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ROMANIA
mihaela.neamtu@feaa.uvt.ro
gabriela.mircea@feaa.uvt.ro

DUMITRU OPRIŞ
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1 Introduction
Recently, there has been great interest in dynami-
cal characteristics of economic, biologic, informatics
models with time delay, [6], [8], [9], [10], [12], [14],
[15]. In [2], the authors consider an IS-LM model
with delayed taxation revenues, which is augmented
by a government budget constraint in the tradition
of the well known Schinasi paper [13]. Varying the
length of lag and applying the ”stability switch cri-
teria”, they proved that the equilibrium may lose or
gain its local stability and that the existence of limit
cycles generated by subcritical and supercritical Hopf
bifurcation is obtained. In [11] an IS-LM model with
the same lag in the tax revenues and the capital accu-
mulation equation is presented. The authors analyzed
the quantitative behavior of the model via the Hopf bi-
furcation of stability switch criteria. In [4] an IS-LM
model with distributed tax collection lag is considered
offering an explanation of the multiperiodicity and ir-
regularity in business cycles.

Almost all real economic processes have the state
variables defined at different moments, thus the dis-
crete models are important in obtaining the practical
results. In the present paper, we will use the dis-
cretization method from [3].

After this introduction, in Section 2 we study the
discrete IS-LM model with tax revenues. This model
is obtained by the discretization of the continuous IS-
LM model with tax revenues. The functions that des-
cribe the model are the investment function I and the
liquidity function L. Section 3, respectively Section
4 presents the qualitative analysis of a IS-LM discrete

model with time delay and respectively with exponen-
tial density distribution. Also, some numerical simu-
lations are performed in sections 2, 3, and 4, using
programs in Maple 11. Concluding comments are pre-
sented in Section 5.

We start from the following dynamical system
[2]:

Ẏ (t) = a[I(Y (t), R(t))−S(Y D(t))−T (t) + g]

Ṙ(t) = b(L(Y (t), R(t))−M(t))

Ṁ(t) = c(g − T (t)),
(1)

with: the national income Y (t), the interest rate R,
the real money supply M (prices are fixed at unity).
The tax revenues T (t) are given by:

T (t) = (1− ε)qY (t) + εq

∫ t

0
k(s)Y (t− s)ds,

the disposable income given by:

Y D(t) = Y (t)− T (t),

the tax rate q and the saving function S(Y D(t)).
Further on, we assume that investment I is a func-

tion of national income Y and the interest rate R, i.e.
I(Y, R), the liquidity preference function L is a func-
tion of national income Y and the interest rate, i.e.
L(Y,R), g represents the government expenditure, a,
b, c represent respectively the speed of adjustment in
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the goods market, depreciation rate of the interest rate,
the speed of adjustment in the money market.

The following is assumed about the derivatives:

IY =
∂I(Y, R)

∂Y
> 0, IR =

∂I(Y, R)
∂R

> 0,

LY =
∂L(Y,R)

∂Y
> 0, LR =

∂L(Y, R)
∂R

> 0,

SY =
∂S

∂Y
= s, 0 < s < 1, q ∈ (0, 1).

Let k : IR+ → IR+, be the density of distribution
that verifies the following properties:

k(s) ≥ 0, s ∈ IR+,

∫ ∞

0
k(s)ds=1,

∫ ∞

0
sk(s)ds<∞

and it is called kernel.
If k is the Dirac density of distribution, then:

∫ t

0
k(s)Y (t− s)ds = Y (t− τ)

where τ ≥ 0 is the delay.
If k is the exponential density of distribution,

then:
k(s) = αe−αs, α > 0

and the variable z(t) =
∫∞
0 k(s)Y (t − s)ds satisfies

the differential equation:

ż(t) = α(Y (t)− z(t)).

If k is the Erlang density of distribution:

k(s) = α2se−αs, α > 0

then z(t) =
∫∞
0 k(s)Y (t−s)ds satisfies the following

relations:

ż(t) = α(u(t)− z(t))

u̇(t) = α(Y (t)− u(t))

u(t) = α

∫ ∞

0
e−αsY (t− s)ds

With these assumptions and with the function
S(Y D(t)) = s(Y (t) − T (t)), s ∈ (0, 1), dynamic
system (1) is given by:

Ẏ (t) = a[I(Y (t), R(t))− s(1− q)Y (t)− qY (t) + g]

Ṙ(t) = b(L(Y (t), R(t))−M(t))

Ṁ(t) = c(g − qY (t)),
(2)

the dynamic model with continuous time;

Ẏ (t) = a(I(Y (t), R(t))−(s+(1−ε)(1− s)q)Y (t)−
− (1− s)εqY (t− τ) + g)

Ṙ(t) = b(L(Y (t), R(t))−M(t))

Ṁ(t) = c(g − (1− ε)qY (t)− εqY (t− τ)),
(3)

the dynamic model with continuous time and delay;

Ẏ (t) = a[I(Y (t), R(t))−(s+(1−ε)(1−s)q)Y (t)−
− (1− s)εqz(t) + g]

Ṙ(t) = b(L(Y (t), R(t))−M(t))

Ṁ(t) = c(g − (1− ε)qY (t)− εqz(t))

ż(t) = α((1− ε)qY (t)− (1− εq)z(t))
(4)

the dynamic model with continuous time and expo-
nential density of distribution;

Ẏ (t)=a[I(Y (t), R(t))−(s+(1−ε)(1−s)q)Y (t)−
− (1− s)εqz(t) + g]

Ṙ(t) = b(L(Y (t), R(t))−M(t))

Ṁ(t) = c(g − (1− ε)qY (t)− εqz(t))

ż(t) = α(u(t)− z(t))

u̇(t) = α((1− ε)qY (t) + εqz(t)− u(t))
(5)

the dynamic model with continuous time and Erlang
density of distribution.

