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Abstract: - The p-Laplacian equation is a generalization of the PDE of Laplace Equation and in this paper, we 
present a way of its solution using Finite Elements. Our method of Finite Elements leads to an Optimization 
Problem that can be solved  by an appropriate combination of Genetic Algorithms and Nelder-Mead . Our 
method is illustrated by a numerical example. Other methods for the solution of other equations that contain 
the p-Laplacian operator are also discussed. 
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1   Introduction 
 
The combined method of Genetic Algorithms 
and Nelder-Mead was proposed by the author in 
2005, [2]÷[9] , while the author proposed the 
solution of ODEs and PDES since July 1996 
(See[1])). 
 
Many nonlinear problems in physics and 
mechanics are formulated in equations that 
contain the p-Laplacian, (i.e. the p-Laplace  

 
 
 
 
operator), where the p-Laplacian operator is 
defined as follows 

⎟
⎠
⎞⎜

⎝
⎛ ∇∇=Δ − uuu p

p
2div:  

 
 
G. Bognar in [17, presented a very interesting 
numerical and analytic investigation of 
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problems of fluid mechanics that are described 
with PDEs containing the p-Laplacian operator. 
Previous publications (also reported in [17]) 
include reaction-diffusion problems, non-
Newtonian fluid flows [18], fluid flows through  
certain types of porous media ([19], [20], the 
Lane-Emden equations for equilibrium 
configurations of spherically symmetric gaseous 
stellar objects [21], singular solutions for the 
Emden-Fowler equation [22] and the Einstein-
Yang-Mills equations [23], the existence and 
nonexistence of black hole solutions, nonlinear 
elasticity [24], glaciology [25] and petroleum 
extraction [26]. It is clear that for 2=p : 

. The study of the Δ=Δ p p -Laplacian 

equation started more than thirty years ago.  In 
recent years, rapid development has been 
achieved for the study of equation involving 
operator  and a vast literature has appeared 
on the theory of quasilinear differential 
equations.). In [27] Strikwerda summarized 
many Finite Difference Schemes for PDEs. 
Other relevant studies can be found in [28], [29] 
and [30].  

pΔ

 
In [17], Bognar had studied the equation of 
turbulent filtration in porous media 

( )2
div ,

pnc
t

α nρθ λ ρ ρ
−∂

= ∇ ∇
∂

                      (1) 

where 0θ >
>np

 and the constants  and  
satisfy . If we scale out the constants in 
(1), we derive 

0>n 1>p
1

( )n
p u

t
u

Δ=
∂
∂                         (2) 

where a particular case of (2) is the non-
Newtonian filtration equation  

u
t
u

pΔ=
∂
∂                         (3) 

which is also called evolution p -Laplacian 

equation. The case np 11+>  is called the slow 

diffusion and the case ,1 1
np +<  the fast 

diffusion.  
 
Also in the paper [17], Bognar studied the 
equation  

,div 2 qp uuu
t
u λ+⎟

⎠
⎞⎜

⎝
⎛ ∇∇=

∂
∂ −              (4) 

where  0  and ,1>p >q λ  are some constants, 

in which the nonlinear term  describes the 
nonlinear source in the diffusion process, called 
"heat source" if 

quλ

0>λ  and "cold source" if 
.0<λ  Just as the Newtonian equation ( ),2=p  

the appearance of nonlinear sources will exert a 
great influence to the properties of solutions and 
the influence of "heat source" and "cold source" 
is completely different.  
In [31], an attempt is made by the author to 
solve the equations (2), (3) and (4) using 
various numerical schemes.  
In this paper we will solve the boundary value 
problem 

( )2div 0pu u−∇ ∇ =  

where u is known on the boundary of our 
domain  using Variational Techniques (Finite 
elements).  
 
The Problem is reduced to an Optimization 
problem that can be solved by Genetic 
Algorithms with Nelder-Mead. An early paper 
of the author with the title “Solving Differential 
Equations via Genetic Algorithms” was 
presented in [1]. Actually, the author presented 
in 1996 the solution of ODE and PDE using 
Genetic Algorithms optimization, while the 
author use the same method to solve various 
problems in [2]÷[9].    
The main Results are given in Section 2 and a 
numerical example illustrates the method in 
Section 3. 
A discussion for the numerical solution of (2), 
(3) and (4) by finite elements is also included in 
Section 4. 
 
