WSEAS TRANSACTIONS on MATHEMATICS

Gabriela Mircea, Dumitru Opris

Neimark-Sacker and flip bifurcations in a discrete-time
dynamic system for Internet congestion

GABRIELA MIRCEA, DUMITRU OPRIS
West University of Timisoara
ROMANIA
gabriela.mircea@fse.uvt.ro, opris@math.uvt.ro

Abstract: - The aim of this paper is to study the Neimark-Sacker and flip bifurcations for the discrete-time
dynamic system, which describes the Internet congestion, with a single link and two sources. We describe the
algorithm in order to determine the Neimark-Sacker bifurcation and the normal form. We establish the
existence of a flip bifurcation for the case when the model’s two parameters depend on the real parameter a,
which influences the existence of the bifurcation. The numerical simulations verify the theoretical results.
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1 Introduction

Congestion control mechanisms and active
queue management schemes (AQM) for the Internet
have been extensively studied since the work of
Kelly et all [2]. In [7], the Hopf bifurcation has been
studied for the model of an Internet network with
r(r>1) link and single source, which can be

formulated as:
5,0 =K(w—af (5 (=)~
r
b Xt =D f (3 t=1)) (1)
=
J#
i=L...r
where x;(t) is the sending rate of the source i at
time, k is a positive gain parameter, 7 is the sum of
forward and return delays, w is a target (set —point),
and the congestion indication function f(x) is
increasing, nonnegative, which characterizes the
congestion.
The model obtained from discretizing the system
(1) is given by:
x;(n+1)=x;(n)+k(w—af (x;,(n—q))—
r
by xjn=q)f(x;(n=q)). )
J=1
J#i
i=1..,r, n,geN
And it represents the dynamical system with
discrete-time for Internet congestion with r link
and single source.
In [7] the system (2) was analyzed, considering k
to be a parameter, ¢ =1and g =2 . We determine the
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value of the parameter k for which the Neimark-
Sacker bifurcation takes place. For different values
of the parameters, we carry out a numerical
simulation.

The dynamic model with a single link and »

sources can be described by:
. a.
x; (1) = kix; (t = 7; )[—l - pix; (I)P(l)]
x; (1)
3)

OE kp(t)[
1

r
x(t—17)— c], i=1..,r
=1
where, x;(¢) is the rate at which source i transmits
data at the time ¢, «; andf; are positive real
numbers, p(t) is the loss probability function, 7; is
round-tripe delay for source i, ¢ is the capacity,
k;, k are gain parameters.

The model obtained from discretizing the system
(3) is given by:
i

x;(n)

x;(n+)=x;(n)+k;x;(n—q; )[ - Bix; (n)p(n)j

4)
,
p(n+1)=p(n)+ kp(n)[in (n—gq;)— c], i=1...,r
i=1
where n, g;€ N.

In this paper we will focus on the local stability,
the Neimark-Sacker and flip bifurcations, if the
parameters k;,k satisfy relations that are obtained
by using the Schur criterion.

The rest of the paper is organized as follows: In
section 2, by analyzing the model (4) for » =2 and
q: =0, g, =0, we establish the relations that satisfy

the k;, k,,k parameters so that the equilibrium point
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is asymptotically stable. We prove that there is a
value k; for which a Neimark-Sacker bifurcation
takes place. We determine the normal form on the
central manifold corresponding to the value &, and
the associated Lyapunov coefficient. For fixed
values of parameters a;,,, B, b, ¢, ki, ky, we
determine the value of k;, and we visualise the
corresponding orbits. In section 3, we study the
local stability and the Neimark-Sacker bifurcation
for ¢, =0, g, =1 and ¢, =1, g, =0. We determine
the k parameter in relation to k; and k,, and we
determine the value k,, for which a Neimark-
Sacker bifurcation takes place. For this value, we
establish the normal form on the central manifold as
well as the Lyapunov coefficient. For fixed values of
parameters ;, @5, By, B, ¢, ki, k,, we determine
the Lyapunov coefficient and we visualize the orbits
(n, p(n)), (x;(n), p(n)), (x,(n), p(n)). In section 4,
we analyze the model (4) for ¢, =¢g, g=1, g, =0
=0, 9,=¢, q=1.
consider that parameters

and For analysis, we will
ki, ky,k depend on the
fixed parameters ¢y, ,, B, 5, and the variable
For ¢,=¢q, g, =0, q=0,
establish the existence of a flip bifurcation. For fixed
values of @, @,, By, B,.c, we visualize the orbits

(as -xl (l’l)), (as -x2 (l’l)),

real parameter that characterizes the bifurcation.

parameter a . we

(a,x3(n)), where a is the

2  Local stability and the Neimark-
Sacker bifurcation analysis for q;=0,
i=1,2.

In this section, we consider the model with a
single link and two sources with g; =0, i=1,2. The
model can be described by:

&
x;(n)

X (n+1)=x;(n)+k;x; (n)( —Bx;(n) p(n)J

) 5)

pn+l)= p(n)+kp(n)[2xi(n)—c], i=12
i=1

wherek; >0, i=12, k>0, ;>0, £,>0, i=12.

