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Abstract: This paper generalizes the model introduced by Ferrara and Guerrini [13], where two different research
lines have been joined together: the one studying the effects of incorporating technological progress in pollution
abatement in the Solow-Swan model (Brock and Taylor [6]), and that analyzing the role of a logistic population
growth rate within the Solow-Swan model (Ferrara and Guerrini [13]). In this framework, the economy is described
by a three dimensional dynamical system, whose solution can be explicitly determined. We note that physical cap-
ital can be expressed in closed-form via Hypergeometric functions. As well, we prove the model’s solution to be
convergent in the log-run. We characterize the economy balanced growth path equilibrium, and find that sustain-
able growth occurs if technological progress in abatement is faster than technological progress in production. An
environmental Kuznets curve may result along the transition to the balanced growth path. If there is no technolog-
ical progress in abatement, then there is no EKC. Furthermore, the economy has a unique equilibrium (a node),
which is locally asymptotically stable.
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1 Introduction

One of the most important models elaborated to ex-
plain economic growth is the growth model originat-
ing from the work of Solow [22] and Swan [23]. The
resulting model has become famously known as the
Solow-Swan model, or simply the neoclassical growth
model. This model is an extension of the Harrod-
Domar model, which was independently developed
by Harrod [16] and Domar [9]. Their theories related
an economy’s rate of growth to its capital stock, and
emphasized how investment spending also increased
an economy’s productive capacity (a supply-side ef-
fect). Their assumptions involved an exogenous rate
of labour force growth, a given technology exhibiting
fixed factor proportions (constant capital-labour ratio)
and a fixed capital-output ratio.

The Harrod-Domar model became tremendously
influential in the development economics literature
during the third quarter of the twentieth century, and
it was a key component within the framework of eco-
nomic planning.

However, the assumption of zero substitutability
between capital and labour, i.e. a fixed factor propor-
tions production function, appeared to be an inappro-
priate assumption for a model concerned with long-
run growth. In fact, it gave knife-edge equilibria, with

the implausible implication that any deviation at all
from equilibrium would cause the model to diverge
further and further away from equilibrium.

Solow and Swan claimed that the capital-output
ratio of the Harrod-Domar model should not be re-
garded as exogenous. They proposed a growth model
where the capital-output ratio was precisely the ad-
justing variable that would lead a system back to its
steady-state growth path.

The key assumptions of the Solow-Swan model
are: the economy consists of one-sector producing
one type of commodity that can be used for either in-
vestment or consumption purposes; the economy is
closed to international transactions and the govern-
ment sector is ignored; all output that is saved is in-
vested; the assumptions of full price flexibility and
monetary neutrality apply and the economy is always
producing its potential (natural) level of total output;
an abandon of the Harrod-Domar assumptions of a
fixed capital-output ratio and fixed capital-labour ra-
tio, and the assumption of a production function con-
sisting of constant returns to scale, Inada conditions,
and diminishing returns on all inputs and some degree
of substitution among them; the rate of technological
progress, population growth and the depreciation rate
of the capital stock are all determined exogenously.

On the basis of these assumptions, an economy,
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regardless of its starting point, converges to a bal-
anced growth path, where long-run growth of out-
put and capital are determined solely by the rate of
labor-augmenting technological progress and the rate
of population growth (see, for example, Barro and
Sala-i-Martin [4]).

In the neoclassical model of economic growth, it
is usually assumed that labor (population) force grows
at a positive constant rate (Malthusian model [17]).
The main problem of this assumption is that popula-
tion exponentially grows without limits. In addition,
the Malthusian model considers homogeneous popu-
lations, i.e. it supposes that all the individuals of such
a population are physiologically identical, as well as
that the population lives isolated in an invariable habi-
tat and with limitless resources, so that the population
depends, respectively, on constant fertility and mor-
tality rates.

Although one assumes that variations do not take
place in the external habitat, the population itself
causes changes in life conditions due to competition
for the survival resources. Consequently, one could
admit that the fertility and mortality rates depend on
the total size of the population, replacing the linear
model of Malthus by a non-linear model.

