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Abstract: - The paper presents a boundary element approach for the problem of the finite span airfoil in a 
subsonic compressible fluid flow. The singular boundary integral equation equivalent with the mathematical 
model characterized by partial differential equation is solved in this paper by the use of constant and linear 
isoparametric boundary elements of Lagrangean type. A special attention is given to the treatment of the 

singular integrals because their evaluation major influences the numerical solutions accuracy. Some aspects 
about how to treat the integrals of singular kernels in case of solving 3D problems are presented. An efficient 
method that is applied consists in using suitable geometrical transformations of coordinates to eliminate the 

singularities. A computer code based on this method is made and numerical results are obtained. The computer 
code is tested by making an analytical checking and the results show the efficiency of the method. 
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1   Introduction 
The Boundary Element Method (BEM) is a powerful 

numeric technique used to solve many kinds of 
problems of continuum mechanics such as in 
electrostatics, heat transfer, fluid flow, acoustics, 

electromagnetism, etc. 
Two big steps have to be made when applying this 

method as described in many books of BEM, for 
example [1, 2, 3].  

At the first step a boundary integral formulation 
equivalent with the mathematical model of the 
problem must be obtained and then this boundary 

integral, that is usually a singular one, must be solved 
by using a discretization technique. 

The problem to solve is so reduced to a linear 

system of equations, the unknowns being the nodal 
values of the functions to be find. 

The calculation of the matrix coefficients requires 
several evaluations of integrals with singular and 
non-singular kernels. An efficient and accurate 

method of computing the non-singular integrals is to 
employ Gaussian integration schemes. But how to 
deal with the singular ones. 

An integral whose integrand  reaches an infinite 
value at one or more points in the domain of 
integration is named singular integral. In general, 
singular integrals can be defined by eliminating a 

small space including the singularity, and then taking 
the limit as this small space disappears. So sometimes 

integrals can converge, and in this case, they are said 
to exist. A singular integral can be understand in the 

sense of Cauchy Principal Value or in Hadamard 
sense [13].  

Integrals of singular kernels evaluation is one of 
the most important and difficult step in solving 
problems with BEM and has a big influence on the 

numerical solutions accuracy.  
Sometimes certain integrals, specially over 

triangles can be integrated exactly. This is happening 
for example in bi-dimensional problems when using 
constant and even linear boundary elements. Some 
methods used for the singularities treatment in case 
of bi-dimensional problem are presented in papers 

[11,12].   
The analytical calculus is preferred because it 

doesn’t introduce errors but it is not always possible. 

Semi-analytical approaches are useful too but 
sometimes   numerical integration represents the only 

possibility that exists. In general, a numerical 
quadrature technique must be used.  

The effectiveness of the BEM is clearly dependent 
on the implementation of efficient and accurate 
integration procedures to evaluate boundary and 
volume integrals of the singular kernels [9,10], and 
also depends on the types of boundary elements used 

for the boundary discretization.  For two-dimensional 
problems, each integration is one-dimensional, but 
for three-dimensional problems the integration is bi-
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dimensional. Thus, the collocation method requires 
the evaluation of a large number of single integrals. 
The integration schemes to use must be designed to 
obtain accurate approximations to the integrals in an 

efficient manner, in order to reduce computational 
effort involved. Studies about the convergence and 
the errors that appear when singularities are 

presented, are made for example in paper [4,5]. 
For the treatment of the singularities there can be 

used various techniques. Using their rigorous 
definition, as limit of an usual integral (defined by 
eliminating a neighborhood of the singularity, and 
then taking the limit as it disappears) and doing the 
analytical integration is the first to be considered but 
it is not easy to apply. Special quadrature rules are 
very often used and adaptive schemes too. The 

singularity can also be eliminated if suitable 
coordinate and variable transformation methods are 
applied.  

For weakening the singularities the integration by 
parts offers good results.  

Other methods based on: series expansion – 
Taylor expansions around the singularity or 
expansions in general orthogonal systems- and 
subtraction, the choice of fictive nodes, not situated 
on the real boundary, or other regularization 

techniques can be successfully and easily applied . 
In this paper an efficient method that consists in 

using polar coordinates to eliminate the singularities 

is described and applied.  