 
 
2 Main Results 
 
We start solving the boundary value problem 

( )2div 0pu u−∇ ∇ =                                   (4) 

where u is a known function on the boundary of 
our domain. 
As one can see in [32] and[33], the solution of 
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this p-Laplacian equation with Dirichlet boundary 
conditions in a domain Ω is the minimizer of the 
energy functional 
  

( ) pJ u u dv= ∇∫                                          (5) 
 
We consider that u is written as  

n n
n

u fλ=∑     

n
n

u =∑ f                                                   (6) 

where nλ  have been incorporated in nf  
So, we have the minimization problem 

min ( )
p

n
n

f dv∇ ∑∫   

One can select a triangular mesh and 
appropriate functions nf  that have non-zero 
value only in the n-th triangle (“finite 
elements”). So, in a triangular mesh, for 
example of , we can have 2

n n n nf a x b y c= + +  
for the n-th triangle. Without loss of generality 
we consider the case here u in  (4). 2

 
To avoid to write continuity conditions on the 
common vertices of the triangles of the mesh, 
one can find that in the n-th triangle of the 
points s,q,r  (see Figure 1) 
 

 
Fig.1 A triangle in a 2-D mesh 

 
 

p n s n su a x b y c= + + n

n

n

                                     (7.1) 

q n q n qu a x b y c= + +                                      (7.2) 

r n r n ru a x b y c= + +                                      (7.3) 
 
 
There three equations can be solved with 
respect to  and give , ,n n na b c

1
1
1

s s

q q

r r
n

u y
u y
u y

a
D

=                                           (8.1) 

1
1
1

s s

q q

r r
n

x u
x u
x u

b
D

=                                            (8.2) 

          
s s s

q q q

r r r
n

x y u
x y u
x y u

c
D

=                                         (8.3) 

 
 

1
1
1

s s

q q

r r

x y
D x y

x y
=  (which is by the way 2*E 

where E is the algebraic area of the triangle) 
 
 
So, from the minimization problem 

min ( )
p

n
n

f dv∇ ∑∫   

we find the equivalent minimization problem 
 

min ( ) p
nu dφ v∫                  (9) 

 
where ( )nuφ is the function that we find after 
replacing n n n nf a x b y c= + +  in ( )n

n
f∇ ∑  

and  are evaluated using (8.1), (8.2), 
(8.3) for each triangle of the mesh. 

, ,n n na b c

 
Equation (9) can be solved now by a variety of 
techniques. The author uses Genetic Algorithms 
with Nelder-Meade for Non-linear Problems as 
in [2], [3], [4], [5], [6], [7], [8]. 
The same optimization scheme: Genetic 
Algorithms with Nelder-Meade will be also 
applied for (9). 
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Before proceeding in the solution of the 
problem, some background on GA (Genetic 
Algorithms) and Nelder-Mead is necessary. In 
[4], the author has also proposed a hybrid 
method that includes  a) Genetic Algorithm for 
finding rather the neiborhood   of the global  
minimum than the global minimu itself and  b) 
Nelder-Mead algorithm to find the exact point 
of the global minimum itself.  
 
So, with this Hybrid method of Genetic 
Algorithm + Nelder-Mead we combine the 
advantages of both methods, that are a) the 
convergence to the global minimum (genetic 
algorithm) plus b) the high accuracy of the 
Nelder-Mead method.  
 
If we use only a Genetic Algorithm then we 
have the problem of low accuracy. 
 
If we use only Nelder-Mead, then we have the 
problem of the possible convergence to a 
local (not to the global) minimum.  
 
