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Departament de Matemática Aplicada I
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1 Introduction
Let M be the differentiable manifold of

triples of matrices (E, A,B) where E, A ∈
Mn(C), B ∈ Mn×m(C), which represent sin-
gular time-invariant linear systems in the form

Eẋ(t) = Ax(t) + Bu(t) (1)

It is well known that a system Eẋ = Ax+
Bu is called regular if and only if det(αE −
βA) 6= 0 for some (α, β) ∈ C2. Remember
that the regularity of the system guarantees
the existence and uniqueness of classical solu-
tions.

For no regular systems one can ask for
whether the close loop system is uniquely solv-
able for all consistent initial solution, when
this is possible the system will be called regu-
larizable by proportional and derivative feed-
back. That is to say, a system is regularizable
if and only if, there exist matrices FE , FA ∈
Mm×n(C) such that the system (E+BFE)ẋ =

(A+BFA)x+Bu is regular. A special subset of
regularizable systems is the subset formed for
the so called standardizable systems that they
are systems (E, A,B), such that there exists
a derivative feedback FE such that E + BFE

is invertible, so after to apply the derivative
feedback FE and premultiplying the equation
by (E+BFE)−1, we obtain a standard system.

Notice that, the set MR consisting in all
regularizable triples is an open and dense set
in the space of all triples.

The central goal of this paper is to con-
struct a stratification of the space MR of reg-
ularizable systems, that is to say, a partition
of MR in a locally finite (in fact finite) family
of differentiable manifolds, called strata. As a
starting point, the space of regularizable sys-
tems is partitioned into equivalent classes un-
der the proportional and derivative feedback
equivalence relation considered. After to ob-
serve that the equivalent classes can be seen
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as orbits by a group Lie action, geometrical
techniques can be used and perturbations of a
given system are obtained from the local de-
scription of this partition, which can be de-
rived from versal deformations. Nevertheless,
the partition into orbits is not locally finite.
Following the method used by Arnold [1], we
consider “strata” formed by the uncountable
union of the orbits having the same collection
of discrete invariants varying only in the value
of eigenvalues. Therefore, the local descrip-
tion of this new partition gives information
about the perturbation of the controllability
indices, etc. of a system. The key point lies in
showing that each stratum is a differentiable
manifold, and as a consequence the new par-
tition is in fact a stratification that we will
call Kronecker stratification. The proof fol-
lows from the local description of the strati-
fication given by the miniversal deformation.
The authors Elmroth, Johansson, K̊agström
[6], [7], Puerta, Helmke [13], study stratifi-
cations for the case of standard systems, ob-
viously our case of regularizable systems in-
clude the case of standard ones. Pervouch-
ine [12] stratifis the space of matrix pencils
associate to standard ssytems. Several other
people futhermore study related topics as dis-
tance to uncontrollability see [2], [3], [10], [11]
for example. Computing the canonical struc-
ture of a singular linear system is an ill-posed
problem, that is to say small changes in the in-
put data matrices E, A and B may drastically
change the computed canonical structure. Be-
sides knowing the canonical structure it is also
important to identify nearby canonical struc-
tures in order to explain the behavior and to
study the robustness of a singular system un-
der small perturbations.

Finally, given a parametrized differen-
tiable family of singular regularizable systems,
the stratification induces a partition in the
space of parameters, known as the bifurca-
tion diagram of the family. The bifurcation
diagram of a family of singular reguarizable
systems gives precise information about the
qualitative properties of the systems arising
in the family and about the effects of local

perturbations of the parameters.

2 Preliminaries
For every integers p, q, we will denote by

Mp×q(C) the space of p-rows and q-columns
complex matrices, and if p = q we will write
only Mp(C), and by Gl(n;C) the linear group
formed by the invertible matrices of Mp(C).
In all the paper, M denote the space of triples
of matrices (E, A, B) with E,A ∈ Mn(C),
B ∈ Mn×m(C) and MR denote the open and
dense space of regularizable systems.

In order to classify systems preserving reg-
ularizability character, we consider the follow-
ing equivalence relation.

Definition 1 The triples (E,A, B) and
(E′, A′, B′) in M , are said to be equivalent if
and only if

(E′, A′, B′)=(QEP+QBFE , QAP+QBFA, QBR)
(2)

for some Q,P ∈ Gl(n;C), R ∈ Gl(m;C),
FE , FA ∈ Mm×n(C). In a matrix form:

(
E′ A′ B′) =Q

(
E A B

)



P 0 0
0 P 0

FE FA R


 .