Let (x19,Y29,P0) be the non-zero equilibrium

point of the system (5). Hence it satisfies the
following equation:
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10 \/m_'_m
20 m+m

2
_l e, |
Po—cz[\/;l+\/;2].

If we linearize the system (5) and if the
equilibrium satisfies (6), we can obtain:

yi(n+1) =ayy(n)+a;3ys(n)

(6)

Ya(n+1) =ayy,(n)+azy;(n) 0
y3(n+1) =az y(n) + azy,(n) + az3 y3(n)
where
ay =1=2k fix0pg, a3 = _klﬂlxlzo
ay =1=2kyBrx50P0, a3 = _kZﬂzxfﬂ ®)

azy = kpg,  azp =kpy, a3 =1
The characteristic equation of the system (7) is

given by:

P —AL +AA—A; =0 9)
where
A =ay +ay +az
Ay =ag3(ay +ay)+ayan —kpo(a;z +ay)  (10)

Az = ay1aya33 —kpo(ay3ay; + ayzay)

It is well known that the trivial solution of (7) is
locally asymptotically stable if all the roots of the
characteristic equation are in modulus less than 1 and
unstable if one root is in modulus greater than 1.
Therefore, in order to study the local asymptotical
stability of the equilibrium of the system (5), we
need to investigate the distribution of the roots of
equation (9) with the function of parameters
ki ky, k.

For fixed kj,k,, let kybe the positive root of
equation:

2 2
k” po(ayzay, +aya )™ + kpy(Aj(a3ay + ayap) -

ayanazs(ayzay + dxzay)) +agag +axn) +

(1)

2 2 2 _
ay 1y — 1+ Ajay axazs + ajiaraz; =0

Using the Schur criteria [4], [S] we obtain:
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Proposition 1:

a) If k,k,,k satisfy the relations:

45| <1, A - Ay <2, 1- Ay + AA; - AT <O
where A, A,,A; are given by (10), then the
equilibrium of the (&)
asymptotically stable.

b) If kyis the positive root of the equation (11)

system is locally

and ki,k,,k satisfy the relations:
|A3] <1, |A - As] <2,
then the equation (9) has one root in modulus less
than 1 and two roots in modulus greater than 1.
¢) The value k, is a Neimark-Sacker bifurcation,

namely there exists an «a >0 sufficiently small so
that, for k =k, — , the equation (9) has the roots in
modulus less than 1 and, for k =k, + «, it has two

roots in modulus greater than 1.

In what follows we determine the normal form
for system (5) on the central manifold corresponding
to the value k for bifurcating parameter k .

Let u=u(a) be one root of the characteristic
equation (9) for k=ky+ 0.
The next propositions hold:

Proposition 2:
a) The eigenvector corresponding to the

eigenvalue y, the solution of system Al =yl has
the components:
Iy =—a;3(1—ay),

L =ay(H—a), (12)
by = —ay)(f—ay).
where
a; 0 a;
A= 0 a22 a23
a3; 4z 433
b) The eignevector corresponding to the
eigenvalue /_1, the nontrivial solution of system

Al'm= M m has the components:

S ) B my = 92 m3=l (13)
(H—a))V (U—an)V 14
where
_hay  hay
y=—tB1 By, (14)
Hay Hap
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In order to determine the normal form of the
system (5), by applying the method from [4], [5], we
obtain the following coefficients:

By = —2k1ﬁ1P0112 — 4k fixiohl,

By, ==2k B poly = 2k1ﬁ1x10(21 L+ 1),

Byg = élzo,

By = —2k2ﬁ2P0122 =4k, Brxaolyls,

By11 ==2ky 5 pols Ir- 2k, 2x20(22 L+1 ;3)» (15
Byyy = )_?3220,

By =2k (L3 +1513),

Byyy =Bl +1y 3+ 2y +1, 13),

By, = é320 :

