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Abstract: - The results presented in this paper lead to solving main problems of the reliability theory: 
specifying the failure moments of a failure and determining the solutions of renewal equations. We analyze the 
following situations: 1. the system structure is not taken into consideration; 2. the system structure is known. 
In the first case we presume that the adopted efficiency function is the average operation time and, by using 
specific methods of the theory of games, we can prove that there is no equilibrium type solution, so the failure 
moment of the system cannot be precisely determined. By solving some specific problems, type maximum or 
minimax, we can only get the interval where the failure point of the system is found. The optimal problem 
type maximum is solved by specific methods from the theory of games while the optimal problem type 
minimax is solved by using the maximum principle of Pontriaghin. In the second case we start from the graph 
structure associated to a system with renewal operations and we build immediately the equation system with 
finite differences and the system of differential equations associated to this graph. Applying the Laplace 
transformation it is determined the system availabilities and unavailabilities caused by its subsystems. The 
failure moments of the system are determined as equilibrium points but the difficulties in calculations lead to 
obtaining only an approximate solution. Knowing the failure moments of the analyzed system lead to the 
reconsideration of the renewal policies of the system. Practically, there are determined the approximate 
solutions of the renewal equations and their separation curve. Having these elements we can completely 
analyze the renewal process; this analysis being based both on the failure moments of the system and on the 
renewal costs of the analyzed system. 
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1   Determining the failure moments of 
a system without taking into 
consideration its structure 
We start from the problem of determining the failure 
moment of a system S, when we know (statistically) 
the average value m and the dispersion D of the 
operation time. The efficiency function f is 
considered the average operation time, the variables 
being represented by the failure moment x and the 
repartition of the failure probability p. 
     For this efficiency function we will consider the 
corresponding problems type maximum and 
minimax, which are used to determine the optimal 
guaranteed strategies. 
     The problem is to determine the probability 
distributions for which the average value m and 
dispersion  are known as solutions to the 
following problems (Ghermeier 1971, Mitran 1992): 

D

 

(P1) 
( )

( )( )
p tx

max min f x,p t  (P2) 
( )

( )( )
p t x

min min f x,p t    (1) 

 
where: 
 

( ) ( )( ) ( ) ( )
x

0

f : 0, M R, f x,p t p t dt mp x∞ × → = +∫ (2) 

 
(  represents the set of all the probability 
repartitions with the same average value m  and the 
same dispersion ). It is obvious that for the 
considered efficiency function , the following 
inequalities are achieved (Ghermeier 1971, Mitran 
1992): 

M

D
f

 

( )
( )( )

( )
( )( )

p t p tx x
max min f x,p t min max f x,p t≤    (3) 

 
but only on the solutions of problems (P1) and (P2) 
and. implicitly, on the values: 
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p t

p t
    (4) 

 
     The explanation of these choices is connected to 
the significance of the variables of efficiency 
function :  represents the replacement moment 
of a machine and p  represents the probability 
function of flawless operation. 

f x

     If  and  are exactly known and  (the 
most frequent case in practice),  has no saddle 
points and consequently problems (P1) and (P2) 
must be separately solved. The solution's of these 
problems represent the guaranteed optimal solutions 
searched for. 

m D 2m D>
f

     We consider problem (P1): 
( )

( )( )
p tx

max min f x,p t . 

The maxmin optimal strategy is the pair ( )( )0 0x , p t , 
where (Ghermeier 1971, Mitran 1992): 

a) 0x  is the solution of the equation 

. ( ) ( )4 2m x 2mx m x D 0− − − + =

     On note . 

For the equation, , we have 

( ) ( ) ( )4 2f x m x 2mx m x D= − − − +

( )f x 0= 1
Dx m
2

= − ; 

, 2x m= 3
Dx m
2

= + ; immediately results that 

( ) ( )2D 4m 7D
4

= − +1f x , ( ) ( )2D m D= − +2f x , 

( ) ( )2D 4m 7D
4

= − +3f x . 

     The following possibilities exist: 
     a1) . In this case the above equation has 
no solution because 

2m D<
( )1f x 0> , ( )2f x 0> , 

. ( )3f x 0>
2     a2) . The equation  has two 

roots: 
m D> ( )f x 0=

     a2.1) If 2 7D m D
4

< < , the equation has the 

solution *
1

Dx m ,m
2

⎛ ⎞
∈ −⎜ ⎟⎜ ⎟
⎝ ⎠

, *
2

Dx m,m
2

⎛ ⎞
∈ +⎜⎜
⎝

⎟⎟
⎠

, 

because , ( )1f x 0> ( )2f x 0> , . ( )3f x 0>

     a2.2) If 2 7m
4

>

     The effectively determining of the solution , 
 in the cases a2.1) and a2.2) on obtain by Banach 

principle. 