The first model of this type was proposed by
Verhulst [24]. His model, known as logistic model,
corrected the most significant objections against the
Malthusian model by imposing a maximum size for
the total population size (carrying capacity). The
logistic model could be interpreted as a Malthusian
model with constant fertility rate, and a mortality rate
proportional to the relative size of the total population
with respect to the carrying capacity.

The result of Verhulst’s work was a demonstration
that any population growth rate would essentially fol-
low a bell-shaped curve, starting from zero, steadily
increasing to a maximum, and declining once again to
zero in a fashion symmetrical to the positive growth
phase. The population stock then evolves according
to the elongated S-curve, which has a point of inflec-
tion at the maximal value of the growth rate, and then
levels off at a new but higher plateau, at which point
the growth rate declines to zero.

On the other hand, it is a well known fact that the
population growth rate is decreasing since the 1950s,
and it is projected to go down to zero during the next
six decades. The cause of this decrease in the growth
rate is mainly due to the population aging, i.e. to the
dramatic increase in the number of deaths. As well,
from 2030 to 2050, the world population would grow
more slowly than ever before in its history (see Day
[8]). Consequently, as observed by Maynard Smith
[18], a more realistic approach would be to consider a
logistic law for the population growth rate.

Several attempts to analyze how the logistic pop-
ulation growth hypothesis might affect the dynam-
ics of some growth models have been recently done
in many and different directions (see, for example,
[2],[3],[10],[11],[12],[13][13],[15],[19],[20]).

Recently, Brock and Taylor [6] has extended the
Solow-Swan model by incorporating technological
progress in abatement. The resulting model, which
they called the Green Solow model, generates an en-
vironmental Kuznets curve (hereafter EKC) relation-
ship between the flow of pollution emissions and in-
come per capita, and the stock of environmental qual-
ity and income per capita (for the EKC, see, for exam-
ple, Grossman and Krueger [14]). Moreover, there can
be sustainable development, here meaning decreasing
pollution along with increasing per capita income, if
the rate of progress in the development of environ-
mental technology is sufficiently high.

Ferrara and Guerrini [13] has explored the im-
plications of combining, within the same framework,
these two different research lines, that have been ana-
lyzed separately in the recent past. This was done by
including in an augmented Solow-Swan model emis-
sions, abatement and a stock of pollution, and by as-
suming the population to grow according to the logis-
tic model. The resulting model was then a three di-
mensional non-autonomous dynamical system, which
the authors proved to be solvable in closed-form. As
well, for sustainable growth to be possible, technolog-
ical progress in abatement has to be faster than techno-
logical progress in production. Finally, an EKC may
result along the transition to the balanced growth path.

The main objective of our paper is to extend the
results obtained in [13] by assuming that the exoge-
nous technological progress in abatement is not nec-
essarily lowering the units of pollution generated as a
joint product of output. The corresponding model is
then described by a three dimensional dynamical sys-
tem, whose solution can be determined recursively. In
addition, one is able to show that the transitional path
of capital stock can be written in terms of Gaussian
Hypergeometric functions in their Euler integral rep-
resentation. As well, we characterize the economy
balanced growth path equilibrium, and find out that
there is sustainable growth if technological progress
in abatement is faster than technological progress in
production. In this case, an EKC may result along the
transition to the balanced growth path. If there is no
technological progress in abatement, then the econ-
omy is described by an autonomous dynamical sys-
tem, having a unique equilibrium, which is a stable
node. Moreover, no EKC can occur.
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2 The basic model
We consider a one-sector production technology in
which output Yt is a homogeneous good that can be
consumed, Ct, or invested, It, in a process described
by a Cobb-Douglas production function

Yt = Kα
t (BtLt)1−α, 0 < α < 1, (1)

where Kt denotes physical capital, Lt is labor, and Bt

is the level of technology.
We assume that Bt increases over time at the ex-

ogenous and constant rate g > 0, i.e.
.
Bt

Bt
= g, (2)

where a dot over a variable denotes differentiation
with respect to time.