 

2   The  Boundary Integral Equation 
We first make a short presentation of the problem 

we want to solve.  
We consider a 3D uniform, steady, potential 

motion of an ideal compressible fluid, of subsonic 

velocity iU∞ , pressure ∞p and density ∞ρ  

perturbed by the presence of a fixed obstacle of a 
known boundary, noted Σ , assumed to be smooth 

and closed, which equation is: ( ) 0,, =ZYXF . We 

want to find out the perturbation, and the fluid action 
on the body.   

The problem was studied by many authors, with 

different numerical techniques, and even when BEM 
was applied the boundary integral formulations were 
obtained in terms of potential functions, or stream 
function, not in terms of velocity field.  
Using dimensionless variables, we have, for the 
perturbed motion velocity and pressure fields, the 
following relations and equations: 
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From the last equation we deduce that UP −= , and 

further we deduce new equations to solve for finding 
the perturbation: 
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where U, V, W are the scalar components of velocity 
field.  
On Σ  the following condition must be satisfied:  
 

( ) 01 =+++ zYX WNVNNU ,                (4) 

 

zYX NNN ,,  being the components of the inward 

normal to Σ :  
GradF

GradF
N = . 
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the mathematical model is obtained in a simple form: 
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Tthe new boundary condition, deduced from (4), is: 
   

( ) Σ−=++ onnwnvnun xzyx ββ 2
,           (7) 
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It is also required that the perturbation velocity 

vanishes at infinity: ( ) 0,,lim =
∞

wvu .    

The first equation ensures the existence of the 

potential function ( )zyx ,,ϕ , so as: 
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As it is known (see for example[6]), the fundamental 

solution of this equation is : 
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where  is the usual Euclidean  norme in 
3R ,  

( ) ( ) ( )2

33

2
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and ( )zyx ,,ϕ represents the potential of the motion 

produced by an unitary source situated in point 

ξ (position vector).   

The velocity field is given by: 
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Assimilating the body with a continuous 

distribution of sources on the boundary, so on Σ , 

having an unknown intensity ( )ξm   (presumed to 

satisfy hölder condition on Σ ), we have for the 

perturbation velocity, v , the integral representation: 
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For Σ∈→ 0xx , and replacing  ξ  by x we get 

the perturbation velocity in any point of the 

boundary:  
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where the sign  “′ “ denotes the  Cauchy Principal 

Value sense of the integral, and  ( )00 xnn = .  

Using the boundary condition (7) a singular 
integral equation for the unknown m is obtained in 
[7]: 
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For 1=β  we obtain the boundary integral equation  

for the incompressible fluid flow. 

Denoting by ( ) ( ) ( ) ( )[ ]20202200

zyx nnnxC ++= β  and by  
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we can write equation (13) as follows: 
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Σ
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(15) 
For simplifying the writing we shall not use the 

prim sign to specify that an integral must be 
understand in this sense.  

 

3 Solving the Boundary Integral 

Equation with constant boundary 

elements  
For the 3D case the simplest mode to discretize a 

surface is to use triangular plane elements (with 
straight lines) with vertices on the given surface. 

Such a boundary element is well known through its 
vertices coordinates.  

In this approach the body surface,Σ , is divided 

into M  triangles, noted  MjT
j

,1, = , the vertices of 

the triangles, noted Nixi ,1, = , being situated on Σ . 

We get the following integral equation on the 

approximated boundary: 
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Next step in applying BEM consists in 

implementing the local behaviour of the unknowns 

into the model.  
When using constant boundary elements, for the 

local approximation of the unknown we consider that 

this constant is equal with the value taken in 
0

jx the 

weight centre of the triangle.  

So in this case ( ) ( ) jj
not

j Txmxmxm ∈== ,0
 . 

Introducing this approximation in (16) we get:  
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If we take in the above equation Mixx i ,1,0

0 == , 

so if we use a collocaion method we obtain a system 

of equations for Mjm j ,1, = , of the following 

form: 
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Collocation methods and genetic algorithms can 

be applied to study other boundary value problems as 
in [14].  