*
1x

*
2x

     From the ( )f x 0=  immediately results 

( ) 2m x D− −x m Dx 2= ±  

     On note ( ) ( ) 2
1f x m Dx 2m x D= − − − , 

( ) ( ) 2
2f x m Dx 2m x D= + − − . 

     Immediately results ,  have the properties to 
be the contractions. 

1f 2f

     Therefore, if ( )1 1
n 1 n 1x f x −= , ( )2 2

n 2 n 1x f x −=
* 1
1 nn

x lim x=

, 

 every, we obtain  , 

;   are the solutions of the 

equation 

1 2
0 0x x 0> >
* 2
2 n

x lim x= n
*
1x , *

2x

( ) 22
x D* * 2x D Dm 0+ + − =  

      On obtain 
( )2

*
1

D D 4m 3D
x m

2

− − −
= − , 

( )2
*
2

D D 4m 3D
x m

2

− − −
= + . 

     The optimal solution reached for 0x  is the 
smallest of them (therefore *

0x x= 1 ) and so: 

0
Dx m ,m
2

⎛ ⎞
∈ −⎜⎜
⎝ ⎠

⎟⎟  if 2 7D m D
4

< < , 

0
Dx 0,m
2

⎛ ⎞
∈ −⎜ ⎟⎜ ⎟
⎝ ⎠

 if 2 7m D
4

> . 

      
     Remark 1: 
a)Always 

( )2D 4m 3D 0− > , ( )2D D 4m 3D 0− + − >  and, 

because, the solutions   exist. *
1x , *

2x
b) If  is very small, it can be shown 
that

D
4 2

0x m≈ − m D . 
     For Ghemieier, the solution (on note ) is *

Gx
3

0x m 2mD≈ − , if  is very small. The following 
results take place: if  result 

D
2m 16D>

*
0 G

Dx x m
2

< < − ; if 2D m 16< <

D , the equation has the solution 

*
1

Dx 0,m
2

⎛ ⎞
∈ −⎜ ⎟⎜ ⎟
⎝ ⎠

, *
2

Dx m ,m D
2

⎛ ⎞
∈ + +⎜ ⎟⎜ ⎟
⎝ ⎠

. 

7 D
4

 result 

*
G 0

Dx x m
2

< < − ; if 2 7D m D
4

< <  result 

*
G 0

Dm x x m
2
< < < . −
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c) 0p  is of exponential type, more precisely:  
 

( ) [ ]
t
m

0
0

0

e , t 0,xp t
0 , t x

−⎧⎪ ∈= ⎨
⎪ >⎩

   (5) 

 
The maxmin optimal value is: 
 

( )( )0 0

1
3

1
23

2 1
3

2

f x , p t

D
D 4m2m 1

4m D2 1
4m

=

⎧ ⎫
⎪ ⎪⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎛ ⎞ ⎝ ⎠= − −⎨ ⎬⎜ ⎟ ⎡ ⎤⎝ ⎠⎪ ⎪⎛ ⎞⎢ ⎥+⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

  (6) 

 
If 0x  is very close to 0, then: 

 

( )( )0 0 2

mDf x , p t m
m D

≈ −
+

    (7) 

 
 
We consider problem (P2): 

( )
( )( )

p t x
min max f x,p t . 

The minmax optimal strategy is the pair ( )( )0 0x , p t  
where: 
a) [ ]0 1 2x x ,x∈ , z

1x me−= , z
2x me m−= + z ,  

being a root of the equation: 
z

 
2z z

2

De 2ze 1
m

− −+ + − = 0    (8) 

 
It can be noticed that, if we note 

( ) 2z z
2

Dg z e 2ze 1
m

− −= + + − , the equation ( )g z 0′ =  

has two roots  and , a negative and a positive 
one, placed in a neighborhood of the origin and with  

1z 2z

( )2z 0,1∈ . Therefore, developing  into a 
Taylor series and excluding the terms of superior 

order, we obtain

( )g z

( ) 3
2

Dg z z
m

≈ − + . 