The model (3) with the functions:

I(Y, R)=a1Y
a2Ra3 , L(Y,R)=b1Y+b2Y

b3(R−b4)−b5

was analyzed in [12].
The discrete models are obtained by the dis-

cretization of the models (2), (3), (4), (5) with the
adjustment coefficient different from the ones above.
For simplicity, we will employ the same coefficients:

Y (n + 1) = Y (n) + a(I(Y (n), R(n))−
− s(1− q)Y (n)− qY (n) + g)

R(n + 1) = R(n) + b(L(Y (n), R(n))−M(n))

M(n + 1) = M(n) + c(g − qY (n)), n ∈ N

(6)

the discrete IS-LM model;
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Y (n + 1)=Y (n)+a(I(Y (n), R(n))−(s+(1−ε)

(1−s)q)Y (n)− (1− s)εqY (n− p) + g)

R(n + 1) = R(n) + b(L(Y (n), R(n))−M(n))

M(n + 1) = M(n) + c(g − (1− ε)qY (n)−
− εqY (n− p)),

(7)

n ∈ N , p ∈ N , p ≥ 1, the discrete IS-LM model with
delay;

Y (n + 1) = Y (n) + a(I(Y (n), R(n))− (s + (1− ε)

(1− s)q)Y (n)− (1− s)εqz(n) + g)1

R(n + 1) = R(n) + b(L(Y (n), R(n))−M(n))

M(n + 1) = M(n) + c(g − (1− ε)qY (n)− εqz(n))

z(n + 1) = z(n) + α((1− ε)qY (n)−
− (1− εq)z(n))

(8)

the discrete IS-LM model with delay corresponding to
(4);

Y (n + 1) = Y (n) + a[I(Y (n), R(n))− (s + (1− ε)

(1− s)q)Y (n)− (1− s)εqz(n) + g]

R(n + 1) = R(n) + b(L(Y (n), R(n))−M(n))

M(n + 1)=M(n)+c(g−(1−ε)qY (n)−εqz(n))

z(n + 1) = z(n) + α(u(n)− z(n))

u(n + 1)=u(n)+α((1−ε)qY (n)+εqz(n)−u(n))

the discrete IS-LM model with delay corresponding to
(5);

2 The analysis of the discrete IS-LM
model with tax revenues (6)

We analyze system (6). Because IR < 0 we assume
that:

lim
R→0+

I(
g

q
,R) ≥ s(1− q)

q
g,

lim
R→∞

I(
g

q
,R) ≥ s(1− q)

q
g.

Under the previous conditions, the model (6) has
the equilibrium state (Y0, R0, M0), so that: Y0 =

g

q
,

R0 is the solution of I(
g

q
, R) =

s(1− q)
q

g and M0 =

L(Y0, R0).
The linearization of system (6) in the neighbor-

hood of the equilibrium yields:

v1(n + 1) = a11v1(n) + a12v2(n) + a13v3(n)

v2(n + 1) = a21v1(n) + a22v2(n) + a23v3(n)

v3(n + 1) = a31v1(n) + a32v2(n) + a33v3(n)

(9)

where

a11 = 1 + a(I1 − s(1− q)− q), a12 = aI2, a13 = 0,

a21 = bL1, a22 = 1 + bL2, a23 = −b,

a31 = −cq, a32 = 0, a33 = 1
(10)

and I1 = IY (Y0, R0), I2 = IR(Y0, R0), L1 =
LY (Y0, R0), L2 = LR(Y0, R0).

The characteristic equation of system (9) is given
by:

λ3 −A1λ
2 + A2λ−A3 = 0 (11)

where

A1 = 1 + a11 + a22,

A2 =a11a22−a12a21+a11+a22,

A3 = a11a22 − a12a21 + a12a23a31;

(12)

From (10) and (12), we get:

A1 = 3 + (I1 − s(1− q)− q)a + L2b,

A2 =3+2(I1−s(1−q)− q)a+2L2b−abs(1− q)L2,

A3 = 1 + (I1 − s(1− q)− q)a− L2b−
− abs(1− q)L2 + abcqI2.

(13)

According to the Schur criterion [7], equation
(11) has the roots in modulus less than 1, if and only
if:

|A3| < 1, |A1−A3| < 2, 1−A2 +A3(A1−A3) > 0.
(14)

Then, if the parameters of the model satisfy the
relations (14), the equilibrium point (Y0, R0, M0) is
asymptotically stable.

We analyze the roots of equation (11) considering
the parameters a and b as fixed and the parameter c as
variable. We denote by:

d1 = a11a22 − a12a21, d2 = qa12a23. (15)

From (13) and (15), we have:

A3 = d1 − cd2.