These disadvantages are removed in the case 
of our Hybrid method that combines Genetic 
Algorithm with Nelder-Mead method. We 
recall the following definitions from the 
Genetic Algorithms literature:  
 
 
Fitness function is the objective function we 
want to minimize.   
Population size specifies how many individuals 
there are in each generation. We can use various 
Fitness Scaling Options (rank, proportional, top, 
shift linear, etc), as well as various Selection 
Options (like Stochastic uniform, Remainder, 
Uniform, Roulette, Tournament). Fitness 
Scaling Options: We can use scaling functions. 
A Scaling function specifies the function that 
performs the scaling. A scaling function 
converts raw fitness scores returned by the 
fitness function to values in a range that is 
suitable for the selection function.  
 
We have the following options:  
Rank Scaling Option: scales the raw scores 
based on the rank of each individual, rather than 
its score. The rank of an individual is its 

position in the sorted scores. The rank of the 
fittest individual is 1, the next fittest is 2 and so 
on. Rank fitness scaling removes the effect of 
the spread of the raw scores.  
Proportional  Scaling Option: The Proportional 
Scaling makes the expectation proportional to 
the raw fitness score. This strategy has 
weaknesses when raw scores are not in a "good" 
range.  
Top Scaling Option: The Top Scaling scales the 
individuals with the highest fitness values 
equally.  
 
Shift linear Scaling Option: The shift linear 
scaling option scales the raw scores so that the 
expectation of the fittest individual is equal to a 
constant, which you can specify as Maximum 
survival rate, multiplied by the average score.  
We can have also option in our Reproduction in 
order to determine how the genetic algorithm 
creates children at each new generation.  
For example,  
Elite Counter specifies the number of 
individuals that are guaranteed to survive to the 
next generation.  
Crossover combines two individuals, or parents, 
to form a new individual, or child, for the next 
generation.  
Crossover fraction specifies the fraction of the 
next generation, other than elite individuals, that 
are produced by crossover.   
Scattered Crossover:  Scattered Crossover 
creates a random binary vector. It then selects 
the genes where the vector is a 1 from the first 
parent, and the genes where the vector is a 0 
from the second parent, and combines the genes 
to form the child.  
Mutation: Mutation makes small random 
changes in the individuals in the population, 
which provide genetic diversity and enable the 
GA to search a broader space. Gaussian 
Mutation: We call that the Mutation is Gaussian 
if the Mutation adds a random number to each 
vector entry of an individual. This random 
number is taken from a Gaussian distribution 
centered on zero. The variance of this 
distribution can be controlled with two 
parameters. The Scale parameter determines the 
variance at the first generation. The Shrink 
parameter controls how variance shrinks as 
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generations go by. If the Shrink parameter is 0, 
the variance is constant. If the Shrink parameter 
is 1, the variance shrinks to 0 linearly as the last 
generation is reached. 
Migration is the movement of individuals 
between subpopulations (the best individuals 
from one subpopulation replace the worst 
individuals in another subpopulation). We can 
control how migration occurs by the following 
three parameters.  
Direction of Migration: Migration can take 
place in one direction or two. In the so-called 
“Forward migration” the nth subpopulation 
migrates into the (n+1)'th subpopulation. while 
in the so-called “Both directions Migration”, the 
nth subpopulation migrates into both the (n-1)th 
and the (n+1)th subpopulation.  
Migration wraps at the ends of the subpopulations. 
That is, the last subpopulation migrates into the first, 
and the first may migrate into the last. To prevent 
wrapping, specify a subpopulation of size zero.  
Fraction of Migration is the number of the  
individuals that we move between the 
subpopulations. So, Fraction of Migration is the 
fraction of the smaller of the two subpopulations 
that moves. If individuals migrate from a 
subpopulation of 50 individuals into a population of 
100 individuals and Fraction is 0.1, 5 individuals 
(0.1 * 50) migrate. Individuals that migrate from 
one subpopulation to another are copied. They 
are not removed from the source subpopulation. 
Interval of Migration counts how many 
generations pass between migrations. 
 
The Nelder-Mead simplex algorithm appeared 
in 1965 and is now one of the most widely used 
methods for nonlinear unconstrained 
optimization [33]÷[35].  The Nelder-Mead 
method attempts to minimize a scalar-valued 
nonlinear function of n real variables using only 
function values, without any derivative 
information (explicit or implicit).  
 