As a consequence and after to observe that
the set MR is closed under equivalence rela-
tion considered, a regularizable system can be
reduced as follows.

Proposition 1 Let (E,A, B) be
a n-dimensional m-input regularizable
system. Then, it can be reduced to((

Ir
N1

)
,
(

A1
In−r

)
,
(

B1
0

))
where (A1, B1)

is a pair in its Kronecker canonical
form and N1 is a nilpotent matrix in
its canonical reduced form. Concretely,

(A1, B1) =
((

N2 0
0 J

)
,

(
B′ 0
0 0

))
where

N2 = diag(N21, . . . , N2p), N2i ki-nilpotent

matrices
(

0 Iki−1

0 0

)
, B′ = diag(e1, . . . , ep),

ei = (0, . . . , 0, 1)t ∈ Mki×1(C), J is a Jordan
matrix having λ1, . . . , λt distinct eigenvalues
and σi as Segre characteristic for each eigen-
value.
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A complete system of invariants permit-
ting to obtain the canonical form, can be
found in [4].

The equivalence relation may be seen as in-
duced by Lie group action. Let us consider the
following Lie group G = Gl(n;C)×Gl(n;C)×
Gl(m;C) × Mm×n(C) × Mm×n(C) acting on
M .

The action α : G ×M −→ M is defined as
follows:

α((P, Q,R, FE , FA), (E, A, B)) =
(QEP + QBFE , QAP + QBFA, QBR).

(3)
So, the orbits are equivalence classes of

triples of matrices under the equivalence re-
lation considered.

O(E, A, B) = {(E1, A1, B1)

with
E1 = QEP + QBFE ,
A1 = QAP + QBFA,
B1 = QBR,

∀Q, P ∈ Gl(n;C), R ∈ Gl(m;C), FE , FA ∈
Mm×n(C).

Proposition 2 Any orbit is a con-
structible subset of M .

It is well known that the orbits are embed-
ded submanifolds of M .

Given a triple (E,A, B) ∈ MR in its
canonical reduced form, a minitransversal dif-
ferentiable family to the orbits is (see ([4])):

(E + X, A + Y, B + Z) with X =(
0 0

X3 X4

)
, Y =

(
Y1 0
0 0

)
, Z =

(
Z1 0

)
.

Y1, Z1 in such away that (A2 + Y1, B1 +
Z1) being a minimal deformation of the pair

(A1, B1). Concretely, Y1 =
(

0 0
Y 2

1 Y 2
2

)
,

Z1 =
(

Z1
1 Z1

2

0 Z2
2

)
where the block-decompo-

sition correspond to that of (A1, B1) and

i) all the entries in Y 2
1 are zero except

yp+1
i , . . . , yn

i , i = 1, k1 + 1, . . . , k1 +
. . . + kp−1 + 1,

ii) the matrices Y 2
2 are such that J + Y 2

2

is the miniversal deformation of J given
by Arnold [1],

iii) all the entries in Z1
1 are zero except

zj
i , 2 ≤ i ≤ p, k1+. . .+ki−2+ki+1 ≤

j ≤ k1 + . . . + ki−2 + ki−1 − 1 (provided
that ki ≤ ki−1 + 2,

iv) Z1
2 is such that zi

p+1 = . . . = zi
m =

0, i = k1, k1 + k2, . . . , k1 + . . . + kp,

v) all the entries in Z2
2 are arbitrary.

N1 + X4 is a miniversal deformation of the
square matrix N1 given by Arnold (see [1]),
and X3 = (Xij) with

Xij =




0 . . . 0
...

...

0 . . . 0
x1 . . . x`




,

Xij =




0 . . . 0 . . . 0
...

...
...

0 . . . 0 . . . 0
0 . . . x1 . . . x`




,

corresponding to size in the nilpotent subma-
trices N1 and N2.

3 The strata
A stratification of a subset V of a manifold

N is a partition ∪iXi of V into submanifolds
Xi of N (called the strata) which satisfies the
local finiteness condition: every point in V has
a neighborhood in N which meets only finitely
many strata.

Let W , N manifolds, f : W −→ N a dif-
ferentiable map, and V = ∩iXi a stratification
on N . We say that f is transversal to V if it
is transversal to each stratum Xi of V .