     Then, the equation has the approximate solution 
1
3

2

Dz
m

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

 and we obtain that 
1
3

1 2

Dx
m

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

, 

1
3

2

1 D
3

m
2 2

Dx m e
m

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎡ ⎤
⎛ ⎞⎢ ⎥≈ +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

. 

b) ( )
1

1

t x
m

0 1

2

1 , t x

p t e , x t x
0 , t x

−
−

<⎧
⎪
⎪⎪

2= ≤ ≤⎨
⎪ >⎪
⎪⎩

 

 
     The minmax value of the efficiency function is 

( )( ) ( )
1
3

2
D

z m
0 0f x , p t m 1 e m 1 e

⎛ ⎞
⎜ ⎟− ⎝ ⎠

⎛ ⎞
⎜ ⎟= + ≈ +⎜ ⎟⎜ ⎟
⎝ ⎠

. 

Because 2

D 1
m 2

< , immediately results that 1
mx
2

< , 

2x 1,25m< . 
 

( )
1
3

2

1 D 13
m 3

2 0 2

Dx x m e 1 2mD
m

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎡ ⎤
⎛ ⎞⎢ ⎥− ≈ + − +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

     (9) 

 
     For practical reasons, it is recommended to 
consider that solution 0x  can be approximated with 
(or even equal to) . In this case, the breakdown 
moment,  verifies the inequalities: 

1x
*x

 

( )
1

1 3*3
0 1 2

Dm 2mD x x x m
m

⎛ ⎞− ≈ < ≤ ≈ ⎜ ⎟
⎝ ⎠

  (10) 

 
and the bandwidth to which the real breakdown 
curve belongs varies as in the previous case from the 
interval [ ]10,x  in the upper part and [ 0 1x ,x ]  in the 
lower part (see figure l). 
 

 
 

Fig. 1 The approximation curves 
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2   The Problem of  Replacement  
Timing and Optimal Renewal 
Strategies 
 
 
2.1 Considerations about Optimal Renewal 
Strategies 
The renewal strategies goal is to determine the 
optimal replace time and they can be divided in two 
categories: 

1) Periodical (warning) renewal strategies; 
2) Non-periodical renewal strategies. 

 
2.1.1   Periodical Renewal Strategies 
     This kind of renewals has a determinist nature 
and they are characterized by a constant time 
between two consecutive warning renewals. 
BRP strategy (Block Replacement Policy) 
     At this kind of strategy the system is renewed 
after a time equal , where , and  is 
the time period (  is unknown). In order to 
determine  we use the following criteria: 

kT
T

k 1,2,...= T

T
a) The reaching of a certain level of 

reliability: ,  being value; ( ) 0R T R≥ 0R
b) The minimization of the mean cost of the 

system in the period : T
 

( )
BRP

H T b
K m

T
+

= → in    (11) 

 
where  is the mean number of failures in the 
time period 

( )H T

( )0,T  or the renewal function and b  is 
the cost of warning renewal. The effective 
determination of the cost  presumes the 
calculation of  function. This can be done in the 
following way: 

BRPK
H

1) We start from the reliability function of the 
system  and we determine the probability density; R

2) We determine the Laplace Transform ( )* sL  
of the probability density: 

 

( ) ( )dR t
f t

dt
= −      (12) 

     
 

3) Next, we compute the Laplace transform of 
the renewal density: 

 

( ) ( )
( )

*
*

*

f s
h s

1 f s
=

−
     (13) 

4) We apply the inverse transform and we 
determine the renewal density ; ( )h t

5) We determine the renewal function 
corresponding to the time period : T

 

( ) ( )
T

0

H T h t dt= ∫      (14) 

 
     From the minimum condition results immediately 
the renewals equation whose solving leads to the 
determination of : *

optimT T=

 
 ( ) ( )* * *T h T H T b− =     (15) 

 
     Let us note, excepting the difficulty in solving 
the equation, the asymptotic behavior of the  
cost: 

BRPK

 

BRPt

1lim K
m→∞

=       (16) 

 
 
DRP strategy (Delayed Replacement Policy) 
     To evaluate the mean cost of the system 
maintenance it is necessary to consider, excepting 
the b -cost of the warning renewals, the -cost of 
the system stagnation (or inappropriate 
functioning) in the time unit. The mean cost in a 
time period  includes the following: 

d

T
a) the warning renewal cost b ; 
b) the cost of the stagnation mean time: 

 

( )
DT

0

d xh T x dx−∫      (17) 

 
where  is the stagnation cost and  the 
occurrence time of the defect; 

d DT

c) the proper renewals cost: 
 

( )DH T T−       (18) 
 

     When adopting the DRP strategy, the essential 
idea is that if the renewals were not executed in  
time, 

kT
k 1,2,...=  and the dissertation occurred in the 

interval ( )D ,kTkT T− , the system would not be 
renewed and it would wait for the first warning 
renewal. 
     In this case the minimal cost per time is: 
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( )