The following proposition holds:
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Proposition 1 (i) If the parameters a, b, c satisfy the
relations:

|d1 − cd2| < 0, |A1 − d1 + cd2| < 2, (16)

1−A2 + d1(A1 − d1) + d2(2d1 −A1)c− d2
2c

2 = 0,
(17)

then equation (11) has one root in modulus less than
1 and two complex roots in modulus equal to 1.

(ii) If c0 is one solution of (17) then for c = c0+α,
there is α > 0 sufficiently small so that the roots of
equation (11) are in modulus less than 1; for c = c0−
α equation (11) has one root in modulus less than 1
and the complex conjugate roots are in modulus equal
to 1.

(iii) The value c0 is a Neimark-Sacker bifurcation
for equation (11).

The proof of the proposition results from (11) and
from the definition of the Neimark-Sacker bifurcation
[7].

In what follows, using the method from [7],
[12], we find the normal form of system (6) for the
Neimark-Sacker bifurcation given by c0.

We consider A the matrix of the linear system (9)
with the coefficients (10) and c = c0 + α, where c0

satisfies (17) and |α| is sufficiently small.
We have:

Proposition 2 (i) The eigenvector corresponding to
the eigenvalue µ is the nontrivial solution of the sys-
tem Al = µl and has the components:

l1 = −a12(µ− a33), l2 = −(µ− a11)(µ− a33),

l3 = −a12a31;
(18)

(ii) The eigenvector corresponding to the eigen-
value µ̄ is the nontrivial solution of the system
AT m = µ̄m and has the components:

m1 =
µ̄− a22

a12V
,m2 =

1
V

,m3 =
a23

(µ̄− a33)V
, (19)

where V =
µ̄− a22

a12
l̄1 + l̄2 +

a23

µ̄− a33
l̄3.

Moreover, the relation l1m̄1 + l2m̄2 + l3m̄3 = 1
holds.

We denote by:

I20 = IY Y (Y0, R0), I11 = IY R(Y0, R0),

I02 = IRR(Y0, R0),

I30 = IY Y Y (Y0, R0), I21 = IY Y R(Y0, R0),

I12 = IY RR(Y0, R0), I03 = IRRR(Y0, R0),

(20)

L20 = LY Y (Y0, R0), L11 = LY R(Y0, R0),

L02 = LRR(Y0, R0),

L30 = LY Y Y (Y0, R0), L21 = LY Y R(Y0, R0),

L12 = LY RR(Y0, R0), L03 = LRRR(Y0, R0),

(21)

and

B1 =
(

I20 I11

I11 I02

)
, B2 =

(
L20 L11

L11 L02

)

C1 =
(

I30 I21

I21 I12

)
, D1 =

(
I21 I12

I12 I03

)

C2 =
(

L30 L21

L21 L12

)
, D2 =

(
L21 L12

L12 L03

)
.

(22)

We consider l = (l1, l2)T , m = (m1,m2)T ,
where l1, l2, m1, m2 are given by (18) and (19) and

Bi(l, l) = lT Bil, B
i(l, l̄) = lT Bi l̄,

Bi(l̄, l̄) = l̄T Bi l̄, i = 1, 2

Ci(l, l, l̄) = lT (liCi + l2Di)l̄, i = 1, 2,

g20 =(B1(l, l), B2(l, l))m, g11 =(B1(l, l̄), B2(l, l̄))m,

g02 =(B1(l̄, l̄), B2(l̄, l̄))m,

(23)

hi20 = Bi(l, l)− ((B1(l, l), B2(l, l))m)li−
− ((B1(l, l), B2(l, l))m̄)l̄i, i = 1, 2

h320 = −((B1(l, l), B2(l, l))m)l3−
− ((B1(l, l), B2(l, l))m̄)l̄3,

hi11 = Bi(l, l̄)− ((B1(l, l̄), B2(l, l̄))m)li−
− ((B1(l, l̄), B2(l, l̄))m̄)l̄i, i = 1, 2

h311 = −((B1(l, l̄), B2(l, l̄))m)l3−
− ((B1(l, l̄), B2(l, l̄))m̄)l̄3,

hi02 = Bi(l̄, l̄)− ((B1(l̄, l̄), B2(l̄, l̄))m)li−
− ((B1(l̄, l̄), B2(l̄, l̄))m̄)l̄i, i = 1, 2

h302 = −((B1(l̄, l̄), B2(l̄, l̄))m)l3−
− ((B1(l̄, l̄), B2(l̄, l̄))m̄)l̄3.
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We denote by:

A(µ2) =




µ2 − a11 −a12 0
−a21 µ2 − a22 −a23

−a31 0 µ2 − a33


 ,

A(1) =




1− a11 −a12 0
−a21 1− a22 −a23

−a31 0 1− a33




A(µ̄2) =




µ̄2 − a11 −a12 0
−a21 µ̄2 − a22 −a23

−a31 0 µ̄2 − a33




and

w20 = A(µ2)−1h20, w11 = A(1)−1h11,

w02 = A(µ̄2)−1h02,
(24)

where

h20 = (h120, h220, h320)T ,

h11 = (h111, h211, h311)T , h02 = (h102, h202, h302)T

and

g21 = (B1(l̄, w20), B2(l̄, w20))m + 2(B1(l, w11),

B2(l, w11))m + (C1(l, l, l̄), C2(l, l, l̄))l.
(25)