The geometry of a usual triangle is described 
using the coordinates of its vertices, but since the 

triangles of the mesh are in arbitrary positions in 
space, for simplicity the local geometry is described 
using transformations which bring the triangle into a 

standard configuration. To achieve this goal shape 
functions and new variables can be used. 

 For a plane triangular boundary element, jT ,  with 

three nodes, coinciding with its vertices,  using a 

parallel system of notations where 3,1, =kx kj  

represent these geometric nodes,  we have:  
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where ( )λkN  depends on the new variables, and 
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k
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We have to evaluate singular integrals if ji = and 

non-singular integrals in ji ≠ . For evaluating non-

singular integrals an analytical calculus can be done.  
For evaluating the singular integrals, Taylor 

formula can be used, and for applying it, polar 
coordinates, considered to have the origin in node of 
the base triangle corresponding to the collocation 

point, noted 
jη , can be used, as in [1].  

We consider so that 
   

 jij ′+′+= θρθρηλ sincos ,               (23) 

 

where  ji ′′,  are the axes of the new local system of 

coordinates.  
The following relations hold:  
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Using series expansions and truncations we try to 
simplify then the factors causing the singularities.   
Using  Taylor’s formula we deduce that 
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(27) 
are the  new, or modified shape functions. 

In this paper the system of coordinates used to 
shift from the current boundary element to the basic 
one is the intrinsic system of coordinates. These 

coordinates are noted with 321 ,, λλλ  and if  P is a 
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point of jT  then we have relations: 
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In case of using the  above shape functions we 
obtain the following new shape functions:  
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Using this method we can eliminate the singularities 
that arise. 

Returning to the singular integral ( )ji =  in (20) we 

obtain 
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4 Triangular Linear Boundary 

Elements and Semi-Analytical 

Approach 
In this paragraph, for solving the integral equation 

(15) we use linear triangular isoparametric boundary 

elements of Lagrangean type, and for minimizing the 
errors that appear due to singular integrals 
evaluations we make a partial analytical calculus.  

The body surface,Σ , is divided as before, into 

M  triangles, noted  MjT
j

,1, = , the vertices of the 

triangle, noted Nixi ,1, = , situated on Σ . 

Considering { }Nixx i ,...,2,1,0 ∈=  we have to 

calculate two types of integrals on jT , with and 

without singularities, depending on (if ix is one of 

the triangle jT  vertices). Thus, we have, for a fixed i, 

the integral equation: 
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where 1A  and 2A represent the sets of triangles that 

don’t have, respective have an extreme in ix .  

Next step consists in implementing the local 

behaviour of the unknowns into the model.  
In case of using  linear isoparametric boundary 

elements same functions are used for the local 
approximation of the geometry and unknowns. 

Again we have to evaluate singular and non-
singular integrals. For evaluating these integrals we 
use again the intrinsic system of coordinates as 
before. This changing of coordinates brings the 
advantage that integrals will be evaluated on the 

same basic triangle, of vertices ( ( )0,0,0 , ( )0,0,1  and 

( )0,1,0  represented in Fig 1.  
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Fig. 1. New domain of integration 

First we consider that 
j
T  has all vertices different 

from
ix . Naming by jjj xxx 321 ,, the vertices of the 

panel 
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(39) 

Integrals ( )θnI  from the above relation are the 

same as in case of an incompressible fluid and they 

θ  

r 

1 

1 

3λ  

2λ  
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have the following analytical expressions: 
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Considering now that the triangle, noted  
j
T ,  has 

a vertex in 
ix  we calculate the singular integrals 

occuring in (35) using the following relations: 
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( ) ( ) θθ sincos 32 rmmrmmmm ijiji −+−+=  

                  (41) 

where 
32 , jj xx  are the other two nodes of 

j
T , and 

32 , jj mm  are the values of the unknown function, m , 

in these nodes. 