( ) ( )
D

DRP D

T

D
0

K T;T

1 b H T T d xh T x dx
T

=

⎡ ⎤
= + − + −⎢ ⎥

⎢ ⎥⎣ ⎦
∫

  (19) 

 
     By minimizing  reported to , results 
immediately the optimal time  

DRPK DT
*
DT :

 
*
D

1T
d

=       (20) 

 
     By replacement, for , we obtain the 
minimal cost: 

*
DT � T

 

( ) ( ) ( )*
DRP D BRP

h T
K T,T K t

2dT
= −   (21) 

 
     Now, considering the optimal time period of the 
warning renewals, we can express the minimal 
medium cost : *

DRPK
 

( ) ( ) ( )

( ) ( )

*
* * * *
DRP DRP D BRP *

*
* * D

* *

h T
K K T ,T K T

2dT
T1h T 1 h T 1

2dT 2T

= = −

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

=   (22) 

 
 
2.1.2   Non-periodical renewals strategies 
These kinds of strategies have a random nature and 
they are elaborated taking into account the system 
age, its wear and other random variables which 
describe the system evolution. 
ARP strategy (Age Replacement Policy) 
     It is the simplest non-periodical strategy and it 
considers a certain age   reached by the system. Due 
to the non-periodical nature of renewals, the 
effective achievements of the strategy are more 
difficult and this can be expressed by a cost, 
associated to an ARP renewal, greater than the cost 
corresponding to a warning renewal. 
     Mainly, the criteria for determining the system 
age for a renewal are the following: 

1) The guarantee of a certain reliability (or 
availability) level; 

2) An extreme condition for an -depending 
variable; 

x

3) The minimization of the minimal cost of the 
system maintenance per time unit. 
     The most important criterion of projecting the 
ARP strategy is the minimization of the mean cost 
of the system maintenance per time unit: 
 

( ) ( ) ( )

( )

*

ARP x

0

F x a R x
K x mi

R t dt

−
=

∫
n→   (23) 

 
     The numerator of the ARP cost means the cost of 
the system maintenance for its entire life. We noted 

 the cost of the warning renewal. From the 

extreme condition 

*a
dK 0
dx

= , we obtain immediately 

the equation of the optimal age for executing the 
system renewal: 
 

( ) ( ) ( )
*x

* *
*

0

1z x R t dt R x
1 a

+ =
−∫    (24) 

 
We obtain the minimal mean value of the cost by 
replacing the solution  of optimal age equation in 
the analytical expression of the ARP cost: 

*x

 
( ) ( ) ( )* *

ARPK x 1 a z x= − *     (25) 

 
 
 
2.2 The Determination of the System and 
Subsystem Components Function 
Probabilities 
Let us consider a system described by a logical 
model of series type formed by  elements with 
rates of damages and of renewals constant and equal 
with  and , 

n

ia ir i 1,n= . The mean timings of 
function and renewal are: 
 

1i
i

1m
a

= , 2i
i

1m
r

= , i 1,n=    (26) 

 
     Analyze of the system's reliability presumes two 
stages: 
 
2.2.1 Calculating the reliability indicators, the 
reliability function and the well functioning time 
average 
The determination of the reliability function can be 
done directly by using the logical model, because 
the renewals of the system’s elements don’t 
influence its behavior till the damage: 
 

0a t
0P e−= ,     (27) 

n

0
i 1

a
=

=∑ ia

 
(we noted with  the maintenance function of the 0P
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system). From this results immediately the time 
functioning average: 
 

1
0

1m
a

=       (28) 

 
Remark 2. The reliability function can be 
determined using the Markov process model which 
has the following graph (Figure 2). 
 

 
 

Fig.2 The Markov process model 
 

     Here 0 represents the state of good functioning 
and  represent the states of damage 
corresponding to the damages of the system's 
elements. 

n,,2,1 K

     Because at this stage we are interested only in the 
system's behavior till the damage, we ignore the 
possibilities of renewing from the state of damage to 
the state of good functioning. The equation with 
finite difference which, characterizes the process is: 

 
( ) ( ) ( )ta1tPttP 000 Δ⋅−⋅=Δ+    (29) 

 
     It results immediately the following differential 
equation: 
 

( ) ( ) ( ) 10P,tPa
dt

tdP
000

0 =⋅−=    (30) 

 
     Its solution gives us the passing matrix. The 
system being presumed without renewal, it can be 
calculated immediately the reliability indicators 
required by safe functioning analyzes. 
     Comparing the two methods of calculus it results 
that the Markov process model does not present any 
calculation advantages in structural analyze of the 
system's reliability (without renewal). 
 