Using the method from [7], [12], for the determi-
nation of the normal form, we obtain:

Proposition 3 (i) The normal form of system (6) is:

z(n + 1) = µz(n) +
1
2
g20z(n)2 + g11z(n)z̄(n)+

+
1
2
g02z̄(n)2 +

1
2
g21z(n)2z̄(n),

(26)

where z(n) ∈ C and the coefficients are given by (23)
and (25);

(ii) System (6) in the neighborhood of the state
equilibrium (Y0, R0, M0) is:

Y (n) = Y0 + l1z(n) + l̄1z̄(n) +
1
2
w120z(n)2+

+ w111z(n)z̄(n) + +
1
2
w102z̄(n)2

R(n) = R0 + l2z(n) + l̄2z̄(n) +
1
2
w220z(n)2+

+ w211z(n)z̄(n) +
1
2
w202z̄(n)2

M(n) = M0 + l3z(n) + l̄3z̄(n) +
1
2
w320z(n)2+

+ w311z(n)z̄(n) +
1
2
w302z̄(n)2

(27)

where z(n) is one solution of (26) and the coefficients
are given by (24);

(iii) The Lyapunov coefficient associated to the
normal form (26) is given by:

C1(α) =
g20(α)g11(α)(µ̄(α)− 3− 2µ(α))

2(µ(α)− µ̄(α))(µ̄(α)− 1)
+

+
|g11(α)|2
1− µ̄(α)

+
|g02(α)|2

2(µ2(α)− µ̄(α))
+

g21(α)
2

;
(28)

(iv) If θ0 = arg(µ(0)), L0 = Re(e−iθC1(0)) and
L0 < 0(> 0) in the neighborhood of the equilibrium
state (Y0, R0, M0), then there is a stable (unstable)
limit cycle.

The numerical simulation was made using a pro-
gram in Maple 11. For:

I = a1Y
a2R−a3 , L = b1Y + b2(R− b3)−b4

where a1 = 0.38, a2 = 1.05, a3 = 0.83, b1 = 0.07,
b2 = 1, b3 = 0.003, b4 = −1.2, s = 0.5, q = 0.18,
g = 10, a = 0.96, b = 0.8, we obtain the following
results: Y0 = 5.55, R0 = 2.33, M0 = 6.64, c0 =
0.3560. The Lyapunov coefficient is L0 = 0.337 and
in the neighborhood of the equilibrium state there is
an unstable limit cycle.

For c = c0 + β, β = 0.001, the following trajec-
tories are displayed: (n, Y (n)), (n,R(n)), (n, M(n))
in Fig 1, Fig 2, Fig 3. In the figures Fig 4, Fig 5, Fig 6
are displayed: (Y (n − 1), Y (n)), (R(n − 1), R(n)),
(M(n− 1), M(n)),

 n 
100 200 300 400 500

 Y[n]

55.545

55.550

55.555

55.560

55.565

Fig1 cOc0 ,(n,Y(n))

 n 
100 200 300 400 500

R[n]

2.3315

2.3320

2.3325

2.3330

2.3335

Fig2 cOc0,(n,R[n])

 n 
100 200 300 400 500

 M[n]

6.6465

6.6470

6.6475

6.6480

6.6485

6.6490

Fig3 cOc0,(n,M[n])

 Y[n-1] 
55.545 55.550 55.555 55.560 55.565

 Y[n]

55.545

55.550

55.555

55.560

55.565

Fig4  cOc0,(Y[n-1],Y[n]) 
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R[n-1]  
2.3315 2.3320 2.3325 2.3330 2.3335

 R[n]

2.3315

2.3320

2.3325

2.3330

2.3335

Fig5 cOc0,(R[n-1],R[n])

M[ n-1] 
6.6465 6.6470 6.6475 6.6480 6.6485 6.6490

 M[n]

6.6465

6.6470

6.6475

6.6480

6.6485

6.6490

Fig6 cOc0,(M[n-1],M[n])

For c = c0 − β, β = 0.001 in Fig 7, Fig 8,
Fig 9 the following trajectories: (n, Y (n)), (n,R(n)),
(n,M(n)) are displayed. In the figures Fig 10, Fig
11, Fig 12 are displayed: (Y (n − 1), Y (n)), (R(n −
1), R(n)), (M(n− 1),M(n)),

 n 
100 200 300 400 500

 Y[n]

55.5548

55.5550

55.5552

55.5554

55.5556

55.5558

55.5560

55.5562

55.5564
Fig7 c!c0 ,(n,Y(n))

 n 
100 200 300 400 500

R[n]

2.3318

2.3320

2.3322

2.3324

2.3326

2.3328

2.3330

2.3332

Fig8 c!c0,(n,R[n])

 n 
100 200 300 400 500

 M[n]

6.6465

6.6470

6.6475

6.6480

6.6485

Fig9 c!c0,(n,M[n])

 Y[n-1] 
55.5550 55.5556 55.5560 55.5564

 Y[n]

55.5548

55.5550

55.5552

55.5554

55.5556

55.5558

55.5560

55.5562

55.5564
Fig10  c!c0,(Y[n-1],Y[n]) 

R[n-1]  
2.33182.33202.33222.33242.33262.33282.33302.3332

 R[n]

2.3318

2.3320

2.3322

2.3324

2.3326

2.3328

2.3330

2.3332

Fig11 c!c0,(R[n-1],R[n])

M[ n-1] 
6.6465 6.6470 6.6475 6.6480 6.6485

 M[n]

6.6465

6.6470

6.6475

6.6480

6.6485

Fig12 c!c0,(M[n-1],M[n])

These graphics justify the behavior of the model’s
solutions as obtained in the theoretical section.