Let N be a finite-dimensional vector space,
X, Y submanifolds of N , and x ∈ X ∩ Y . We
say that Y is Whitney regular over X at x
when the following condition holds: let (xi),
(yi) be sequences in X, Y , respectively, both
converging to x, with xi 6= yi for all i. Take
Li to be the line spanned by xi − yi and Ti

to be the tangent space Tyi . If (Li) converges
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to L (in the Grassmannian of 1-dimensional
subspaces of N) and Ti converges to T (in the
Grassmannian of q-dimensional subspaces of
N , q = dim Y ), then L ⊆ T .

It is not difficult to see that this condition
is invariant under diffeomorphisms. Hence, we
can define in an obvious way the Whitney reg-
ular condition when N is a manifold.

Finally, let ∪iXi be a stratification of a
subset V of a manifold N We say that this
stratification is Whitney regular when every
stratum Xi is Whitney regular over Xj for all
i 6= j.

The space MR of all triples of matrices is
formed by the disjoint union of all orbits of the
triples and the frontier of each orbit is formed
by orbits of strictly lower dimension.

We remark that this partition is not lo-
cally finite (as example, in a neighborhood of
any triple having continuous invariants, there
are infinite orbits that we will call “having the
same type”, they are orbits having the same
collection of discrete invariants varying only
in the continuous ones).

In order to obtain a finite partition pre-
serving the orbit structure, we group the or-
bits having the same type, we call this set
stratum in MR. There are only finitely many
strata, each is an orbit or an uncountable
union of orbits partitioning MR.

So, the strata in MR are determined by
the controllability indices k, Segre character-
istic σ and ∞-characteristic τ . We denote
each strata by S(k, σ, τ), and (k, σ, τ) will be
called symbol of strata. We denote Σ the par-
tition ∪(k,σ,τ)S(k, σ, τ) of MR which will be
called Kronecker stratification

When we write (k, σ, τ) we do not ex-
clude the possibilities that (k, σ, τ) = (k),
(k, σ, τ) = (k, σ), (k, σ, τ) = (k, τ), (k, σ, τ) =
(σ, τ),(k, σ, τ) = (σ) or (k, σ, τ) = (τ). First
case (k) means that the triple is a standard-
izable and controllable triple, (k, σ) that the
triple is standardizable with a no-controllable
part, (k, τ) that the standardizable part of the
system is controllable, (σ, τ), (σ), and (τ) that
B = 0 with standard and non-standard part,
standard triple, and no-standard one respec-

tively.

Proposition 3 Any stratum in MR is a
constructible and connected subset of MR.

Proof. Let S(k, σ, τ) any stratum in
MR corresponding to the controllability in-
dices k = (k1, . . . , kp), Segre characteris-
tic σ = (σ1, . . . , σt) and ∞-characteristic
τ = (τ1, . . . , τs). Let us consider C(t) =
{(λ1, . . . , λt) | λi 6= λj , i 6= j} ⊂ Ct. For
each (λ1, . . . , λt) ∈ C(t) we consider (E, A,B)
the triple of matrices in its canonical re-
duced form in the stratum S(k, σ, τ) hav-
ing these eigenvalues. Finally we consider
the map ρ : G × C(t) −→ MR defined by
ρ(g, (λ1, . . . , λt)) = α(g, (E, A, B)). Obvi-
ously, G × C(t) is a constructible set, ρ is a
rational map, and ρ(G × C(t)) = S(k, σ, τ),
so that, according to the Chevalley theorem
S(k, σ, τ) is a constructible set. Moreover, it is
connected because ρ is continuous and G×C(t)

is connected. ¤

Lemma 1 Let ϕ : Λ −→ MR be a de-
formation of (E,A, B) minitransversal to the
orbit O(E, A, B) given in §2. Let V ⊂ G
a subvariety minitransversal to the stabi-
lizer St(E, A,B). Then, the map β : Λ ×
V −→ MR defined by β(λ, (P,Q, R, FE , FA) =

Q ( E(λ) A(λ) B(λ) )
(

P 0 0
0 P 0

FE FA R

)
, with λ =

(λ1, ..., λ`) and (E(λ), A(λ), B(λ)) = ϕ(λ),
is a diffeomorphism at (0, I).