2.2.2 The determination of the renewal specific 
indicators 
First of all it is used the global model of renewal 
process alternated with the Markov process model:-
we apply the global model of alternate renewal. 
     This model presumes that we know the 
distribution of the system's functioning and renewal 
duration. The density of the renewal duration at the 
system's level is generally calculated by a structural 
analyze which is the real disadvantage in using the 
global model. The system's renewal duration, by the 
rehabilitation of the element i , is distributed with 
the density of probability , given by: 1f
( ) ( ) 0a t

1 0 0f t P t a e−′= − = . The probability of the 
element's i  damaging to be the cause of the system's 

damage, knowing that it took place, is i

0

a
a

. It results 

immediately that: 
 

( ) i

n
r ti

2
i 1 0

af t r e
a

−

=

=∑ i     (31) 

 
     The average of the system's renewal duration is: 
 

( )
n n

i 2
2 2 i

i 1 i 10 i 1i0

am tf t dt m
a r m

∞

= =

= = =∑ ∑∫ im   (32) 

 
     With the help of the density of probability 
given by (31), we can calculate immediately the 
Laplace transformation of the renewal densities: 

2f  

 

( ) ( )
( ) ( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=

++
−

+
=

=
⋅−

=

∑∑
==

∗∗

∗
∗

n

1i i

i

0
n

1i i0

ii

0

0

0

0

21

1
1

rs
a1s

a

rsa
ra

sa
a1

sa
a

sfsf1
sfsh

  (33) 

 
( ) ( ) ( )

( ) ( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

+
⋅

=

=
⋅+

⋅
+

=
⋅−

⋅
=

∑

∑

∑

=

=

=
∗∗

∗∗
∗

n

1i i

i

n

1i i

i
i

n

1i 0i

ii

0

0

21

21
2

rs
a1s

rs
ra

ars
ra

sa
a

sfsf1
sfsfsh

  (34) 

 
Remark 3. (regarding the asymptotic behavior of 
the system). The renewal densities attend to the 
same asymptotical value equal to the inverse of a 
functioning renewal cycle average: 
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( )
21

2
1t mm

mthlim
+

=
∞→

, ( )
21

2t mm
1thlim
+

=
∞→

  (35) 

 
     The Laplace transformation of availability is: 
 

( ) ( )* 0
1 1 nt s

i

i 1 i

1
n

2i 1 2
1 1

i 1 1i

alim h t limsh s
a1
r

m1
m m mm m
m

→∞ →∞

=

=

= =
+

= =
++

∑

∑

=

  (36) 

 

( ) ( )
21

2s2t mm
1sshlimthlim
+

== ∗

∞→∞→
  (37) 

 

( ) ( ) ( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=+⋅=

∑
=

∗∗∗

i

n

1i

i
20

r
s
a1s

1sh1sPsA   (38) 

  
 
     The availability coefficient, the asymptotic value 
in stationary state is obtained by the limit: 
 

( ) ( )*
nt s 0 0

i 1 i

1 1
n n

2i 2i 1 2
1 1

i 1 i 11i 1i

1A lim A t limsA s
a1
r

m m1
m m m m1 m m
m m

→∞ →

=

= =

= = =
+

= = =
++ +

∑

∑ ∑

=

   (39) 

 
 The second stage of reliability (figure 3) analyze it's  
done by using the Markov processes, taking into 
account the system's returning possibilities from the 
states of damage associated with the transition 
probabilities . tri Δ⋅
 

 
 

Fig.3 The second stage of reliability 
    

     The processes state probabilities are determined 
with the help of the system of equations with finite 
differences: 
 

( ) ( ) ( )( )i 0 1 i iP t t P t a t P t 1 r t , i 1,n+ Δ = Δ + − Δ =    (40) 
 

     Adding the following relation: 
 

( ) ( )
n

0 i
i 1

P t P t 1
=

+ =∑     (41) 

 
we get the following system of differential 
equations: 
 

( ) ( ) ( ) ( )i
i i i 0 0

dP t
r P t a P t , i 1,n , P 0 1

dt
= − + = =   (42) 

 
     Using the Laplace transformation in (41) and 
(42), we obtain: 

 

( ) ( ) ( )
n n

* * i
i 0

i 1 i 1 i

a1P s P s P s
s s r= =

= − =
+∑ ∑ *

0   (43) 

 
     From this relation results immediately ( )*

0P s , 
which is the Laplace transformation of the system's 
availability: 
 