The Nelder-Mead method thus falls in the 
general class of direct search methods. The 
method is described as follows: Let f(x) be the 
function for minimization.  
x is a vector in n real variables. We select n+1 
initial points for x and we follow the steps:  
 

Step 1. Order. Order the n+1 vertices to satisfy 
f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), using the tie-breaking 
rules given below. 
Step 2. Reflect. Compute the reflection point xr 
from  11 )1()( ++ −+=−+= nnr xxxxxx ρρρ  , 

where ∑
=

=
n

i
i nxx

1

/  is the centroid of the n best 

points (all vertices except for xn+1). Evaluate 
fr=f(xr). If f1 ≤ fr < fn , accept the reflected point 
xr and terminate the iteration. 
 
Step 3. Expand. If fr < f1 , calculate the 
expansion point xe,  
 

11 )1()()( ++ −+=−+=−+= nnre xxxxxxxxx ρχρχρχχ
 
and evaluate fe=f(xe). If fe < fr, accept xe and 
terminate the iteration; otherwise (if fe ≥ fr), 
accept xr and terminate the iteration. 
 
Step 4. Contract. If fr ≥ fn, perform a 
contraction between x  and the better of xn+1 
and xr.  
Outside. If fn ≤ fr < fn+1 (i.e. xr is strictly better 
than xn+1), perform an outside contraction: 
calculate 
 

11 )1()()( ++ −+=−+=−+= nnrc xxxxxxxxx ργργγργ
 
and evaluate fc = f(xc). If fc ≤ fr, accept xc and 
terminate the iteration; otherwise, go to step 5 
(perform a shrink). 
 
b. Inside. If fr ≥ fn+1, perform an inside 
contraction: calculate  
 

11 )1()( ++ +−=−−= nncc xxxxxx γγγ , and evaluate 
fcc = f(xcc). If fcc < fn+1, accept xcc and terminate 
the iteration; otherwise, go to step 5 (perform a 
shrink). 
 
Step 5. Perform a shrink step. Evaluate f at the 
n points vi = x1 + σ (xi – x1), i = 2, … , n+1. The 
(unordered) vertices of the simplex at the next 
iteration consist of x1, v2, … , vn+1.   
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After this preparation, we are ready to solve the 

min ( ) p
nu dφ∫ v  of (9) as minimization 

problem.  
 
The minimization is achieved by using Genetic 
Algorithms (GA) and the method of Nelder-
Mead exactly as we described previously. We 
can use the MATLB software package  
(MATLAB, Version 7.0.0, by Math Works).  
 
In the next numerical example (Section 3) our 
GA has the following Parameters 
 
Population type:  
Double Vector Population size: 30 
 
Creation function: Uniform 
 
Fitness scaling: Rank 
 
Selection function: roulette 
 
Reproduction: 6 – Crossover fraction 0.8 
 
Mutation:  Gaussian – Scale 1.0,  
Shrink 1.0 
 
Crossover: Scattered 
 
Migration: Both – fraction 0.2, interval: 20 
 
Stopping criteria: 50 generations 
 
 
3   Numerical Example 
 
Consider now the following problem (Fig.2) 

( 2div 0pu u−∇ ∇ =)                                   (4) 

in the domain  [0,2] [0,2] [0,1] [0,1]u∈ × − ×

Fig.2  
 
 
with 0u =  in the external boundary: 

2, 22x y= ± − ≤ ≤   
2, 2 2y x= ± − ≤ ≤  

 
and  1u =  in the internal boundary 
 

1, 1 1x y= ± − ≤ ≤   
1, 1 1y x= ± − ≤ ≤  

 

Fig.3  
 
Due to symmetry, we can split the domain in 8 
same trapezoids (trapezia). It is sufficient to  
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solve the problem ( 2div 0pu u−∇ ∇ =) in one of 

them with the boundary conditions  in the 
external boundary and  in the internal 
boundary. 

0u =
1u =

 
 
 
Taking one of these trapezoids and splitting it 
into 6 triangles like in Fig.3, we have in some 
enlargement the following Figure: Fig.4 
 

Fig.4  
 
We consider as  the value 
of the u at the points 

1 2 3 4 5 6 7, , , , , ,u u u u u u u

(0,0), (2,0), (2, 2), (2, 4), (1,3), (0, 2), (1,1)  
i.e. 