3 The analysis of the discrete IS-LM
dynamic model with time delay (7)

We analyze system (7) with p = 1. System (7) be-
come:

u(n + 1) = Y (n)

Y (n + 1) = Y (n) + a[I(Y (n), R(n)) + g−
− (s + (1− ε)(1− s)q)Y (n)− (1− s)εqu(n)]

R(n + 1)=R(n)+b(L(Y (n), R(n))−M(n))

M(n + 1) = M(n) + c(g − (1− ε)qY (n)−
− εqu(n)), n ∈ N.

(29)

In the hypothesis from Section 2, system (29)
has the equilibrium state (u0, Y0, R0, M0), where
u0 = Y0, Y0 =

g

q
, R0 is the solution of I(

g

q
, R) =

(1− q)s
q

g and M0 = L(Y0, R0).

The linearized system of (29) in the neighborhood
of the equilibrium (u0, Y0, R0, M0) is:

v0(n+1)=a00v0(n)+a01v1(n)+a02v2(n)+a03v3(n)

v1(n+1)=a10v0(n)+a11v1(n)+a12v2(n)+a13v3(n)

v2(n+1)=a20v0(n)+a21v1(n)+a22v2(n)+a23v3(n)

v3(n+1)=a30v0(n)+a31v1(n)+a32v2(n)+a33v3(n)
(30)

where

a00 = 0, a01 = 1, a02 = 0, a03 = 0,

a10 = −a(1− s)εq,

a11 = 1 + a(I1 − (s + (1− ε)(1− s)q)),

a12 = aI2, a13 = 0, a20 = 0,

a21 = bL1, a22 = 1 + bL2, a23 = −1,

a30 = −cεq, a31 = −c(1− ε)q, a32 = 0, a33 = 1.

(31)

The characteristic equation of system (30) is
given by:

λ4 −B1λ
3 + B2λ

2 −B3λ−B4 = 0 (32)

where

B1 = 1 + a11 + a22,

B2 = a11 + a22 + a11a22 − a12a21 − a10,

B3 = a11a22 + a12a23a31 − a12a21 − 1− a22,

B4 = a10a22 − a12a23a30.

(33)
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We analyze the model (29), choosing the adjust-
ment coefficient c as function of the adjustment coef-
ficients a, b so that:

B3 = a11a22−a12a23c(1−ε)q−a12a21−1−a22 = 0.
(34)

From (34) we obtain:

c =
a11a22 − a12a21 − 1− a22

a12a23(1− ε)q
. (35)

From (33) and (35) we have:

B1 = 1 + a11 + a22,

B2 = a11 + a22 + a11a22 − a12a21 − a10,

B4 = a10a22 − ε

1− ε
(a11a22 − a12a21 − 1− a22);

(36)

and characteristic equation (32) becomes:

λ4 −B1λ
3 + B2λ

2 −B4 = 0 (37)

According to the Schur criterion, equation (37)
has the roots in modulus less than 1, if and only if:

|B4| < 1, |B1| < 2(1 + B4),

(B2 − 1 + B4)(1 + B4)2 < B2
1B4.

(38)

Then, if the parameters of the model satisfy the
relations (38) then the equilibrium point (u0, Y0, R0,
M0) is asymptotically stable.

We analyze the roots of equation (37) consider-
ing the parameter a as fixed and the parameter b as
variable. We denote by:

d3 = a10 − ε

1− ε
(a11 − 2),

d4 = (a10 − ε

1− ε
(a11 − 1))L2 +

ε

1− ε
a12L1.

(39)

From (36) and (39) we have:

B4 = d3 + bd4.

The following statements hold:

Proposition 4 (i) If the parameter b satisfies the rela-
tions:

|d3 + bd4| < 1, |2 + a11 + bL2| < 2(1 + d3 + bd4),

(2a11 + d3 + ((1 + a11)L2 − a12L1 + d4)b)·
· (1 + d3 + d4b)2 = (2 + a11 + L2b)2(d3 + d11b)

(40)

then equation (37) has one root in modulus less then
1 and two complex roots in modulus equal to 1.

(ii) If b0 is one solution of (40) then for b = b0+α,
there is α > 0 sufficiently small so that the roots of
equation (37) are in modulus less than 1; for b = b0−
α equation (37) has one root in modulus less than 1
and the complex conjugate roots are in modulus equal
to 1.

(iii) The value b0 is a Neimark-Sacker bifurcation
for equation (37).

The proof of the proposition results from (38) and
from the definition of the Neimark-Sacker bifurcation
[7].

In what follows, using the method from [7],
[12] we find the normal form of system (29) for the
Neimark-Sacker bifurcation given by b0.

We consider B the matrix of the linear system
(30) with the coefficients (31) and b = b0 + α, where
b0 satisfies (40) and |α| is sufficiently small and with
c given by (35).