( ) ( )* *
0 n

i

i 1 i

1A s P s
as 1

s r=

= =
⎛ ⎞
+⎜ ⎟+⎝ ⎠
∑

   (44) 

 
     From (42) and (43) it results the Laplace 
transformation of the passing probabilities: 
 

( ) ( )
i

* *i i
i 0 n

i i

i 1 i

a
a sP s P s

s r as 1
s r=

+
= =

+ ⎛ ⎞
+⎜ ⎟+⎝ ⎠
∑

r   (45) 

 
     The  probability represents the system's 
unavailability because of the element . Its 
asymptotical value is: 

iP
i

 

( ) ( )
i 2

* i 1
i i n nt s 0

i 2

i 1 i 1i 1

a m
r mlim P t limsP s

a m1 1
r m

→∞ →

= =

= = =
+ +∑ ∑

i

i

i

i

  (46) 

 
     From practical grounds  is taken m  and only 
the first two terms of the developing are taken. We 
have: 

0s
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( )* i i
i

i i

a A1P s
B s A s B

⎛ ⎞
= −⎜ +⎝ ⎠i

⎟    (47) 

 
where: 
 

( )

n
k i

i k 2
k 1 0 k

r rA 1 a
s r=

−
= +

+
∑ , i 1,n=   (48) 

 

( )
( )

n
0 i k0 i

i i k 2
k 1 0 k 0 k

s r rs rB r a
s r s r=

⎡ ⎤−+
= + +⎢ ⎥

+ +⎢ ⎥⎣ ⎦
∑ , i 1,n=   (49) 

 
     It results that: 
 

( )
i

i

B
t

Ai
i

i

aP t 1 e
B

−⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
, i 1,n=    (50) 

 
 
     The determination of maintenance functions for 
the  components of the analyzed system allows the 
computation of the renewal unities  and the 
renewal functions , 

n
ih

iH i 1,n=  : 
 

( ) ( ) i

i

B
t

i Ai
i

i

dP t af t e
dt A

−

= − =    (51) 

 

( )
i i

i

B a t
Ai

i
i

ah t e
A

−
−

=     (52) 

 

( ) ( )
i i

i

B at t
Ai

i i
i i0

aH t h x dx e 1
B a

−
−⎛

= = ⎜⎜− ⎝ ⎠
∫

⎞
− ⎟⎟

  (53) 

     Using these elements can be analyzed the safe in 
functionality for the analyzed system as well the 
component subsystems for every period of time  
fixed. 

t

 
 
2.3 The Problem of Option Between Different 
Renewal Strategies 
The option between different renewal strategies has 
to be done by using an unitary criterion and 
considering the optimal variant of different 
strategies. Let us consider for the beginning the 
ARP strategies when no FRP warning renewal is 
done. The criterion is determined by the minimal 
cost of the maintenance per unit. As the optimal 
values of the  and  costs are raising 
reported to the warning renewal cost, there will be 
the unique values  as to have the 

inequalities: 

ARPK BRPK

0 0b 0>a ,

( )*
ARP FRPK a K> , ( ) 0a a∀ > ; 

( )*
BRP FRPK b K> , ( ) 0b b∀ >  

     It results that in the situations in which  
and 

0a a>

0b b>

0a a>
 the strategy FRP will be adopted. If 

 and 0b b< , the strategy BRP is adopted and 
if 0a a< , 0b b>

a a
, the ARP strategy is adopted. 

When 0< , 0b b< , the ARP and BRP costs have 
to be directly compared between them. As both of 
them are increased functions of a , respectively of 
b , it results that for a fixed a , there is an unique 
( )*b a  for which the following equality is achieved: 

 
( )( ) ( )a* * *

BRP ARPK b a K=

*

   (54) 

 
     We can easily notice that ( ) 0b a < b

a
 and it is 

monotonously increasing in comparison with . 
Knowing the ( )*b a  function, we can decide 
immediately decide over the strategy that have to be 
adopted. 
     All the conclusions regarding the choice of the 
renewal strategies are synthesized in the figure 4. 
     Using the results from 2.1 and 2.2, the following 
elements can be determined for each subsystem , i
1 i n≤ ≤ , of the analyzed system: 

- the values  i
0a , i

0b  which border the strategy 
ARP by the ARP and BRP strategies; 

- the separation curve ( )*
ib b= a  of the AR.P 

and BRP strategies; 
 - the replacement optimal times  and  in the 
case of using the BRP strategy, respectively the 
ARP strategy. 