Gross investment It has two components: net in-
vestment, defined as the variation in the stock of capi-
tal, and the loss by depreciation. Assuming that capi-
tal is a homogeneous good that depreciates at the con-
stant rate δ > 0, this means

It =
.

Kt − δKt. (3)

Each worker has a unit of time available each pe-
riod that is supplied inelastically in the labor market.
Thus, we can identify the number of workers and the
supply of labor each period. As well, there is full em-
ployment in the economy, so that employment and la-
bor supply coincide. The economy is supposed to be
closed, i.e. households cannot buy foreign goods or
assets and cannot sell home goods or assets abroad,
and there are no government purchases of good or ser-
vices. This implies that aggregate savings and invest-
ment are equal to each other every period, i.e.

St = It.

Additionally, we assume savings to evolve over time
as a constant fraction s of output, i.e.

St = sYt.

The growth of population is modelled according
to Ferrara and Guerrini [12], i.e. we have

.
Lt

Lt
= a− bLt, a > b > 0 (logistic model), (4)

where, for simplicity, the initial population has been
normalized to one, L0 = 1. The fundamental predic-
tion of the constant growth rate population model,

.
Lt

Lt
= n > 0 (Malthusian model),

is that the population exponentially grows without
limits. Although this model may accurately reflect
experiments in the initial stages, we realize that no
population will grow exponentially indefinitely. Since
unbounded growth is unrealistic, more sophisticated
models take into account factors such as limited re-
sources for reproduction. The first model of this
type was proposed by Verhulst [24], and it corrected
the most significant objections against the Malthusian
model. Equation (4) is also known as the logistic
equation.

We now assume that the production process gen-
erates emissions. Similarly to Copeland and Taylor
[7], we assume that every unit of economic activity Yt

generates Ωt units of pollution as a joint product of
output. Pollution emitted Et is equal to pollution cre-
ated minus pollution abated. We assume abatement is
a constant returns to scale activity. Abatement of pol-
lution At takes as inputs the flow of pollution, which is
proportional to the gross flow of output Yt, and abate-
ment inputs, denoted by Y A

t . If abatement at level
At removes the ΩtAt units of pollution from the total
created, then we can write pollution emitted as

Et = ΩtYt − ΩtA(Yt, Y
A
t ) = φ(θ)ΩtYt, (5)

where

θ =
Y A

t

Yt

is the fraction of economic activity dedicated to abate-
ment, and

φ(θ) = 1−A(1, θ).

Following Brook and Taylor [6], we assume fixed
abatement intensity, and we require the economy to
employ a fixed fraction of its inputs, both capital and
effective labor, in abatement. This means that the frac-
tion of total output allocated to abatement θ is fixed
much like the familiar fixed saving rate assumption.
As a result, output available for consumption or in-
vestment becomes (1−θ)Yt. Since emissions are mea-
sured by physical unit per time unit, Et is a flow vari-
able, while total pollution Xt can be interpreted as a
stock variable which accumulates through permanent
emissions, but has also a natural decay. Therefore,
pollution is accumulated in the ambient environment
according to

.
Xt = Et − ηXt, (6)

with η > 0 as the natural decay rate which reflects the
ability of the ecosystem to absorb pollution.

Based on the feature of constant returns to scale,
we can specify the economy’s output in terms of ef-
fective labor as follows

yt = kα
t ,
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where

yt =
Yt

BtLt
, kt =

Kt

BtLt

denote output per unit of effective labor, and capital
per unit of effective labor, respectively. Taking deriva-
tives with respect to time in the definition of kt yields

.
kt =

d[Kt/(BtLt)]
dt

=

.
Kt

BtLt
−

( .
Bt

Bt
+

.
Lt

Lt

)
kt. (7)

From (2) and (4), we know that
.
Lt/Lt and

.
Bt/Bt

are a − bLt and g, respectively.
.