820 = Biaommy + Bypgmy + Baygms,

811 = Bijimy + By ymy + Byyyms,

802 = Biopmmy + Byyymy + Byyyms,

- - - 16
koo = Biog mi+ Byyg m2+ Bsyg m3, (16)
kiy = By mi+ By ma+ By m3,
koo = Bygp mi+ Bygy, ma+ Bsy, m3.
hiag = Biggmy = 820l; = kpo Zi’ i=123
hiyg = Bjpymy — gl —kyy L, =123 a7
higa = Bigay = 8o li = kop Ei, i=123.
Woo = A(#z)_lhzo’
wyy = Ay, (18)
woa = A ) hgs.
where
,Uz —an 0 —ap
A(,Uz): 0 ﬂz_azz —dxy |
—das; —das ,UZ —dasz;
l—all 0 —a13
A= 0 l-ay —ay | (19)
—a3  —ayp l-axp
Ay = Au?).
Pog = (Byy0s Bang s )"
20 120> 20> M320) >
T
hyy =y by hsg) (20)

hy, = (hmz’h/zoz»heoz)T-
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821 =2k B po L1 wing — 2k Bixio (1 wipg + 13 Wigp),
=2ky B, o 12 Wyng —2k1 B0 (12 Wang + 13 Wayg),

+2(=2k B po i wy =2k Bxao(liws + 3w, (21)

=2ky Brpo 12 Wayy =2k Brxag (L2 Wiy + 13wy ),
=2k Baxag(l2 Wiy =13 wyy),
k(Lywsy+ 13wy Lo wy+ 12wy + 13wy )m+

+(=2ky B ol 13,2k Bl 1. 0.

where l:(ll,lz,l3), m =(m1,m2,m3)T.

Proposition 3:
a) The normal form for the system (5) is:

1 _
z(n+1)=wz(n)+ 5 gzoz(n)2 + 8112(n) z(n) +
(22)

1 - 1 -
580 2(n)’® +58212(”)2 z(n)

where z(n)e C, ne N and the coefficients are given

by (12), 21).
b) The system (5) in the neighbourhood of the
equilibrium point (x;q, X5, Pg) i8:

: P 1
xi(n) = xig +L,2(n) + 1; 2(n) +—=winoz(n)* +
2
_ | _ (23)
wiz(n) z(n) + 5 Vio2 2(n)?
i=123, neN, x3(n)=p(n) and z(n) is a
solution for (22) and the coefficients are given by
(18).
¢) The Lyapunov coefficient associated to the
normal form (22) is given by:

_ 8x@gy @@ =3 -2p(@) |
2(u(@)* - p(a))(p(a) —1)

gn@f,  e@ | g@
- 2

L

vap (@)

(24)

- @ 24 (@) - (@)
d) Let 6)=arg(x(0)) and L =Re(e % Ly, (0)).
If Ly<0(Ly>0), there is an invariant, stable

(unstable) orbit in the neighbourhood of the
equillbrlum (.xlo, X720 po) .
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For the simulation, we consider the values:
2,=0.1, a=05, B =01, p,=0.1,
k;=0.3, k, =0.1.

Using a program in Maple 12, we obtain the
orbits presented in the figures below.

The roots for the characteristic equation are:

c=1,

1y =-0.497, 11, =—0.006+0.991, 45 =41,, with
| <1, || = |us| =1, Ly=0.9562..

Because L,>0, we obtain an unstable orbit.
Fig.1 represents a visualisation of the orbit (n, p(n)),
for wa)=pu -a,
visualisation of the orbit (n, p(n)) for u(a) =+,
a=0.01. Fig.3 and Fig. 4 represent visualisations of

a=0.01. Fig.2 represents a

the  orbit (x(n), p(n)), and (x5 (n), p(n))
respectively.
10 48; S 1
10 475;: &
10 47;' s
10 455;; (o
IDI o ‘1‘00‘ o I2bd h I36DI o I460I o ISIDDI o
Fig.1 The orbit (n, p(n)),
for ()= —a, =0.01
107 o=
e e R e
Fig.2 The orbit (n, p(n))
for u(a)=py+a,0=0.01
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10 46
10,4754