*
iT *

iz

 

 
 

Fig. 4 The choice of the renewal strategies 
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2.3.1 The determination of the separation curve 
of the BRP and ARP strategies 
From the equality ( ) ( ) ( )ih b 1 a z a= − i , it results 
that: 

 

 

( )
i i

i

i i

i

B a
b

A
i i

i i i i
B a

b
A i i i

i i

H b b a1 e 1 1
b m B a b m

B a 1 me b
a m

−
−

−
−

+
> ⇒ ≥ − ⇒

−

− −
⇒ ≥

 (55) 

 
      Using the equality: , for x very small; 
we immediately obtain the approximately value for 
the searched 

xe x= +1

i
0b : 

 
i
0

i i i i i

i i i

1b
B a B a 1 m

A a m

≈
⎛ ⎞− − −

+ ⎜ ⎟
⎝ ⎠

  (56) 

 
The determination of  i

0a
     A straightforward calculus leads to: 
 

( )
i

i
i

i
i

i
i

Ba 1 t
A

z t
aA 1 t
A

⎛ ⎞
−⎜ ⎟

⎝≈
⎛ ⎞
−⎜ ⎟

⎝ ⎠

⎠    (57) 

 

     The equation ( ) ( )i
i

11 a z a
m

− =  leads to the 

following second order equation: 
 

2 i i i

i i i i

B B a 1a a 1 1
A A mA m

⎛ ⎞
− + + + − =⎜ ⎟

⎝ ⎠
0  (58) 

 
For this equation we have: 
 

2

i i i

i i i i

2 2
i i i i i i

2 2 2
i i i i i

B a B 11 4 1
A mA A m

B a 2a 2a B 4B1
A m A mA mA mA

⎛ ⎞ ⎛ ⎞
Δ = + + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − + + + + >⎜ ⎟
⎝ ⎠

0

 (59) 

 
The solution is: 
 

i i

i i i
0

B a1
A mAa

2

+ + + Δ
=    (60) 

 

2.3.2 The Determination of the Optima

tion of 

l 
Replacement Times for the BRP Strategy 
The optimal replacement time *

iT  is the solu
the equation: 
 

( ) ( )i i i i iT h T H T b− =     (61) 

     We have: 
 

 
i i i i

i i
i i

B a B aT T
A Ai i

i
i i i

a aT e e
A B a

− −
− −

b− =
−

  (62) 

 
   Developing in series Mac-Laurin and taking only   

the first two terms, the equation becomes: 
 

( )

i i i i
i i

i i i i

2
i i

B a a a1 T T b
A A B a

T T 1 b 0

⎛ ⎞⎛ ⎞−
− − =⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
αβ + αγ − + − γ =

⇒
  (63) 

 
where: 
 

i i

i

B a
A
−

α = , i

i

a
A

β = , i

i i

a
B a

γ =
−

   (64) 

 
   We obtain that:   

 
*
i

1T
2

−αγ + Δ
=

αβ
     (65) 

where:  
 

)( ) (21 4Δ = αγ − − αβ β − γ     (66) 

Remark 4. It can be proven that  is very small.
 

α   
For 0α ≈  results: 

 
* i i
i

i i i

a AT b
B a a

⎛ ⎞
≈ +⎜ ⎟−⎝ ⎠

    (67) 

 
 

.3.3 The Determination of the Optimal 

he solution of 

2
Replacement for the ARP Strategy 
The optimal replacement time *

ix  is t
the equation: 
 

( ) ( ) ( )
ix

i o 0 i *
i0

1z x P t dt P x
1 a

+ =
−∫    (68) 

 
   This leads us to the equation:   
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i
i

i

i
i

i

i ia B⎛ ⎞
− Bi x

i i Ai

i i
i

i

B
x

Ai
*

i i

1 x
A a A e 1a B1 x

A

a 11 1 e
B 1 a

−

−

⎜ ⎟ ⎛ ⎞⎝ ⎠ − + +⎜ ⎟⎜ ⎟
⎝ ⎠−

⎛ ⎞
+ − − =⎜ ⎟⎜ ⎟ −⎝ ⎠

   (69) 

 

     Because 
i

i
i

B x
A i

i
i

B1 e x
A

−

− ≈ , we obtain the 

following equation: 
 

( )

( )

2 i i i
i i i i2 *

i i i i

i i i
*

i i i

a a B 1x a B x
A A A 1 a

a B A 11 0
A B 1 a

⎛ ⎞
− − −⎜ ⎟−⎝ ⎠
−

+ + − =
−

+

  (70) 

 
   From this second order equation we obtain the 

.4 The Determination of the Optimal 

of the system 

  
searched solution *

ix  (from practical point of view, 
the solution which we are looking for is the greatest 
root of the above equation). 
 
