F1||oc denote maximum absolute
error, while ||Fs||o, denote maximum relevant er-
ror. [[Bulloclu? — (i, ta)], |[Balloc=100 x Ju? —
u(x;, tn)/u(zi, t,)|. In order to verify the presented

(x —t—0.5)
(4t + 1)

(y —t —0.5)>
O (4t+1)

)

u(z,y,t) = exp(—

1
4 +1
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Let A.E. = |u} — u(z;,t,)| and P.E. = 100 x
n
[’ = u(zi )] denote maximum absolute error and
u(x;, ty
relevant error of the presented method respectively.
We compare the numerical results of the EXPAGE
method (40) with Crank-Nicolson (C-N) scheme and
the methods in [15, 16].
Table 4: Results at m = 13,1 = 3,7 = 1072

t = 1007 t = 10007
A.E.(EXPAGE) | 5.671 x107° | 1.664 x10~%
PE.(EXPAGE) | 2.146 x1072 | 1.253 x10~2
A.E.[15] 4216 x10~* | 5.938 x10~7
PE.[15] 3.124 x107! | 6.627 x10~*
A.E.[16] 2.305 x107% | 2.014 x10~7
PE.[16] 1.876 x10~! | 3.172 x10~*
A.E.(C-N) 3.241 x107° | 0.937 x10~8
PE.(C-N) 1.014 x1072 | 0.894 x10~2

Example 3: We will consider a convection domi-

nant problem.

Let ki = ko = 1, £1 = g9 = 0.1, then the exact

solution of the problem above is denoted as below:

exp(—10

(x—15—0.5)2_10(34—15—0.5)2

u(z,y,t) =

4t 41 (4t +1)

Under the condition of m = 81, the implicit C-
N scheme is difficult to implement for computation.
But the present methods can be fulfilled effectively
because of its intrinsic parallelism. The numerical re-
sults of comparisons with the methods [15, 16] are

listed in Table 2.

Table 5: Results at m = 81,1 = 5,7 = 1073,

t = 1007 t = 10007
A.E.(EXPAGE) | 8.963 x10~° | 2.346 x107°
PE.(EXPAGE) | 4.637 x1072 | 6.917 x10~2
AE.[15] 4.426 x1073 | 1.869 x10~4
PE.[15] 6.871 x10~! | 8.723 x10~*
AE.[16] 1.078 x1072 | 0.685 x10~*
PE.[16] 3.261 x10~! | 1.325 x107!

The results in Table 4-5 show that the EXPAGE
method presented are of higher accurate than the
methods in [15, 16], and have nearly the same accu-
rate as the implicit C-N scheme. Results of Table 5
show the EXPAGE method is also effective even in
convection dominant cases.

6 Conclusions

In this paper, we present an unconditionally stable al-
ternating group method with intrinsic parallelism for
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fourth order parabolic equations by use of saul’yev
asymmetry schemes. Furthermore, we apply the con-
cept to 2D convection-diffusion equations and con-
struct an EXPAGE method. The results of Table 1-5
show that the two methods are superior to the methods
in [15, 16].
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