1

2

3

4

5

6

7

(0,0),
(2,0),
(2,2),
(2, 4),
(1,3),
(0,2),
(1,1)

u u
u u
u u
u u
u u
u u
u u

=
=
=

=
=
=

=

 

 
 
Then by considering  

p n s n su a x b y c= + + n

n

                                     (7.1) 

q n q n qu a x b y c= + +                                      (7.2) 

r n r n ru a x b y cn= + +                                      (7.3) 
 
in every one of the 6 triangles, we solve as in 
(8.1), (8.2), (8.3) and finally we introduce to 

( ) pJ u u dv= ∇∫                                            (5) 

We have, considering also that   and 1 6 1u u= =

2 3 4 0u u u= = =  
 
So, after some algebraic manipulation we find 
that we have to minimize the quantity I 
 
where 

2 2 2
5 52 1 (1 2 ) 1 (1 2 )

p ppI u u u 2
7= + + − + + − +

2 2
7 7(2 2 ) 1 (1 2 ) (2 )

p

7
p pu u+ − + + − + u

with respect to  5 7,u u
 
Now, in order to find the global minimum of I 
we use GA (Population type: Double Vector 
Population size: 30 / Creation function: 
Uniform  /Fitness scaling: Rank  / Selection 
function: roulette / Reproduction: 6 – Crossover 
fraction 0.8 / / Mutation:  Gaussian – Scale 1.0,  
Shrink 1.0 / / Crossover: Scattered  /  
Migration: Both – fraction 0.2, interval: 20  
/Stopping criteria: 50 generations) 
and continue with Nelder-Mead 
 
So we find the following results for different 
values of p. 
 

p 5u  7u  I 
2 0.2500  0.5000 5.5000 
3 0.3145 0.5000 5.4623 
4 0.3471 0.5000 5.4280 
5 0.3678 0.5000 5.3994 
6 0.3824 0.5000 5.3754 
7 0.3935 0.5000 5.3550 
8 0.4024 0.5000 5.3373 
10 0.4155 0.5000 5.3082 
20 0.4468 0.5000 5.2246 
50 0.4721 0.5000 5.1375 
200 0.4903 0.5000 5.0582 

WSEAS TRANSACTIONS on MATHEMATICS Nikos E. Mastorakis

ISSN: 1109-2769 113 Issue 3, Volume 8, March 2009



 
4 Solution of the equations (2), (3) 

and (4) 
 
We remind the problems: 

( )2
div ,

pnc
t

α nρθ λ ρ ρ
−∂

= ∇ ∇
∂

                      (1) 

If we scale out the constants in (1), we derive 

( )n
p u

t
u

Δ=
∂
∂                         (2) 

where a particular case of (2) is the non-
Newtonian filtration equation  

u
t
u

pΔ=
∂
∂                         (3) 

and 

,div 2 qp uuu
t
u λ+⎟

⎠
⎞⎜

⎝
⎛ ∇∇=

∂
∂ −                         (4)  

 
 
Consider that u can be written as  

( )n
n

u tλ=∑ nf t   or ( )n
n

u f=∑     where nλ  

have been incorporated to ( )nf t  
In this “dynamic” case, in a triangular mesh of 

 we can have 2 ( ) ( ) ( )n n n nf a t x b t y c t= + +  for 
the n-th triangle.  

 
( ) ( ) ( )s n s n s nu a t x b t y c t= + +                        (7.1) 
( ) ( ) ( )q n q n q nu a t x b t y c t= + +                        (7.2) 
( ) ( ) ( )r n r n r nu a t x b t y c t= + +                         (7.3) 

 
Of course, we can use higher degree 
polynomials like quadratic or cubic. 
For quadratic: 

2

2

( ) ( ) ( ) ( )

( ) ( )
s n s n s n n

n s n s s

u a t x b t y c t d t x

e t d h t x y

= + + +

+ +
s

q

r

 

 
2

2

( ) ( ) ( ) ( )

( ) ( )
q n q n q n n

n q n q q

u a t x b t y c t d t x

e t d h t x y

= + + +

+ +
 

 
2

2

( ) ( ) ( ) ( )