Remember that St(E, A,B) is the
set of (P,Q, R, FE , FA) ∈ G such that
α((P, Q, R, FE , FA), (E,A, B)) = (E, A,B).

Proof. The inverse function theorem en-
sures that β is a local diffeomorphism at (0, I),
if and only if dβ(0,I) is a diffeomorphism.

Taking into account that dim(V × Λ) =
2n2 + mn = dim MR, it suffices to observe
that dβ is surjective. ¤

Lemma 2 Let (E, A,B) be a triple in
MR, O(E, A, B) its orbit, S(k, σ, τ) its stra-
tum, and Γ the variety transversal to the or-
bit (we will consider the miniversal minimal
deformation explicited in §3). Then, in a
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neighborhood of (E, A, B), S(k, σ, τ) is a reg-
ular subvariety at (E, A, B) if and only if
S(k, σ, τ) ∩ Γ is.

Proof. Suppose S(k, σ, τ) regular at
(E,A, B). Taking into account that Γ is
transversal to O(E, A, B), it also is transver-
sal to S(k, σ, τ). Then, S(k, σ, τ)∩Γ is regular
at (E,A, B).

Conversely, suppose S(k, σ)∩ Γ regular at
(E,A, B). The local triviality given in lemma
2, we have

S(k, σ, τ) = β((S(k, σ, τ) ∩ Γ)× V )

locally in (E, A, B). Then S(k, σ, τ) is regular
at (E,A, B). ¤

Now we analyze S(k, σ, τ) ∩ Γ and Si ∩ Γ.

Proposition 4 Let (E, A, B) be a triple
in S(k, σ, τ), in its canonical reduced form

i) if (X, Y, Z) 6= (0, 0, 0) then (E, A,B) +
(X,Y, Z) /∈ O(E, A, B)

ii) (E, A, B) + (X, Y, Z) ∈ S(k, σ, τ) if and
only if X = 0, Y 2

1 = 0, Z = 0 and J+Y 2
2

has the same Segre characteristic σ than
J .

Theorem 1 The strata are submanifolds
of MR.

Proof.
It is obvious for strata that they are or-

bits. Let (E, A, B) ∈ MR, taking into ac-
count the homogeneity of its orbits we can as-
sume that the triple is in its canonical reduced
form. By lemma 2, it suffices to prove that
S(k, σ, τ) ∩ Γ is regular at (E, A,B), where Γ
is the particular one considered in §2. From
proposition 4, it follows that S(k, σ, τ) ∩ Γ is
formed by triples of the form (E, A, B) with

E =
(

I1 0 0
0 I2 0
0 0 N1

)
, A =

(
N2 0 0
0 J+Y2 0
0 0 I3

)
and B =

(
B′ 0
0 0
0 0

)
I1, N2 ∈ Mn1(C), I2, J +Y2 ∈ Mn2(C),

I3, N1 ∈ Mn3(C), such that J + Y2 has the

Segre characteristic of J , or equivalently, such
that J +Y2 belongs to the Segre stratum S(J)
of J in the Segre stratification of square ma-
trices under similarity given by Arnold in [1].

Therefore, the mapping φ : Mn2 −→ MR

defined by

φ(C) =
((

I1 0 0
0 I2 0
0 0 N1

)
,
( N2 0 0

0 C 0
0 0 I3

)
,
(

B′ 0
0 0
0 0

))

is a diffeomorphism such that φ(S(J)∩ΓJ) =
S(k, σ, τ)∩Γ (ΓJ denotes the variety transver-
sal to the orbit given in [1] and S(J) the Segre
stratum in the stratification of the space of
square matrices under similarity). Gibson in
[9] proves that the Segre strata of the strat-
ification of the space of square matrices are
regular, so the proof is completed. ¤

We can compute the dimension of the
strata.

Proposition 5 Let (E, A, B) ∈ MR,
O(E, A,B) be its orbit and S(k, σ, τ), its stra-
tum, then

dimS(k, σ, τ) = t + dimO(E, A, B)

where t is the number of distinct eigenvalues
of (E, A, B).

Proof. It suffices to bear in mind that
dimS(k, σ, τ) ∩ Γ) = t. ¤

Finally, and as example we explicit the set
S of strata S(i) of two dimensional one input
singular systems.