Kt is given by (3).
Substituting these facts into (7), we get

.
kt = Mkα

t − [δ + g + n(Lt)] kt,

with

n(Lt) = a− bLt, M = (1− θ)s.

Similarly, defining pollution in efficiency units as

xt =
Xt

BtLt
,

the pollution accumulation equation (6) becomes

.
xt = φ(θ)Ωtk

α
t − [η + g + n(Lt)]xt.

In conclusion, we have that the economy of our modi-
fied Solow-Swan model is described by the following
set of differential equations

.
kt = Mkα

t − [δ + g + n(Lt)]kt, (8)
.
xt = φ(θ)Ωtk

α
t − [η + g + n(Lt)]xt, (9)

.
Lt = n(Lt)Lt. (10)

Given k0 > 0, x0 > 0, this Cauchy problem has
a unique solution (kt, xt, Lt), defined on [0,∞) (see
Birkhoff and Rota [5]).

3 The model solution
We will now work out an explicit solution to the dif-
ferential equations appearing in (8)− (10).

Lemma 1. For all t, the transitional path of labor is

Lt =
aeat

a− b + beat
, lim

t→∞Lt =
a

b
. (11)

Proof: An explicit solution to (10) can be obtained
since this equation is separable. We have

dLt

Lt(a− bLt)
= dt.

The method of partial fractions will be successful in
integrating this equation. Since

1
Lt(a− bLt)

=
1

aLt
+

b

a(a− bLt)
,

integrating between 0 and t yields

1
a

ln
[
(a− b)Lt

a− bLt

]
= t. (12)

The statement is obtained multiplying (12) by a, and
then exponentiating. Note that (10) can also be solved
as a Bernoulli differential equation by making the sub-
stitution zt = L−1

t . ut

Remark 2. The graph of Lt looks like an S-shaped
curve (sigmoid), which lies between the two equilib-
rium solutions, Lt = 0 and Lt = a/b. Since one has
.
Lt > 0, this curve has positive slope throughout the
region. In addition,population is limited to stay below
Lt = a/b. In fact, by computing the limit as t gets
large, we found that the population predicted is a/b.

Remark 3. Set L∞ = lim
t→∞Lt. The function Lt in-

creases monotonically from L0 = 1 to L∞ = a/b.
Moreover, n(L∞) = 0, i.e. L∞ is a constant solution
of (10).

Proposition 4. Set

ϕt =
ae(δ+g+a)t

a− b + beat
.

For all t, the time path of the capital stock measured
in intensive units is

kt = ϕ−1
t

[
k1−α

0 + (1− α)M
∫ t

0
ϕ1−α

t dt

] 1
1−α

(13)

lim
t→∞kt =

(
M

δ + g

) 1
1−α

.

Proof: See Ferrara and Guerrini [13]. ut

Remark 5. Set k∞ = lim
t→∞kt. Then k∞ is a constant

solution of (8).

WSEAS TRANSACTIONS on MATHEMATICS Massimiliano Ferrara, Luca Guerrini

ISSN: 1109-2769 44 Issue 2, Volume 8, February 2009



Substituting (11) in (8) yields
.
kt = Mkα

t − (δ + g + nt) kt,

where

nt =
a(a− b)

a− b + beat
.

Note that the function nt is monotone decreasing from
n0 = a− b to n∞ = 0. In particular, 0 ≤ nt ≤ a− b.
Therefore, applying theorem 7 of Guerrini [15], with

n∗ = a− b, k∗1 =
(

M

δ + g + a− b

) 1
1−α

, k∗2 = k∞,

we get the following result.

Proposition 6.

(a) If k0 ≤ k∗1 , then
.
kt ≥ 0, for all t.

(b) If k∗1 < k0 ≤ k∗2 , there exists τ > 0 such that
.
kt ≤ 0 for t ∈ (0, τ ] and

.
kt ≥ 0, for t ∈ [τ,∞).

(c) If k∗2 < k0,
.
kt ≤ 0, for all t.