( ) ( )
r n r n r n n

n r n r r

u a t x b t y c t d t x

e t d h t x y

= + + +

+ +
 

 
Fig.5 
 
We express  ( ), ( ), ( ), ( ), ( ), ( )n n n n n na t b t c t d t e t h t
with respect not only u in vertices, but also in a 
node along the midside of each edge. See Fig.5. 
Finally using the so-called collocation method 
or least square method or the method of 
moments ([35]÷[40]) we can obtain a system of 
non-linear Ordinary Differential Equations that 
can be solved in a variety of methods (Runge – 
Kutta etc…).  
 
 
 
 
5  Conclusion 
 
In this paper, we have examined the boundary 
value problem      ( )2div 0pu u−∇ ∇ =  where u 

is a known function on the boundary of our 
domain using Variational Principle (Finite 
elements). The Problem is reduced to an 
Optimization problem that can be solved by 
Genetic Algorithms plus Nelder-Mead search. 
An early paper of the author with the title 
“Solving Differential Equations via Genetic 
Algorithms” was presented in [1] while the author 
use the same method to solve various problems in 
[2]÷[9].    
 
With the Hybrid method of Genetic Algorithm 
+ Nelder-Mead we have combined the 
advantages of both methods, that are a) the 
convergence to the global minimum (genetic 
algorithm) plus b) the high accuracy of the 
Nelder-Mead method.  
 
Also, we have discussed briefly the solution of 

( )n
p u

t
u

Δ=
∂
∂  
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u
t
u

pΔ=
∂
∂  

and 

,div 2 qp uuu
t
u λ+⎟

⎠
⎞⎜

⎝
⎛ ∇∇=

∂
∂ −  

using the so-called collocation method or least 
square method or the method of moments. 
 
 
 
 
References: 
 
1. Nikos E. Mastorakis, “Solving Differential 
Equations via Genetic Algorithms”, Proceedings of 
the Circuits, Systems and Computers ’96, (CSC’96), 
Piraeus, Greece, July 15-17, 1996, 3rd Volume: 
Appendix, pp.733-737 
2. Nikos E. Mastorakis, “On the solution of ill-
conditioned systems of Linear and Non-Linear 
Equations via Genetic Algorithms (GAs) and 
Nelder-Mead Simplex search”, 6th WSEAS 
International Conference on EVOLUTIONARY 
COMPUTING (EC 2005), Lisbon, Portugal, June 
16-18, 2005. 
3. Nikos E. Mastorakis, “Genetic Algorithms 
and Nelder-Mead Method for the Solution of 
Boundary Value Problems with the Collocation 
Method”, WSEAS Transactions on Information 
Science and Applications, Issue 11, Volume 2, 2005, 
pp. 2016-2020. 
4. Nikos E. Mastorakis, “On the Solution of 
Ill-Conditioned Systems of Linear and Non-Linear 
Equations via Genetic Algorithms (GAs) and 
Nelder-Mead Simplex Search”, WSEAS 
Transactions on Information Science and 
Applications, Issue 5, Volume 2, 2005, pp. 460-466. 
5. Nikos Mastorakis, “Genetic Algorithms and 
Nelder-Mead Method for the Solution of Boundary 
Value Problems with the Collocation Method”, 5th 
WSEAS International Conference on 
SIMULATION, MODELING AND 
OPTIMIZATION (SMO '05), Corfu Island, Greece, 
August 17-19, 2005. 
6. Nikos E. Mastorakis, “Solving Non-linear 
Equations via Genetic Algorithm”, WSEAS 
Transactions on Information Science and 
Applications,  Issue 5, Volume 2, 2005, pp. 455-
459. 
7. Nikos E. Mastorakis, “The Singular Value 
Decomposition (SVD) in Tensors (Multidimensional 
Arrays) as an Optimization Problem. Solution via 
Genetic Algorithms and method of Nelder-Mead”, 
6th WSEAS Int. Conf. on SYSTEMS THEORY 