S(1) = O
((

1 0
0 1

)
,

(
0 1
0 0

)
,

(
0
1

))
,

S(2) = ∪a∈CO
((

1 0
0 1

)
,

(
0 0

a

)
,

(
1
0

))
,

S(3) = ∪µ1 6=µ2O
((

1 0
0 1

)
,

(
µ1 0
0 µ2

)
,

(
0
0

))
.

S(4) = ∪µO
((

1 0
0 1

)
,

(
µ 0
1 µ

)
,

(
0
0

))
.

WSEAS TRANSACTIONS on MATHEMATICS M. Isabel Garc´Ia-Planas

ISSN: 1109-2769
52

Issue 2, Volume 7, February 2008



S(5) = O
((

0 0
0 0

)
,

(
0 0
0 1

)
,

(
1
0

))
.

S(6) = ∪λ6=0O
((

1 0
0 0

)
,

(
λ 0
0 1

)
,

(
0
0

))
.

S(7) = O
((

0 0
1 0

)
,

(
1 0
0 1

)
,

(
0
0

))
.

S(8) = O
((

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0
0

))
.

S(9) = O
((

0 0
0 0

)
,

(
0 0
0 1

)
,

(
1
0

))
.

S(10) = O
((

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0
0

))
.

S(11) = O
((

0 0
0 0

)
,

(
0 0
0 0

)
,

(
0
0

))
.

S(12) = ∪µO
((

1 0
0 0

)
,

(
µ 0
0 0

)
,

(
0
0

))
.

S(13) = O
((

0 1
0 0

)
,

(
1 0
0 0

)
,

(
0
0

))
.

S(14) = O
((

0 1
x2 0

)
,

(
y1 0
y2 1

)
,

(
z1

z2

))
.

Obviously S(i) ∩ S(j) = ∅, ∀i 6= j and
∪iS(i))M .

4 Regularity of the stratifica-
tion (m = 1)

Given a triple (E,A, B) ∈ MR and
Γ the minitransversal variety considered in
§2, let us to consider the stratification
(∪(k,σ,τ)(S(k, σ, τ) ∩ Γ) of a sufficiently small
neighborhood Γ of (E, A,B) which we denote

by Σ ∩ Γ. Notice that, it is well defined be-
cause Γ is not only transversal to O(E, A,B)
but also to every orbit sufficiently close to
(E, A, B) and hence to every stratum suffi-
ciently close to (E, A,B).

Lemma 3 With the above notations,
the stratification Σ is Whitney regular over
(E, A, B) at (E,A, B) if and only if Σ ∩ Γ
is Whitney regular over S(E, A, B) ∩ Γ at
(E, A, B).

The proof is analogous to one in [9] for
square matrices under similarity.

First, we proof the regularity for a special
kind of strata.

Definition 2 A triple of matrices
(E, A, B) ∈ MR is called simple if it has one
eigenvalue at most. A stratum S(k, σ, τ) is
called simple if its elements are simple.

The simple strata verify a particular ho-
mogeneity property.

Lemma 4 If S(k, σ, τ) is a stratum in
MR, (E, A, B) ∈ S(k, σ, τ) and λ ∈ C, then

1) µ is an eigenvalue of (E, A, B) if and
only if λ+µ is an eigenvalue of (E, A+
λE, B),

2) (E, A + λE,B) ∈ S(k, σ, τ).

Proof. 1) According definition of eigen-
value we have

rank
(−µE + A B

)
=

rank
(−µE + λE − λE + A B

)
=

rank
(−(λ + µ)E + A + λE B

)
< n.

2) To see that (E, A,B) and (E,A +
λE, B) have the same controllability indices,
the same Segre characteristic and the same
∞-characteristic first of all we observe that we
can consider the triple in its canonical reduced
form

(
Ec Ac Bc

)
= Q

(
E A B

)



P
P

FE FA R


 ,
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so, for each λ we have
(
Ec Ac + λEc Bc

)
=

Q
(
E A + λE B

)



P
P

FE FA + λFE R


 ,

Taking into account that (Ec, Ac, Bc) =((
I1

N

)
,
(

A1
I2

)
,
(

B1
0

))
and (Ec, Ac +

λEc, Bc) =
((

I1
N

)
,
(

A1+λI1
I2

)
,
(

B1
0

))
, we

observe that the controllability indices and
the Segre characteristic depends only on the
controllability indices and the Segre character-
istic of the pairs (A1, B1) and (A1 + λI1, B1),
and following [8] they are the same.