We have: 
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where    
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321 ,, jjj eee  being components of 
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(43) 

When evaluating the singular integrals we use the 
same parametric representation and the notion of 

finite part of integral dr
r∫

ρ

0

1
: 
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and we obtain: 
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Denoting by 222

ijijijij
CBAA −−=′ , we further get: 
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and finally equation (9) has the form: 
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Returning to the global system of notation the 

problem is reduced to the following system of 
equations: 

x

ij

N

j

ij nfA β2
~

1

=∑
=

                      (50) 

 
After solving system (50) we may compute the 

velocity for the N  nodes choosen for the boundary 

discretization. 
 

5     Numerical results  
In order to test the method we shall consider the 

uniform motion in the presence of a sphere of 
radius R , centered in the origin of the system of 

coordinates, and an incompressible fluid. In this case 
the integral equation (15) can be solved analytically. 

A solution of this equation can be found in [8]. 
Using the spherical coordinates for the nodal 

points ( )kqjqqiqqRx 12121 cossinsincossin ++= and the 

method of successive approximations to integrate  

equation (15) we obtain the exact solution which has 
the expression:  

                        ( )
121 cos

2

3
, qUqqm ∞=  

Comparisons between the analytical values of the 

intensity m , on the sphere,  and the values calculated 

by means of the boundary element method (with a 
computer code in MATHCAD) are performed in 

Fig.2, and Fig.3. The boundary mesh is represented 
by 24 planar triangles and has 14 control points. 
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 with BEM exact sol.

 
Fig.2. Sources intensities for the 14 control 

points 

 

 
Fig.3. The sources intensities for the first 7 control 

points 
 
We can observe that  the calculated and analytical 

values of the intensity are very close. 
Another simple method that can be applied for the 

treatment of the singularities when applying BEM 
with linear boundary elements of plane triangles type 
consists in using a more refined mesh near the 

singularity and disposing the element with the 
singularity. 

For example, if we have to evaluate a singular   

integral, noted ∫∫=
T

KdaI  over triangle T 

represented, whose nodes are noted 321 ,, AAA ,  with 

a singularity in one of it is nodes, for example in 
node 1, (like the situation that exist in case of using 

linear boundary element and a collocation method 
with collocations points in the corners of the 
triangles), we  may apply the following procedure.  

We consider the midpoints of the triangle sides 
and with them we construct sub triangles 

4321 ,,, TTTT  as in Fig 4, and we then do the same 

sources intensities
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with triangle 1T  instead of T. We obtain a new mesh 

of the initial triangle as in Fig.5.  
 
 

 
 

Fig.4. The mesh after the first step 

 
 

 
Fig.5. The mesh after the second step 

 
 
So we have:  

...
7

1

4

1

==== ∑∫∫∑∫∫∫∫
== j Tj TT jj

KdaKdaKdaI  

We continue this algorithm in the same manner, 
refining at each step the single triangle with a corner 
point in node 1, until the mesh size is small enough 
near this node and the integral over T will not be too 
much affected if we will eliminate the small triangle 
near the singularity.  

For evaluating the integral left we can use usual 

quadrature schemes. 

 

2 Conclusions  
This paper briefs out some aspects about how to 

apply the BEM to solve 3D problems of fluid flow, 
through a concrete case: the problem of the subsonic 
compressible fluid flow around obstacles. 
Techniques that can be used for the treatment of 
singularities, when using triangular boundary 

elements for the boundary discretization have been  
discussed too.  

Taking into account that the boundary integral 
equation itself is a statement of the exact solution to 

the problem posed, we can say that errors arise in 
principal due to discretization and numerical 
approximations, due to our inability to carry out the 

required integrations in closed form.  
The effectiveness of the BEM is clearly 

dependent on the integrals of the singular kernels 
evaluation. If the numerical integration procedure is 
made sufficiently sophisticated (by using for example 
curved boundary elements and continuously varying 
distributions of functions over the boundary) than the 
errors so introduced can be very small indeed. 
Numerical integration is, of course, always a much 

more stable and precise process than numerical 
differentiation and neither the direct nor the indirect 
BEM require any differentiation of numerical 

quantities whatsoever, and this recommends the 
BEM as an efficient numerical technique for solving 
boundary values problems of continuum mechanics, 
described by partial differential equations with 
fundamental solutions. 
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