Following Guerrini [15], the solution (13) can be
written in closed-form through the Hypergeometric
function 2F1 (see appendix).

Proposition 7. Let

γ1 = (δ+g+a)γ3, γ2 = a, γ3 = 1−α, B =
b

b− a
.

Then

kt = ϕ−1
t

{
kγ3

0 +
Mγ3 (1−B)γ3

γ1
·

·
[
eγ1t

2F1

(
γ1

γ2
, γ3,

γ1

γ2
+ 1;Beγ2t

)

−2F1

(
γ1

γ2
, γ3,

γ1

γ2
+ 1;B

)]} 1
γ3

.

Proof: The statement follows by writing the integral
∫ t

0
ϕ1−α

t dt =
∫ t

0
e(1−α)(δ+g+a)tL1−α

t

in terms of Hypergeometric functions. This can be
derived from Guerrini [15], theorem 13, with β = 0,
and the term δ replaced by δ + g. ut
Proposition 8. Let lim

t→∞Ωt = Ω∞ < ∞. Set

ψt =
ae(η+g+a)t

a− b + beat
.

For all t, the time path of the stock of pollution mea-
sured in intensive units is given by

xt = ψ−1
t

(
x0 + φ(θ)

∫ t

0
Ωtk

α
t ψtdt

)
, (14)

lim
t→∞xt =

φ(θ)Ω∞kα∞
η + g

.

Proof: Equation (9) is a first order linear differential
equation, whose solution is known to be given by the
formula

xt = e
−

t∫
0

[η+g+n(Lt)]dt
·

·


x0 +

t∫

0

φ(θ)Ωtk
α
t e

t∫
0

[η+g+n(Lt)]dt
dt



 .

Evaluating the integral
t∫

0

[η + g + n(Lt)]dt = (η + g)t + lnLt,

we have that the solution becomes

xt = e−(η+g)tL−1
t ·

·

x0 + φ(θ)

t∫

0

e(η+g)tΩtk
α
t Ltdt


 .

The statement now follows using (11). Next, rewrite
the above formula as

xt =
x0 + φ(θ)

t∫
0

e(η+g)tΩtk
α
t Ltdt

e(η+g)tLt
. (15)

Since Ωt → Ω∞, kt → k∞, Lt → L∞, we derive
that both numerator and denominator of (15) go to
infinity in the long-run. L’Hopital’s rule is a general
method for evaluating the indeterminate form ∞/∞.
All we need to do is to differentiate the numerator and
denominator of our expression, and then take the limit.
This yields

lim
t→∞xt = lim

t→∞
φ(θ)Ωtk

α
t Lt

(η + g)Lt +
.
Lt

= lim
t→∞

φ(θ)Ωtk
α
t

η + g + n(L)
=

φ(θ)Ω∞kα∞
η + g

.

ut
Corollary 9. Given k0 > 0, x0 > 0, the unique solu-
tion of the dynamical system described by (8) − (10)
satisfies

lim
t→∞(kt, xt, Lt) =

(
k∞,

φ(θ)Ω∞kα∞
η + g

, L∞

)
.
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4 Balanced growth path
In this section we focus on a balanced growth path
(BGP) equilibrium, i.e. a trajectory along which all
the relevant variables either stay constant or grow at a
constant rate. The next result will be useful to charac-
terize the economy’s balanced growth path.

Lemma 10.

γCt = γYt = αγKt + (1− α)(g + γLt),

γEt = γΩt + γYt ,

where γz denotes the growth rate of the variable z.

Proof: First, consumption and output are propor-
tional, so that taking logs and time derivative of these
yields γCt = γYt . Second, consider equations (1),
(5), and take their logs. This yields

ln Yt = (1− α) (lnBt + ln Lt) + α ln Kt,

ln Et = lnφ(θ) + ln Ωt + ln Yt.