AND SCIENTIFIC COMPUTATION (ISTASC'06), 
Elounda, Agios Nikolaos, Crete Island, Greece, 
August 21-23, 2006. 
8. Nikos E. Mastorakis, “Unstable Ordinary 
Differential Equations: Solution via Genetic 
Algorithms and the method of Nelder-Mead”, The 
6th WSEAS International Conference on SYSTEMS 
THEORY AND SCIENTIFIC COMPUTATION, 
Elounda, Agios Nikolaos, Crete Island, Greece, 
August 18-20, 2006. 
9. Nikos E. Mastorakis, “Unstable Ordinary 
Differential Equations: Solution via Genetic 
Algorithms and the Method of Nelder-Mead”, 
WSEAS TRANSACTIONS on MATHEMATICS, 
Issue 12, Volume 5, December 2006, pp. 1276-
1281. 
10. Nikos E. Mastorakis, “An Extended Crank-
Nicholson Method and its Applications in the 
Solution of Partial Differential Equations: 1-D and 
3-D Conduction Equations”, WSEAS 
TRANSACTIONS on MATHEMATICS, Issue 1, 
Volume 6, January 2007, pp. 215-224. 
11. Saeed-Reza Sabbagh-Yazdi, Behzad 
Saeedifard, Nikos E. Mastorakis, “Accurate and 
Efficient Numerical Solution for Trans-Critical 
Steady Flow in a Channel with Variable Geometry”, 
WSEAS TRANSACTIONS on APPLIED and 
THEORETICAL MECHANICS, Issue 1, Volume 2, 
January 2007, pp. 1-10. 
12. Saeed-Reza Sabbagh-Yazdi, Mohammad 
Zounemat-Kermani, Nikos E. Mastorakis,  
“Velocity Profile over Spillway by Finite Volume 
Solution of Slopping Depth Averaged Flow”, 
WSEAS TRANSACTIONS on APPLIED and 
THEORETICAL MECHANICS, Issue 3, Volume 2, 
March 2007, pp. 85. 
13. Iurie Caraus and Nikos E. Mastorakis, 
“Convergence of the Collocation Methods for 
Singular Integrodifferential Equations in Lebesgue 
Spaces”, WSEAS TRANSACTIONS on 
MATHEMATICS, Issue 11, Volume 6, November 
2007, pp. 859-864. 
14. Iurie Caraus, Nikos E. Mastorakis, “The 
Stability of Collocation Methods for Approximate 
Solution of Singular Integro- Differential 
Equations”, WSEAS TRANSACTIONS on 
MATHEMATICS, Issue 4, Volume 7, April 2008, 
pp. 121-129. 
15. Xu Gen Qi, Nikos E. Mastorakis, “Spectral 
distribution of a star-shaped coupled network”, 
WSEAS TRANSACTIONS on APPLIED and 
THEORETICAL MECHANICS , Issue 4, Volume 
3, April 2008. 
16. Iurie Caraus, Nikos E. Mastorakis, “Direct 
Methods for Numerical Solution of Singular 