Now, we compute the ∞-characteristic for
both triples. We observe that we can consider
the subsystem (N, I2, 0).

rank




I2 ... 0
N I2

N
. . .

I2 0
N N


 = rank




I2 ... 0
I2

. . .
N


 ,

...

rank




I2 ... N
N I2

N
. . .

N 0


 = rank




I2 ... 0
I2

. . .
I2 0

Nn


 .

rank




I2+λN ... 0
N I2+λN 0

N
. . .

I2+λN 0
N N


 =

rank




I2 ... 0
I2

. . .
N


 ,

...

rank




I2+λN ... N
N I2+λN

N
. . .

N 0


 =

rank




I2 ... 0
I2

. . .
I2 0

Nn


 .

¤

Proposition 6 Let S(k, σ, τ) a simple
stratum. For any couple of triples (E,A, B),
(E′, A′, B′) ∈ S(k, σ, τ), there exists a diffeo-
morphism f of MR preserving strata, and such
that f(E, A, B) = (E′, A′, B′).

Proof. If (k, σ, τ) = (k), (k, σ, τ) = (k, τ)
or (k, σ, τ) = (τ) the strata are orbits, so the
result is trivial.

Suppose now, that σ = (σ1) and let λ, λ′

be the eigenvalues of (E, A,B) and (E′, A′, B′)
respectively. Then, because the above lemma
the triple (E, A + (λ′ − λ)E, B) is equiva-
lent to (E′, A′, B′). Hence there exist g =
(Q,P, R, FE , FA) ∈ G such that α(g, (E,A +
(λ′ − λ)E, B) = (E′, A′, B′). It is straightfor-
ward that the map f(X, Y, Z) = α(g, (X, (λ′−
λ)X, Z)) verifies the desired conditions. ¤

The constructibility condition of the strata
ensures that any stratum has a Whitney reg-
ular point, so the homogeneity property over
simple strata implies that all points of the
strata are regular and we have the following
lemma.

Lemma 5 The stratification Σ over MR

is Whitney regular over any simple stratum.

Theorem 2 If m = 1 the Kronecker strat-
ification is Whitney regular.

Proof. The strata S(k), S(k, τ), and S(τ)
are simple.

Let (E, A, B) ∈ MR, O(E, A,B) be its or-
bit, and S(k, σ, τ) be its stratum. We shall
prove that Σ is Whitney regular over S(k, σ, τ)
at (E, A,B). Let Γ be the linear variety de-
fined in §3 and we denote with the same sym-
bol the neighborhood of (E, A,B) where the
isomorphism β holds. Then, according lemma
3, it is sufficient to prove that Σ∩Γ is Whitney
regular over S(k, σ, τ) ∩ Γ at (E, A,B).

Taking account the different expression for
miniversal minimal deformation first, we sup-
pose B 6= 0, and we will discuss later the case
B = 0,
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Since B 6= 0, the triple is((
I1

I2
N1

)
,
( N2

J
I3

)
,
(

B′
0
0

))
.

Now we consider the triples of matrices:

(E0, A0, B0)=
((

I1
N1

)
,
(

N2
I3

)
,
(

B′
0

))
,

(E1, A1, B1)=
((

I1
I2

)
,
(

N2
J

)
,
(

B′
0

))
.

Let Σ0, Σ1 be the Kronecker-stratifications
of the respective spaces of triples of matri-
ces. If we denote Si(Ei, Ai, Bi) the stratum
of (Ei, Ai, Bi) in Σi, i = 0, 1, we observe that
S0(E0, A0, B0) is a simple stratum, then Σ0 is
Whitney regular over S0(E0, A0, B0) ∩ Γ0 at
(E0, A0, B0), where Γ0, is the linear variety
defined in §2:

Γ0 =
{((

I1
X2 X1+N1

)
,
(

N2
I3

)
,
(

B′
0

))}
=

{(E0(X), A0(X), B0(X))}

(X is the parameter vector of all parameters
in X1, X2).

In the other hand, S1(E1, A1, B1) is a
stratum in the set of standardizable triples,
It is easy to observe that the stratification
of one input standardizable systems corre-
sponds the stratification of one input stan-
dardizable systems which verifies the Whitney
regular conditions (see [8] for details), So Σ1

is Whitney regular over S1(E1, A1, B1)∩Γ1 at
(E1, A1, B1), where Γ1, is the linear variety:

Γ1 =
{((

I1
I2

)
,
(

N2
Y1 Y2+J

)
,
(

B′
0

))}
=

{(E1(Y ), A1(Y ), B1(Y ))}.