10474

0465w

‘1‘0‘00‘5‘ ‘1‘0?0‘1‘ o
Fig.3 The orbit (x;(n), p(n)),
for y(@)=p—a,0=0.01

9.99 9855 10

10,484
10,4754

10,474

104854 -+

4.471 4.472 4.473 4.474

Fig.4 The orbit (x,(n), p(n))
for u(a)y=p+, =0.01

3  Local stability and the Neimark-
Sacker bifurcation analysis for q;=0,
q:=1 and q;=1, q,=0

In this section, we consider the model with a
single link and two sources with ¢, =0, g, =1. The

model is described by:
Xg(n+1)=x,(n)
2 (14 1) = 3, (n) +kyxq ()~ B3 () p()
X (n)

25)
% (n+1) = xy(n) +kyxg (n)()%) — By () p(n))
2

pn+1)= p(n)+kp(n)(x (n) +xo(n) —c)

The non-zero equilibrium point of the system
(25) is (.)COO = X205 X10> X20>» po) where X105 20> Po is
given by (6).

If we linearize the system (25) and obtain:
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Yo(m+1)=y,(n)
yi(n+1)=byy;(n) +by3y3(n)
Y2 (n+1) =y, y,(n) + by3y3(n)
y3(n+1)=bsyyo(n) + by y (n) + b3z y3(n)
where
by =1=2k fixiopy, b3 = _k1ﬂ1x120 )
by, =1=2k; B51330P0> b3 = —kzpzxfo ; 27
byy = kpy, b3y =kpg,byz =1.

(26)

The characteristic equation of the system (26) is
given by:
A -BA+B,A -BA-B,=0. (28)
where
By =by| +by + b33
By = by by +b33(byy +byy) —by3b3y

(29)
B3 = b33y 1by) + by3by by + b3bsys
By = b33b1byy —b3gbysbs; + by
For fixed k, k, , let k, given by
b;b
kO — 11¥22 (30)

Po(by1byz = by3)
Using the Schur criteria, we obtain:

Proposition 4:
a) If k,, k, satisfy the relations:

B, <1, |B|<2(1+By), (B, -1+ B,)(1+B,)* <B{B,,
where B, B,,B, are given by (28) and k =k,
given by (30), then the equilibrium of the system

(25) is locally asymptotically stable.
b) If k,, is the positive root of the equation

(B, —1+B,)(1+ By)* — BB, =0, and k; , satisfy the
|By|<1, |B|<2(1+B,) then ky is a

Neimark-Sacker bifurcation, namely there exists a
o >0 sufficiently small so that, for &k, =k,y -,

relations

the equation (28) has the roots in modulus less than
1 and for k, =k,y+«, it has the roots in modulus
greater than 1.

In what follows, we determine the normal form
of the system (25) on the central manifold
corresponding to the value k,, of the bifurcation
parameter k.

Let u=u(ax) be one root of characteristic
equation  (28)
ky=kyy+0r.

corresponding to the value

The next proposition holds:
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Proposition 5:
a) If the eigenvector corresponding to the

eigenvalue 4, the solution of the system Bl =yl

where:
0 0 1 0
byy by 0 by
has the components:
bys (1 —byy)
ly==2-—" | =by5(u—by),
u o (32)
by =byy(u=byy), Iy =(=by) (e =byy).
b) The eigenvector corresponding to the
eigenvalue ;_t, the solution of the system

B'm= M m has the components:

mozvl—’ ml:—ly_31ﬂ ’
byg (= b))V (33)
m = —l m = ’
2= - oMy = :
(—=Dby )V bV
where
Y P L V- B BV (34)
- b
30

byy(U=byy)  pH—by,

In order to determine the normal form of the system
(25), by applying the method from [4], [5], we
obtain the following coefficients:
2
Biyg ==2k1 i pol; — 4k frxiohls,
By = =2k Bipoly =2k Brxyo (L1 I3 + 15 11),
BIOZ = B2,

kya katy o
By =-2-52 1, +2-22 15,

X
20 20

(35)
ka - ka, | -
By =222y bt lgh) +2-252 1, 1,
x20 20
8202 - BZZO )
B3y = 2kglyls,
By =ko(y I3+ 1y 13),
Bypp = B320.
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820 = Biaomy + Byygimy + Byygms,
811 = Byjymy + Byymy + Byyyms,
802 = Bioamy + Bygyimy + Byoms,

- - - 36
kyg = Biog mi+ Byyy m2+ Bsyg m3, (36)
kiy = Byyy mi+ By ma+ By m3,
kop = Bygp mi+ Byyy ma+ Bygy m3.
hooo =—820lo — ko Lo,
hoiy =—81ilo —kiy Lo,
ooz =—=802lo = ko2 Lo, 37)
hizo = Biagmy — 8a0l; — koo li, 1=12,3
hiyyy = Biyymy — gl —kyy Ly, i=1,23
hioa = Biopmy — 8ol —kop Liy 1=1,23.
Woo = B(ﬂz)ilhzo,
- (38)
wip =B Ay,
woy = B(u?)  hy,.
where
u? 0 -1 0
0 u*-b 0 -b
B(u®) = 11 13
v 0 0 M =by  —by
—by  —by 0 ﬂz—b33
1 0 -1 0
swo| O T 0 <hy | (39)
0 0 1-by —by
—byy —by 0 1-by

B(u®)=Bu?).