Differentiating with respect to time implies
.
Y t

Yt
= α

.
Kt

Kt
+ (1− α)

(
g +

.
Lt

Lt

)
,

.
Et

Et
=

.
Ωt

Ωt
+

.
Y t

Yt
,

i.e. we have the statement. ut
Lemma 11. Along a balanced growth path

γLt = 0, γCt = γYt = γKt = g,

γXt = γEt = g + γΩt .

Proof: By definition γLt is constant along a BGP.
Thus, Lt = a/b, and so, from (10), we get

γLt = 0. (16)

Next, rewrite equations (3) and (6) as

γKt = s
Yt

Kt
− δ, γXt =

Et

Xt
− η. (17)

Since γKt and γXt are constant along a BGP, we de-
rive from (17) that Yt/Kt and Et/Xt must also be
constant. Taking logs and time derivatives of these
yields

γYt = γKt , γXt = γEt . (18)

The statement now follows using (16) and (18) in
Lemma 10. ut

We define sustainable growth as a balanced
growth path with increasing environmental quality
and ongoing growth in income per capita.

Lemma 11 implies that, along a balanced growth
path, the growth rate of emissions γEt may be posi-
tive, negative or zero.

Proposition 12. If g > −γΩt , then there exists sus-
tainable growth.

5 Absence of technological progress
in abatement

In this section, we assume that Ωt is taken as constant
over time and by choice of units set to one. Conse-
quently, equations (8)− (10) become

.
kt = Mkα

t − [δ + g + n(Lt)] kt, (19)
.
xt = φ(θ)kα

t − [η + g + n(Lt)]xt, (20)
.
Lt = n(Lt)Lt. (21)

The economy is thus described by an autonomous sys-
tem of differential equations. Before starting the study
of the local dynamics of this system, it is better to re-
call the definition of steady state equilibrium. A point
(k∗, x∗, L∗) is said to be a steady state equilibrium of
the equations (19)− (21) if it solves

.
kt =

.
xt =

.
Lt = 0.

We confine the analysis to interior steady states only,
i.e. we will exclude the economically meaningless
null solutions.

Proposition 13. There exists a unique steady state
equilibrium (k∗, x∗, L∗), with

k∗ =
(

M

δ + g

) 1
1−α

, x∗ =
φ(θ)kα∗
η + g

, L∗ =
a

b
. (22)

Proof: On applying the definition given above, in the
steady-state equilibrium we must have

Mkα−1
t − (δ + g) = 0, n(Lt) = 0.

φ(θ)kα
t − (η + g)xt = 0.

Solving this three-equations system leads to the iden-
tities (22). ut

Outside the steady state the growth rate of the
economy is not constant but, rather, it behaves ac-
cording to (19) − (21). In order to determine what
the equilibrium path of the economy looks like, we
need to study the transitional dynamics of the dynam-
ical system. We already know from Corollary 9 that
the economy will tend to the steady state. Of special
interest is the answer to the question of how it will
behave along the transition path.

Proposition 14. The steady state equilibrium de-
scribed by equations (19)− (21) is a stable node.
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Proof: From the theory of linear approximation, we
know that in a neighborhood of the steady state the
dynamic behavior of a non-linear system is character-
ized by the behavior of the linearized system around
the steady state. In our case this means




.
kt
.
xt
.
Lt


 = J∗




kt − k∗
xt − x∗
Lt − L∗


 , (23)

where

J∗ =




J∗11 J∗12 J∗13

J∗21 J∗22 J∗23

J∗31 J∗32 J∗33




denotes the Jacobian matrix evaluated at the steady
state (k∗, x∗, L∗). Set P∗ = (k∗, x∗, L∗). By defini-
tion

J∗11 =
∂

.
kt

∂kt
|P∗ , J∗12 =

∂
.
kt

∂xt
|P∗ , J∗13 =

∂
.
kt

∂Lt
|P∗ .

Similarly for the other J∗ij entries. Computing these
elements yields

J∗11 = −(1− α)(δ + g), J∗12 = 0, J∗13 = bk∗,

J∗21 = αφ(θ)kα−1
∗ , J∗22 = −(η + g), J∗23 = bx∗,

J∗31 = 0, J∗32 = 0, J∗33 = −a.