(Y is the parameter vector of all parameters
in Y1, Y2).

As above, we denote with the same symbol
Γi the neighborhoods of (Ei, Ai, Bi) where the
maps βi are defined, so the induced stratifica-
tions Σi ∩ Γi i = 0, 1 are well defined.

Now, let us to consider the diffeomorphism

ϕ : Γ0 × Γ1 −→ Γ
ϕ((E0(X), A0(X), B0(X)), (E1(Y ), A1(Y ), B1(Y ))) =

(E(X, Y ), A(X, Y ), B(X, Y )).

where (E(X, Y ), A(X, Y ), B(X,Y )) is

((
I1

I2
X2 X1+N1

)
,

(
N2
Y1 Y2+J

I3

)
,
(

B′
0
0

))
.

We know that Π = (Σ0 ∩ Γ0) ×
(Σ1 ∩ Γ1) is a stratification which
is Whitney regular over the stratum
(S0(E0, A0, B0)∩Γ0)×(S1(E1, A1, B1)∩Γ1) at
((E0, A0, B0), (E1, A1, B1)). Hence, because ϕ
is a diffeomorphism to conclude the proof it
is sufficient to show that ϕ preserve strata
locally at (E, A, B). That is to say, given two
points p = (p1, p2) with

p1 =
((

I1
X2 X1+N1

)
,
(

N2
I3

)
,
(

B′
0

))
,

p2 =
((

I1
I2

)
,
(

N2
Y1 Y2+J

)
,
(

B′
0

))

and q = (q1, q2) with

q1 =
((

I1
X′

2 X′
1+N1

)
,
(

N2
I3

)
,
(

B′
0

))
,

q2 =
((

I1
I2

)
,
(

N2

Y ′1 Y ′2+J

)
,
(

B′
0

))

belonging to the same stratum of Π, then the
images ϕ(p), ϕ(q) belong to the same stratum
of Σ ∩ Γ, provided that they are sufficiently
close to (E, A,B).

To prove that it suffices to see that ϕ(p)
and ϕ(q) have the same collection of dis-
crete invariants. We are going to proof that
r1(ϕ(p) = r1(ϕ(q)) and r2(ϕ(p) = r2(ϕ(q))
analogously it can proof for the other invari-
ant numbers. Calling H1 = X1 + N1 and
H2 = Y2 + J , H ′

1 = X ′
1 + N1, H ′

2 = Y ′
2 + J we

have

r1(p1) = rank
(

I1 0
0 I3

)
+ rank

(
X2B

′ 0
N2B

′ B′

)
=

r1(q1) = rank
(

I1 0
0 I3

)
+ rank

(
X ′

2B
′ 0

N2B
′ B′

)
,

r1(p2) = rank
(

I1 0
0 I2

)
+ rank

(
N2B

′ B′

Y1B
′ 0

)
=

r1(q2) = rank
(

I1 0
0 I2

)
+ rank

(
N2B

′ B′

Y ′
1B

′ 0

)
.
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So, it is clear that

r1(ϕ(p)) = n + rank
(

X2B′ 0
N2B′ B′
Y1B′ 0

)
=

r1(ϕ(q)) = n + rank
(

X′
2B′ 0

N2B′ B′
Y ′1B′ 0

)
.

r2(p1) = rank

(
I1 0 0 0
0 I1 0 0
0 0 I3 0
0 0 0 I3

)
+

rank
(

X2B′+H1X2N2B′ H1X2B′ 0
N2

2 B′ N2B′ B′

)
=

r2(q1) = rank

(
I1 0 0 0
0 I1 0 0
0 0 I3 0
0 0 0 I3

)
+

rank
(

X′
2B′+H′

1X′
2N2B′ H′

1X′
2B′ 0

N2
2 B′ N2B′ B′

)
,

r2(p2) = rank

(
I1 0 0 0
0 I1 0 0
0 0 I2 0
0 0 0 I2

)
+

rank
(

N2
2 B′ N2B′ B′

H2Y1B′+Y1N2B′ Y1B′ 0

)
=

r2(q2) = rank

(
I1 0 0 0
0 I1 0 0
0 0 I2 0
0 0 0 I2

)
+

rank
(

N2
2 B′ N2B′ B′

H′
2Y ′1B′+Y ′1N2B′ Y ′1B′ 0

)
.