Let µ = µ(α) one root of the characteristic equa-
tion (37).

We have:

Proposition 5 (i) The eigenvector corresponding to
the eigenvalue µ is the nontrivial solution of the sys-
tem Bl = µl and has the components:

l0 =
a12a23

µ
, l1 = a12a23, l2 = a23(µ− a11 − a10

µ
),

l3 = (µ− a22)(µ− a11 − a10

µ
)− a12a21;

(41)

(ii) The eigenvector corresponding to the eigen-
value µ̄ is the nontrivial solution of the system
BT m = µ̄m and has the components:

m0 =
a10(µ̄− a22)(µ̄− 1) + a12a30a23

a12µ̄(µ̄− 1)V

m1 =
µ̄− a22

a12V
, m2 =

1
V

, m3 =
a23

(µ̄− 1)V

(42)

where

V =
(µ̄− a22)

a12
l̄1 + l̄2 +

a23

µ̄− 1
l̄3+

+
(a10(µ̄− a22)(µ̄− 1)) + a12a30a23 l̄0

a12µ̄(µ̄− 1)
.

(43)

Moreover, the relation l0m̄0 + l1m̄1 + l2m̄2 +
l3m̄3 = 1 holds.
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We consider l = (l1, l2)T , m = (m1,m2)T given
by (41), (42), the formulas (22), (23), (24) and

h020 = −((B1(l, l), B2(l, l))m)l0−
− ((B1(l, l), B2(l, l))m̄)l̄0,

h011 = −((B1(l, l̄), B2(l, l̄))m)l0−
− ((B1(l, l̄), B2(l, l̄))m̄)l̄0,

h002 = −((B1(l̄, l̄), B2(l̄, l̄))m)l0−
− ((B1(l̄, l̄), B2(l̄, l̄))m̄)l̄0,

(44)

Let be the matrices:

B(µ2)=




µ2 −1 0 0
−a10 µ2 − a11 −a12 0

0 −a21 µ2 − a22 −a23

−a30 −a31 0 µ2 − a33


 ,

B(1) =




1 −1 0 0
−a10 1− a11 −a12 0

0 −a21 1− a22 −a23

−a30 −a31 0 1− a33




B(µ̄2)=




µ̄2 −1 0 0
−a10 µ̄2 − a11 −a12 0

0 −a21 µ̄2 − a22 −a23

−a30 −a31 0 µ̄2 − a33


 .

(45)

and w20 = B(µ2)−1h20, w11 = B(1)−1h11, w02 =
B(µ̄2)−1h02 where

h20 = (h020, h120, h220, h320)T ,

h11 = (h011, h111, h211, h311)T ,

h02 = (h002, h102, h202, h302)T .

(46)

and

g21 = (B1(l̄, w20), B2(l̄, w20))m+

+ 2(B1(l, w11), B2(l, w11))m+

+ (C1(l, l, l̄), C2(l, l, l̄))l.

(47)

Using the method from [7], [12] for the determi-
nation the normal form we obtain:

Proposition 6 (i) The normal form of system (7) is
given by (26) and the coefficients are given by (23)
and (47)

(ii) System (7) in the neighborhood of the state

equilibrium (u0, Y0, R0, M0) is:

u(n) = u0 + l0z(n) + l̄1z̄(n) +
1
2
w020z(n)2+

+ w011z(n)z̄(n) +
1
2
w002z̄(n)2

Y (n) = Y0 + l1z(n) + l̄1z̄(n) +
1
2
w120z(n)2+

+ w111z(n)z̄(n) +
1
2
w102z̄(n)2

R(n) = R0 + l2z(n) + l̄2z̄(n) +
1
2
w220z(n)2+

+ w211z(n)z̄(n) +
1
2
w202z̄(n)2

M(n) = M0 + l3z(n) + l̄3z̄(n) +
1
2
w320z(n)2+

+ w311z(n)z̄(n) +
1
2
w302z̄(n)2

(48)

where z(n) is one solution of the normal form for the
system (7).

(iii) The Lyapunov coefficient associated to the
normal form is given by (28).

The numerical simulation was made using a pro-
gram in Maple 11. For:

I = a1Y
a2R−a3 , L = b1Y + b2(R− b3)−b4

where a1 = 0.38, a2 = 1.05, a3 = 0.83, b1 = 0.07,
b2 = 1, b3 = 0.003, b4 = −1.2, s = 0.08, q = 0.18,
g = 1, a = 0.96, b = 0.8, we obtain the following
results: Y0 = 5.55, R0 = 1.876043, M0 = 2.512414,
c0 = −70.377794. The Lyapunov coefficient is L0 =
2.590623 and in the neighborhood of the equilibrium
state there is an unstable limit cycle.

For c = c0 + β, β = 0.001, the following trajec-
tories are displayed: (n, Y (n)), (n,R(n)), (n, M(n))
in Fig 1, Fig 2, Fig 3. In the figures Fig 4, Fig 5, Fig 6
are displayed: (Y (n − 1), Y (n)), (R(n − 1), R(n)),
(M(n− 1), M(n)),
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Fig1 cOc0 ,(n,Y(n))
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Fig2 cOc0,(n,R[n])
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For c = c0 − β, β = 0.001 in Fig 7, Fig 8,
Fig 9 the following trajectories: (n, Y (n)), (n,R(n)),
(n,M(n)) are displayed. In the figures Fig 10, Fig
11, Fig 12 are displayed: (Y (n − 1), Y (n)), (R(n −
1), R(n)), (M(n− 1),M(n)),
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These graphics justify the behavior of the model’s
solutions as obtained in the theoretical section.