821 =022k B, py L1 win9— 2k Bixi (11 wing +13 Wipg),

kyar, ~ 7 koo, 7
=== (lowypg+12 Wopp) +2—5= 12 Wy,
420 X20

- - 40
ko (Lo wang+13 wao)m+2(0,-2k; B, poliwin (“0)

ko
=2k Bixio(hws g +hwy 1)’_% (Lwai+hwy1))m
20

(02 B pof? 132 Loy L, O)L.
%20

where [ = (lo,ll,lz,l3)T, m= (mo,ml,mz,m3)T.
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The normal form for the system (25) is given by
(22) with the coefficients from (35). The system
(25) in the neighbourhood of the equilibrium point

(X505 X105 X205 Pp) 18 (23) to which we add:

%o (1) = Xy + I 2(1m) + 10 2(m) + - wggz(m)? +
2 (41)

- 1 -
W 20m) 20+ o 2()°
The Lyapunov coefficient associated to the

normal form is given by (25) with the coefficients
from (35):

For the numerical simulation, we consider the
values:

05120.6, 05220.5, 181:0.5, ,82:().5, C=5,

k;=03.
Using a program in Maple 12, we obtain:
k=0.102, ky;=0.5607, L;,=98.43. Because

Ly >0 we have an unstable orbit.

Fig. 5 represents a visualisation of the orbit
(n, p(n)), for ky;=0.001, ¢=0.01. Fig.6 and Fig.

7 represent visualisations of the orbit (x;, p(n)), and

(x5, p(n)) respectively.

0.262], .
0251
02s]"
0248
o2}

0247

o 100 200 300 400 500

Fig.5 The orbit (n, x3(n))

0.252]
0 251§ -
0.25§
0 2492 X

0,248

02474

662 6.64 B.66 866 8.7

Fig.6 The orbit (x,(n), p(n))
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0.252
0.251
0 25§
o 2492

0245 |

0247

742 T.44 7.45 748

Fig.7 The orbit (x,(n), p(n))

If g, =1, g, =0, the model (4) is given by:
Xo(n+1)=x;(n)

X (n+) = x(n) + klxom)(% “Bmepey
L)
Xy (n)

p(n+1) = x3(n) + kp(n)(xy(n) + x,(n) — c)
If we liniarize the system (42) in the

neighbourhood of the equilibrium point (6) and
obtain:

yo(n+1) =y (n)
Y+ =cpy(n) +ci3y3(n) (43)
Yo(n+1) =cpy,(n) +cp3y3(n)
Y3(n+1) =300 (n) + €3, (1) + c33y3(n)

where

o =1=2k Bixiopgs €13 =~k fix

Xy (n+1) = xy(n) + kyxy (n)(

= Boxy (m) p(n))

2
10’

ey =1=2krx50p0s €23 = _kzpzxio ’ (“44)

30 =kpo, €30 =kpy, 33 =1.

The characteristic equation of the system (43) is
given by:
Ao+ -C3A-C,=0. (45)
where
Cy=cy ey +ess
Cy =cp(cp +e33) + 00633 = C23C3 (46)
Cs =11 (eanc33 = Cp3632) +€13¢30

Cy =—C30C0013

For fixed k;, k, , let k, given by
kO — 1622 (47)

po(cricaz —¢i3)
Using the Schur criteria, we obtain:
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Proposition 6:

a) If k, k, satisfy the relations:
Gy <1 |G 21+ Cy), (€, =1+CA+C,)* <CEC,,
where Ci, C,,C, are given by (46) and k =k,
given by (47), then the equilibrium of the system

(42) is locally asymptotically stable.
b) If k;, is the positive root of the equation

(C, —1+Cy)(1+Cy)* —CC, =0, and k, satisfies
the relations |C4|<1, |C1| <2(1+C,) then ki, is a
Neimark-Sacker bifurcation, namely there exists a
B >0 sufficiently small so that, for k =k;y—/f,
the equation (28) has the roots in modulus less than
1 and for k =k;+ /. it has the roots in modulus
greater than 1.