Therefore, J∗ is immediately seen to be given by


−(1− α)(δ + g) 0 bk∗

αφ(θ)kα−1∗ −(η + g) bx∗
0 0 −a


 .

One eigenvalue of this matrix is −a. The other two
eigenvalues are those of the submatrix

D =
[ −(1− α)(δ + g) 0

αφ(θ)kα−1∗ −(η + g)

]
.

We recall that the determinant (resp. trace) of a matrix
is also equal to the product (resp. sum) of its eigen-
values. Since

Det(D) = (1− α)(δ + g)(η + g) > 0,

T race(D) = −[(1− α)(δ + g) + η + g] < 0,

we derive that these two roots are both real and nega-
tive. Since the matrix J∗ has three real negative (sta-
ble) roots, we can conclude that the equilibrium is a
stable node, where the term node refers to the char-
acteristic shape of the ensemble of orbits around the
equilibrium (see Simon and Blume [21]). ut

Remark 15. The point (k∗, x∗, L∗) is locally asymp-
totically stable. All solutions which start near it re-
main near the steady state for all time, and, further-
more, they tend towards (k∗, x∗, L∗) as t grows to in-
finity.

Remark 16. γΩt = 0 implies γEt = g > 0 along a
balanced growth path. Thus, there is no sustainable
growth.

6 Presence of technological progress
in abatement

In this section, we assume that the emissions per unit
of output are not constant. In particular, we assume
they fall at the exogenous rate gA, i.e.

.
Ωt/Ωt = −gA, (24)

with gA > 0. From (24) we get Ωt = Ω0e
−gAt.

Therefore, the economy of this model becomes de-
scribed by a non-autonomous system of differential
equations

.
kt = Mkα

t − [δ + g + n(Lt)] kt,
.
xt = φ(θ)Ω0e

−gAtkα
t − [η + g + n(Lt)]xt,

.
Lt = n(Lt)Lt.

From sections 3 and 4, we derive the next results.

Corollary 17. Starting from any k0 > 0, x0 > 0, the
long-run behavior of the model’s solution is as fol-
lows:

lim
t→∞(kt, xt, Lt) = (k∞, 0, L∞) .

Proposition 18. There exists sustainable growth if

gA > g.

Technological progress in abatement must exceed
growth in aggregate output in order for pollution to
fall and the environment to improve.

Remark 19. Brock and Taylor [6] showed that

gA > g + n

is the condition for sustainable growth in case of con-
stant population growth rate n.

Let us assume that growth is sustainable. Con-
trary to the previous section, where there was no
technological progress in abatement, we will be able
to show that environmental quality deteriorates ini-
tially, and improves with economic development in
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later stage as the economy converges on its balanced
growth path. This implies that the model produces a
transition path for income and environmental quality,
which traces out an environmental Kuznets curve, i.e.
an inverted-U shaped relationship between emissions
and income.

Lemma 20.

γEt = g − gA + γLt + αγkt . (25)

Proof: Take logs of (5), and, then, replace (24), and
(1), written as Yt = BtLtk

α
t , to get

ln Et = lnφ(θ) + ln Ωt + ln Bt + lnLt + α ln kt.

Differentiation of this identity with respect to time
yields

.
Et

Et
=

.
Ωt

Ωt
+

.
Bt

Bt
+

.
Lt

Lt
+ α

.
kt

kt
,

i.e. the statement. ut
Lemma 21. Set

N = g − gA − α(δ + g) < 0.

Then the function

γEt = αMkα−1
t + (1− α)(a− bLt) + N

≡ γEt(kt, Lt)

is monotone decreasing in kt and Lt.

Proof: Equations (8) and (10) replaced in (25) give

γEt(kt, Lt) = αMkα−1
t + (1− α)(a− bLt) + N.