4 The analysis of system (8)
In the hypothesis from Section 2, system (8) has the
equilibrium state (Y0, R0, M0, z0), where Y0 =
(1− εq)g
(1− ε)q

, R0 is the solution of I(Y0, R) = (1+(1−
s)(1− ε)q)Y0 − εqg, M0 = L(Y0, R0) and z0 = g.

The linearized system of (8) in the neighborhood
of the equilibrium (Y0, R0, M0, z0) is:

vi(n + 1) =
4∑

j=1

aijvj(n) (49)

where

a11 = 1 + a(I1 − (s + (1− s)(1− ε)ε)q),

a12 = aI2, a13 = 0, a14 = −a(1− s)εq,

a22 = 1 + bL2, a21 = bL1, a23 = −b, a24 = 0,

a31 = −c(1− ε)q, a32 = 0, a33 = 1, a34 = −cεq,

a41 = α(1− ε)q, a42 = 0, a43 = 0,

a44 = 1− α(1− εq).
(50)

The characteristic equation of system (49) is
given by:

λ4 −D1λ
3 + D2λ

2 −D3λ−D4 = 0 (51)

where

D1 = 1 + a11 + a22 + a44,

D2 = a11 + a22 + a11a22 − a12a21 − a41a14−
− a11(1 + a11 + a22),

D3 = a41a12a23 − a14(a22 + a33 + a11a22−
− a12a21 + a12a31a23)+

+ a44(a11 + a22 + a11a22 − a12a21)

D4 = a12a23a41a42 + a14a22a33−
− a44(a11a22 − a12a21 + a12a31a23).

(52)
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We analyze the model (8), choosing the adjust-
ment coefficient c as function of the adjustment co-
efficients a, b and the coefficient α so that D3 = 0.
From (50) and (52) we have:

c =
a11a22 + (1− α(1− εq))

(1− ε)qa12a23
·

· (a11 + a22 + a11a22 − a12a21)−
(1− ε)qa12a23

−

− α(1− ε)qa14(1 + a22 − a12a21)
(1− ε)qa12a23

D4 = ad5 + bd6,

(53)

where

d5 = a14 − a44((1− α(1− εq))(2a11 + 1)−
− 2α(1− ε)qa14)

d6 = −a12a41a42 + a14L2 − a44(−L1a12+

+ (1− α(1− εq))((1 + a11)L2 − a12L1)−
− α(1− ε)qa14L2 − L1a12).

(54)

We have:

Proposition 7 (i) If the parameter b satisfies the rela-
tions:

|d5+bd6|<1, |2+a11+a44+bL2|<2(1+d5+bd6),

(−a41a14 − a2
11 + 1 + d5 + (L2 − a12L1 + d6)b)·

· (1 + d5 + d6b)2 = (2 + a11 + L2b)2(d5 + d6b)
(55)

then the equation

λ4 −D1λ
3 + D2λ

2 −D4 = 0 (56)

has two roots in modulus equal to 1 and two complex
roots in modulus less to 1.

(ii) If b0 is one solution of (55) then for b = b0+α,
there is β > 0 sufficiently small so that the roots of
equation (56) are in modulus less than 1; for b = b0−
α equation (56) has two roots in modulus less than 1.

(iii) The value b0 is a Neimark-Sacker bifurcation
for equation (55).

In what follows, using the method from [7],
[12], we find the normal form of system (8) for the
Neimark-Sacker bifurcation given by b0.

We consider C the matrix of the linear system
(49) with the coefficients (50), b = b0 + β, where
b0 satisfies (55) and |β| is sufficiently small and with
c given by (53).

Let µ = µ(β) one root of the characteristic equa-
tion (56).

We have:

Proposition 8 (i) The eigenvector corresponding to
the eigenvalue µ is the nontrivial solution of the sys-
tem Cl = µl and has the components:

l1 =−a12(µ−a33), l2 =−(λ−a33)(µ−a11− a14a41

µ−a44
),

l3 = −a12(a31 +
a41a34

µ− a44
), l4 = −a41a12(µ− a33)

µ− a44
;

(57)

(ii) The eigenvector corresponding to the eigen-
value µ̄ is the nontrivial solution of the system
CT m = µ̄m and has the components:

m1 =
µ̄− a22

a12V
, m2 =

1
V

, m3 =
a22

(µ̄− a33)V
,

m4 =
a14(µ̄− a22)

a12(µ̄− a44)(µ̄− a33)V
·

· (µ̄− a33) + a12a22a34

a12(µ̄− a44)(µ̄− a33)V
,

(58)

where

V =
(µ̄− a22)

a12
l̄1 + l̄2 +

a23

µ̄− a33
l̄3+

+
a14(µ̄− a22)(µ̄− a33) + a12a22a34

a12(µ̄− a44)(µ̄− a33)
l4.

(59)

Moreover, the relation l1m̄1 + l2m̄2 + l3m̄3 +
l4m̄4 = 1 holds.