 
2
Replacement Times 
The points n21 t,,t,t K  of the damage 
correspondin damages of the system's 
elements n21 S,,S,S K  can be calculated like 
equilibrium oint ti is the solution of the 
equation ( ) ( )

g to the 

 points (the p
n,1i,tPtR i == ). 

( ) 1m
t

etR = ,
21

1

i

i

i

i

mm
m

r
a

B
a

     Because, 
+

⋅= , 

( )
2i1

21i

i

i

mrm1
mmr

A
B

⋅−+
+⋅

= , ti is the solution of the 

equation (figure 5): 
 

( )

n,1i,e1
mm

m
r
ae

t
mrm1

mmr

21

1

i

im
t

2i1

21i

1 =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+
⋅= ⋅−+

+⋅
−−

   (71) 

 
     Developing in Taylor series (in the point

solution

 
10 mt = ) and taking only the first two terms, the 
 of the equation is: 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

α

⋅
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

α

⋅+−
−

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

α

⋅+
=

−−

−−

0
i

i
0

i

i

1

0

1

0

t
A
B

i

i
t

A
B

i

i

i

i

m
t

1

0m
t

i

e
A
a

e
B
a

B
a

e
m
t

e
t

  (72) 

 
 

When 
0

i

i
1

0

t
A
B

i

i

1

m
t

e
A
a

m
e −
−

⋅+=α . 

 
For t0 very small on obtain: 
 

( )
2i1

2
1i

2i11
i mrm1ma

mrm1mt
⋅−++⋅

⋅−+⋅
=     (73) 

 

We assume 
n

n

2

2

1

1

r
a

r
a

r
a

>⋅⋅⋅>> . 

      
Practically, the solution (73) was obtained by 
leveling the equation (74) obviously representing an 
approximate solution. 
     The equation  can be solved, 
relatively easy by using the method of successive 
approximates, leading to a lower error solution. 

)t(P)t(R i=

Starting with the equation: 
 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅=

⋅−− t
A
B

i

im
t

i

i

1 e1
B
a

e   (74) 

 

     We note 1m
t

ex
−

=  which leads to solving the 
equation: 
 

( )Dx1
C
1x −⋅=       (75) 

 

where 
i

i

a
B

C = , 1
i

i m
A
BD ⋅= . 

      
Applying the method of successive approximates, 
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Practically, the failure moments of the system are 
obtained by solving, for each subsystem, an 
equation type (32). 

after a relatively easy calculation, we obtain the 
solution of the equation (75). 
 

     If we take into consideration that i iA B m1≈ ⋅ , 
from (32) it results: 

  

ma
A1

1x

1i

i

*

⋅
+

=      (76) 

 

i 2
i 1

i 1

r mt m ln 1 1
a m

⎡ ⎤⎛
≈ ⋅ + +

⎞
⎢ ⎥⎜

⎝ ⎠

 
⎟

⎣ ⎦
   (78) which leads to the solution of the equation (74): 

        It is obvious that relation (78) shows the 
dependence between i component moment of failure 
elements m1, m2 specific for the reliability of the 
analyzed system and elements ai, ri specific for 
reliability of i subsystem.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅=
1i

i
1i ma

A
1lnmt    (77) 

 
     Practically, the failure moments of the system are 
obtained by solving, for each subsystem, an 
equation type (77). 

 
 
 
 

 
 

Fig.5 The equilibrium points 
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3   Conclusions 
From technical data it can't be precisely determined 
the breakdown times for the subsystems of the 
analyzed system. Only the intervals in which the 
breakdowns take place can be determined. 
     The failure moments of the analyzed system 
components were calculated approximately, and it is 
obviously needed to study the errors. Practically, it 
is needed to determine the error from the calculation 
of  but also from the calculation of the failure 
moments 

)s(P*
i

n1,i ,t i = . 
     Introducing elements with economic aspect (e.g. 
the costs}, it can be determined the renewal 
moments as well as the renewal strategy which has 
to be adopted. 
     The use of the results presented in this paper can 
lead to the following advantages: 

• Calculation, aren’t so difficult and allow to 
obtain results which are easy to apply in 
practice; 

• In specialized literature, theoretical findings 
generally use asymptotic properties and for 
this reason the results are difficult to apply 
or lead to erroneous results; 

• The results presented in the paper can 
always be applied because every probability 
distribution associated to the system’s 
reliability can be estimated through a 
succession of exponential distributions.  

     Actually, introducing elements related to the 
intervention costs, the concept of determining the 
intervention moments of the systems, influenced by 
the renewal processes, is changed fundamentally. 
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