The normal form of the system (42) on the
central manifold corresponding to the value k;, of

the bifurcation parameter k; is obtained in a similar
manner to that of the system (25)

Flip bifurcation for the system (4)
Let the model:

x(n+1)=x/(n) +kyx; (n— q)( — Bix;(n) p(n))

X (n+1) = %, (1) + o2ty (1) (22— —,b’zxz(mp(n)) (48)

x(
p(n+1) =x;3(n)+kp(n)(x; (n— q) +x,(n)—c)
where

ge N and
_p —p ap
kl = hl a, k2 h2 azﬁz a (49)
with
2cpy
\/0‘1,32 \/0‘1,32 +\/052/31 (50)
2C,B2
\/ % p (\/ ap, + \/ p)

and a is areal parameter.
The liniarized system of the system (48) is given
by:
y(n+1D) =dyy(n)+di3y3(n)
Yo(n+1)=dyy,(n) + dyzy3(n)
y3(n+D) =dsgy(n—q)+dpy,(n)+dszys(n)
where

61y
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dyy =1=-2k fixiopy, diz= _k1,31x120 ’
dyy =1=2k) %50 p, dp3 = —kzﬁzxio )
dyy =kpy, dz; =kpy,dsz3 =1.
and xq, Xy, Py 1S given by (6).
From (52), (49), it follows that:
dyy =dy, ==1+2afx,0py,

djy=—~h—a)Bx, .

dy3 = ‘[ha _awfzzlg]ﬁﬂio’

d3o =kpy, d3 =kpy, d3z=1.

(52)

(53)

Proposition 7:
The characteristic equation of the system (51) for

dll’ d22, d13, d23, d30, d32, d33 given by (53) is:
(A+1=2aB)(AT* — (1 - khyoy ) A7 + khy o, —

al QB+ko) AT +k /al—ﬂla J:o
( : P, ?

where
B=Bix10p0 -

(54)

From (54), it follows that:

Proposition 8:

a) If g=0and £ satisfies the inequality:
O<k<——m (55)

hoy + ha,

then a =0 is flip bifurcation.

b) If g=1land k satisfies

the inequality

O<k< (56)

ha,
then a =0 is a flip bifurcation.
¢) If there exists a k > 0 so that the equation:
A2 — (1= ko) A + ko, =0 (57)
may have the roots in modulus less than 1, then
a =0 is a flip bifurcation.

For the parameter values ¢ =0.6, a, =0.9,
£ =05, f,=0.2, c=2and ¢g=0, the solutions of

the system (48) in relation to the bifurcation
parameter a=¢ are displayed in the following
figures: Fig. 8 The orbit (&, x(n)), Fig. 9 The orbit

(a,x,(n)), Fig. 10 The orbit (e, p(n)).

Issue 2, Volume 8, February 2009



WSEAS TRANSACTIONS on MATHEMATICS

u] 0z 04 06 0a

Fig.8 The orbit (&, x;(n))
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Fig.9 The orbit (a, x,(n))
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Fig.10 The orbit (&, p(n))

For the parameter values ¢;=0.6, «, =0.9,

£ =05, f,=0.2, c=2and ¢g=3, the solutions of
the system (48) in relation to the bifurcation
parameter a=¢ are displayed in the following
figures: Fig. 11 The orbit (&,x(n)), Fig. 12 The
orbit (&,x,(n)), Fig. 13 The orbit (e, p(n)).
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Fig.11 The orbit (¢, x,(n))
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Fig.12 The orbit (&, x,(n))
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Fig.13 The orbit (a, p(n))

These graphics justify the behavior of the
model’s solutions as obtained in the theoretical
section.

5 Conclusion

In this paper, an Internet congestion control,
discrete model with one link and two sources has
been studied. We have considered the parameters

a, B, a,, B, as being positive, subunitary, positive
numbers. The convenient choice of parameter k has
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determined the conditions for the existence of a
Neimark-Sacker bifurcation. The analysis has been
carried out for ¢;=0,¢9,=0, ¢;=1,¢9,=0 and

q1=0,9,=1.

For these cases we have determined the normal
forms and the Lyapunov coefficients. We have
performed numerical simulations for the cases when
the parameters k;, and k, depend on a,f,,. 0,

and the real parametera . We have determined the
conditions for the existence of a flip bifurcation.
The numerical simulations confirm the theoretical
results

The analysis can be carried out in a similar
manner for dynamic systems with discrete time and
delay, with more sources.
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