We consider l = (l1, l2)T , m = (m1,m2)T given
by (57), (58), the formulas (22), (23), (24) and

h420 = −((B1(l, l), B2(l, l))m)l4−
− ((B1(l, l), B2(l, l))m̄)l̄4,

h411 = −((B1(l, l̄), B2(l, l̄))m)l4−
− ((B1(l, l̄), B2(l, l̄))m̄)l̄4,

h402 = −((B1(l̄, l̄), B2(l̄, l̄))m)l4−
− ((B1(l̄, l̄), B2(l̄, l̄))m̄)l̄4,

(60)

Let be the matrices:

C(µ2) =

=




µ2 − a11 −a12 0 −a14

−a21 µ2 − a22 −a23 0
−a31 0 µ2 − a33 −a34

−a41 0 0 µ2 − a44


 ,

(61)

C(µ̄2) = C(µ2), C(1) and w20 = C(µ2)−1h20,
w11 = C(1)−1h11, w02 = C(µ̄2)−1h02 where
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where

h20 = (h120, h220, h320, h420)T ,

h11 = (h111, h211, h311, h411)T ,

h02 = (h102, h202, h302, h402)T .

(62)

Using the method from [7], [12] for the determi-
nation the normal form we obtain:

Proposition 9 (i) The normal form of system (8) is
given by (26) where the coefficients are obtained for
l = (l1, l2)T and m = (m1,m2)T given by (57) and
(58);

(ii) System (8) in the neighborhood of the state
equilibrium (Y0, R0, M0, g) is:

Y (n) = Y0 + l1z(n) + l̄1z̄(n) +
1
2
w120z(n)2+

+ w111z(n)z̄(n) +
1
2
w102z̄(n)2

R(n) = R0 + l2z(n) + l̄2z̄(n) +
1
2
w220z(n)2+

+ w211z(n)z̄(n) +
1
2
w202z̄(n)2

M(n) = M0 + l3z(n) + l̄3z̄(n) +
1
2
w320z(n)2+

+ w311z(n)z̄(n) +
1
2
w302z̄(n)2

v(n) = g + l4z(n) + l̄4z̄(n) +
1
2
w420z(n)2+

+ w411z(n)z̄(n) +
1
2
w402z̄(n)2

(63)

where z(n) is one solution of the normal form for the
system (7).

(iii) The Lyapunov coefficient associated to the
normal form is given by (28).

The numerical simulation was made using a pro-
gram in Maple 11. For:

I = a1Y
a2R−a3 , L = b1Y + b2(R− b3)−b4

where a1 = 0.38, a2 = 1.05, a3 = 0.83, b1 = 0.07,
b2 = 1, b3 = 0.003, b4 = −1.2, s = 0.5, q = 0.18,
g = 1, a = 0.96, b = 0.8, ε = 0.02 we obtain the
following results: Y0 = 5.648526, R0 = 0.656110,
M0 = 0.995165, c0 = −3.506258. The Lyapunov
coefficient is L0 = −177.547698 and in the neigh-
borhood of the equilibrium state there is a stable limit
cycle.

For c = c0 + β, β = 0.001, the following trajec-
tories are displayed: (n, Y (n)), (n, R(n)), (n,M(n))
in Fig 1, Fig 2, Fig 3. In the figures Fig 4, Fig 5, Fig 6
are displayed: (Y (n − 1), Y (n)), (R(n − 1), R(n)),
(M(n− 1),M(n)),
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Fig5 cOc0,(R[n-1],R[n])
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Fig6 cOc0,(M[n-1],M[n])

For c = c0 − β, β = 0.001 in Fig 7, Fig 8,
Fig 9 the following trajectories: (n, Y (n)), (n,R(n)),
(n,M(n)) are displayed. In the figures Fig 10, Fig
11, Fig 12 are displayed: (Y (n − 1), Y (n)), (R(n −
1), R(n)), (M(n− 1),M(n)),
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Fig7 c!c0 ,(n,Y(n))
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Fig8 c!c0,(n,R[n])
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 Y[n-1] 
55.5550 55.5556 55.5560 55.5564

 Y[n]

55.5548

55.5550

55.5552

55.5554

55.5556

55.5558

55.5560

55.5562

55.5564
Fig10  c!c0,(Y[n-1],Y[n]) 
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R[n-1]  
2.33182.33202.33222.33242.33262.33282.33302.3332

 R[n]
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Fig11 c!c0,(R[n-1],R[n])

M[ n-1] 
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Fig12 c!c0,(M[n-1],M[n])

These graphics justify the behavior of the model’s
solutions as obtained in the theoretical section.

5 Conclusion
The discrete time IS-LM model with tax revenues and
time delay is a complex model with many parameters.
The model allows us to study the real process using
the temporal numeric series of the income, the interest
rate, the money stock, the liquidity.

The analysis of the model leads to different sce-
narios by considering the adjustment coefficient of the
equation which describes the dynamics of the money
stock as variable.

In the present paper we have analyzed the discrete
IS-LM models with the parameter c as variable and
we have shown the existence of the Neimark-Sacker
bifurcation. The normal form of the model has also
been presented. We will carry out the same analysis
for the discrete model with delay. In a future paper the
scenario for which the model has a chaotic behavior
will be analyzed.
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