Consequently,

∂γEt(kt, Lt)
∂kt

= −(1− α)αMkα−2
t < 0,

∂γEt(kt, Lt)
∂Lt

= −(1− α)b < 0.

ut
γEt = γEt(kt, Lt) is a surface in the three dimen-
sional space (kt, Lt, γEt), whose zero locus is the pla-
nar curve γEt(kt, Lt) = 0. Let us consider the in-
tersection of this surface with the plane of equation
Lt = a/b.

Lemma 22. Set γa/b
Et

= γEt(kt, a/b) ≡ γEt(kt). Then

γ
a/b
Et

= 0 if kt =
(
−αM

N

) 1
1−α

.

Proof: γ
a/b
Et

= 0 implies αMkα−1
t +N = 0. Solving

this equation gives the statement. ut

Remark 23. Say T the time at which γ
a/b
Et

= 0, i.e.

kT =
(
−αM

N

) 1
1−α

. (26)

Setting (13) equal to kT yields an implicit equation
for the time T defined by

kT = ϕ−1
T

[
k1−α

0 + (1− α)M
∫ T

0
ϕ1−α

t dt

] 1
1−α

.

Proposition 24. If growth is sustainable and kT >
k0, then the growth rate of emissions is at first positive
but turns negative in finite time. If growth is sustain-
able and kT < k0, then the growth rate of emissions
is negative for all t. If growth is unsustainable, then
emissions growth declines with time, but remains pos-
itive for all t.

Proof: From Lemmas 21 and 22, we know that γ
a/b
Et

is decreasing as a function of kt, and γ
a/b
Et

= 0 at kT .

Therefore, we derive that γ
a/b
Et

> 0 if k0 < kT , and

γ
a/b
Et

< 0 if k0 > kT . If growth is sustainable, then,

from (26) and the fact k∞ = [M/(δ + g)]
1

1−α , we get
kT < k∞. Equation (13) implies that kT is reached in
finite time from k0 < kT . If growth is not sustainable,
then we have kT > k∞. Since kt converges to k∞ as
time goes to infinity, then kT > k∞ always, and by
definition of kT emissions growth remains positive. ut

7 Conclusion
In this paper, we have considered a modified version
of the Solow-Swan growth model, obtained by the as-
sumption of a logistic-type population growth law and
the introduction of environmental pollution. This set
up has led the model to be described by a three di-
mensional dynamical system, whose solution, deter-
mined recursively, converges in long-run. In addition,
physical capital stock has a closed-form expression
via Hypergeometric functions. Investigating sustain-
able growth, we prove that technological progress in
abatement must exceed growth in aggregate output for
pollution to fall and the environment to improve. In
this case, there is an EKC relationship between the
stock of environmental quality and income. Finally, in
case there is no technological progress in abatement,
the economy is shown to have a unique equilibrium,
which is a stable node, and no EKC occurs.
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8 Appendix
Let recall some facts about Hypergeometric functions
(see Abramowitz and Stegun [1] for details). The
Gauss Hypergeometric function 2F1(c1, c2, c3; z),
with complex arguments c1, c2, c3, and z, is given by
the series

2F1(c1, c2, c3; z)

=
Γ(c3)

Γ(c1)Γ(c2)

∞∑

m=1

Γ(c1 + m)Γ(c2 + m)
Γ(c3 + m)

zm

m!
,

where Γ(·) is the special function Gamma. The above
series is convergent for any c1, c2 and c3 if |z| < 1,
and for any c1, c2 and c3 such that Re(c1+c2−c3) < 0
if |z| = 1. Fortunately, there are many continuation
formulas of the Gamma Hypergeometric function out-
side the unit circle. The most practical continuation
formulas consist in the integral representations of the
Gamma Hypergeometric function. We shall use the
following formula

2F1(c1, c2, c3; z) =
Γ(c3)

Γ(c1)Γ(c3 − c1)
·

·
1∫

0

tc1−1(1− t)
c3−c1−1

(1− zt)−c2dt,

where Re(c1) > 0, Re(c3 − c1) > 0, commonly
known as the Euler integral representation.
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