WSEAS TRANSACTIONS on MATHEMATICS Nikos E. Mastorakis

ISSN: 1109-2769 115 Issue 3, Volume 8, March 2009



Integro-Differentiale Quations in Classical (case γ ≠ 
0)”, 10th WSEAS International Conference on 
MATHEMATICAL and COMPUTATIONAL 
METHODS in SCIENCE and ENGINEERING 
(MACMESE'08), Bucharest, Romania, November 
7-9, 2008. 
17. Gabriella Bognar, Numerical and 
Numerical and Analytic Investigation of Some 
Nonlinear Problems in Fluid Mechanics, 
COMPUTER and SIMULATION in MODERN 
SCIENCE, Vol.II, WSEAS Press, pp.172-179, 
2008 
18. Astrita G., Marrucci G., Principles of Non-
Newtonian Fluid Mechanics, McGraw-Hill, 
New York, NY, USA, 1974. 
19.  Volquer R.E., Nonlinear flow in porous 
media by finite elements, ASCE Proc., J. 
Hydraulics Division Proc. Am. Soc. Civil Eng., 
95 (1969), 2093-2114 
20.  Ahmed N., Sunada D.K., Nonlinear flow in 
porous media, J. Hydraulics Division Proc. Am. 
Soc. Civil Eng., 95 (1969), 1847-1857. 
21. Peebles P.J.E., Star distribution near a 
collapsed object, Astrophysical Journal, Vol. 
178, (1972),. 371-376. 
22. Carelman T., Probl`emes math´ematiques 
dans la th´eorie cin´etique de gas, Almquist-
Wiksells, Uppsala, 1957. 
23. Bartnik R., McKinnon J., Particle-like 
solutions of the Einstein-Yang-Mills equations. 
Phys. Rev. Lett. 61 (1988), 141-144  
24. Otani M., A remark on certain nonlinear 
elliptic equations. Proc. Fac. Sci. Tokai Univ. 
19 (1984), 23--28. 
25.   Pelissier, M.-C., Reynaud, L., Étude d'un 
modèle mathématique d'ecoulement de glacier, 
C. R. Acad. Sci., Paris, Sér. A 279 (1974), 531-
534. (French) 
26.  Schoenauer M., A monodimensional model 
for fracturing, In A. Fasano and M. Primicerio 
(editors): Free Boundary Problems, Theory 
Applications, Pitman Research Notes in 
Mathematics 79, Vol. II., London, 701-711 
(1983). 
27 John C. Strikwerda, Finite Difference 
Schemes and Partial Differential Equations, 
SIAM, 2004 
28. Hans Petter Langtangen Computational 
Partial Differential Equations: Numerical 
Methods and Diffpack Programming, Springer, 
2003 

29. W. L. Wood, Introduction to Numerical 
Methods for Water Resources, Oxford 
University Press, 1993 
30. Daniel R. Lynch, Numerical Partial 
Differential Equations for Environmental 
Scientists and Engineers: A First Practical 
Course,  Springer, 2005 
31.   Nikos E. Mastorakis, “Numerical Schemes for 
Non-linear Problems in Fluid Mechanics”, 
Proceedings of the 4th IASME/WSEAS 
International Conference on CONTINUUM 
MECHANICS, Cambridge, UK, February 24-26, 
2009, pp.56-61 
32. Evans, Lawrence C. , A New Proof of Local 
C1,α Regularity for Solutions of Certain Degenerate 
Elliptic P.D.E.", Journal of Differential Equations 
45: 356-373, 1982 
32. Lewis, John L. (1977). Capacitary functions in 
convex rings, Archive for Rational Mechanics and 
Analysis 66: 201–224, 1977 
33.  Lagarias, J.C., J. A. Reeds, M. H. Wright, and 
P. E. Wright, "Convergence Properties of the 
Nelder-Mead Simplex Method in Low Dimensions," 
SIAM Journal of Optimization, Vol. 9 Number 1, 
pp. 112-147, 1998 
34. J. A. Nelder and R. Mead, “A simplex method 
for function minimization”, Computer Journal, 7 , 
308-313, 1965 
35. F. H. Walters, L. R. Parker, S. L. Morgan, and S. 
N. Deming, Sequential Simplex Optimization, CRC 
Press, Boca Raton, FL, 1991 
36.A. Ern, J.L. Guermond, Theory and practice of 
finite elements, Springer, 2004, ISBN 0-3872-0574-
8  
37. S. Brenner, R. L. Scott, The Mathematical 
Theory of Finite Element Methods, 2nd edition, 
Springer, 2005, ISBN 0-3879-5451-1  
38. P. G. Ciarlet, The Finite Element Method for 
Elliptic Problems, North-Holland, 1978, ISBN 0-
4448-5028-7  
39 Y. Saad, Iterative Methods for Sparse Linear 
Systems, 2nd edition, SIAM, 2003, ISBN 0-8987-
1534-2 
40. J.J.Conor and C.A.Brebbia, Finite Element 
Techniques for Fluid Flow, Butterworth, London, 
1976 

 

WSEAS TRANSACTIONS on MATHEMATICS Nikos E. Mastorakis

ISSN: 1109-2769 116 Issue 3, Volume 8, March 2009

http://www.ams.org/mathscinet/search/journaldoc.html?cn=Proc_Fac_Sci_Tokai_Univ
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=2129
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=2129