So, it is clear that

r2(ϕ(p)) = 2n+

rank
(

H1X2N2B+X2B′ H1X2B′ 0
N2

2 B′ N2B′ B′

H2Y1B′+Y1N2B′ Y1B′ 0

)
=

r2(ϕ(q)) = 2n+

rank

(
H1X′

2N2B′+X′
2B′ H′

1X′
2B′ 0

N2
2 B′ N2B′ B′

H′
2Y ′1B′+Y ′1N2B′ Y ′1B′ 0

)
.

For the compute of the other num-
bers we remark that for ` ≤ n1 − 1
rank

(
B′ N2B

′ . . . N `
2B

′) = ` + 1 and if
n1 − 1 < `, N j

2 = 0 for all j ≥ `.
Now, we suppose that B = 0. In this

case the strata are S(σ) or S(σ, τ). S(σ) cor-
responding to standardizable triples, so the
stratification is Whitney regular over these
strata. in the case S(σ, τ), we have make
the following changes in the first part of the
proof (E0, A0, B0) = (N1, I3, 0) (E1, A1, B1) =
(I2, J, 0), Γ0 = {(X1 + N1, I3, Z2)} =
{p0(X, Z1)}, Γ1 = {I2, Y2 + J, Z1)} =
{p1(Y,Z2)} and ϕ(p0(X, Z1), p1(Y, Z2)) =

((
I2

X1+N1

)
,
(

Y2+J
I3

)
,
(

Z1
Z2

))
. Taking

into account that Σi ∩ Γi are whitney regu-
lar it suffices to prove that ϕ preserves strata
following the first case. ¤

5 Bifurcation diagrams
Let U be an open subset of MR, ϕ : Λ −→

U a smooth family of triples of matrices .
If S(k, σ, τ) ∩ U , is a stratum of S ∩ U ,

and ϕ is transverse to the induced stratifica-
tion S ∩U , then ϕ−1(Si ∩U) is a submanifold
of Λ, with the same codimension.

codimΛ ϕ−1(S(k, σ, τ)∩U)=codim U (S(k, σ, τ)∩U).

The transversality of the map ϕ at all
strata of S∩U , ensures that

⋃
ϕ−1(S(k, σ, τ)∩

U) (or
⋃

ϕ−1(S(k, σ, τ)∩U)) is a stratification
of Λ, which strata have the same codimension
than its images in S ∩ U . This stratification
is called bifurcation diagrams of ϕ.

We observe that, and because of Thom’s
transversality theorem, transverse families to
the stratification may be considered generic in
the following sense.

Theorem 3 (Thom) In the space of the
differentiable families ϕ : Λ −→ U , the trans-
verse families to stratification S∩U constitute
a dense subset. If, in addition the stratifica-
tion verifies the Whitney regularity conditions
it is an open set.

Now, we present types of possible triples of
matrices in generic families with few parame-
ters.

In the case of 3-dimensional 1-input gen-
eralized systems, we present the following ex-
ample

Let (E,A, B) be a triple
((

5 8 3
1 4 2
1 −1 2

)
,

(
5 8λ 8+3λ
1 4λ 4+2λ
−1 −λ −1+2λ

)
,
(

5
1−1

))

computing the invariants given in proposition
([5]), we obtain that the continuous invariants
are λ and the discrete ones k1 = 1, ν1 = 2,
ν2 = 1, so its canonical reduced form is E1 =
I3, A1 =

(
0 0 0
0 λ 1
0 0 λ

)
, B1 =

(
1
0
0

)
∈ M3×1(C).

WSEAS TRANSACTIONS on MATHEMATICS M. Isabel Garc´Ia-Planas

ISSN: 1109-2769
56

Issue 2, Volume 7, February 2008



A generic family in a neighborhood U of
the triple is the equivalent family of the follow-
ing three-parametric (E1, A1, B1) + {(0, Y, 0)}
with Y =

( 0 0 0
y21 0 0
y31 y32 0

)
.

The family contains the same type of
triples than (E1, A1, B1+{(0, Y, 0)}, so we an-
alyze this one, and that it contain the follow-
ing types of triples

a) if y32y
2
21 − y2

31 6= 0 the triple is equiva-
lent to (E′, A′, B′) with E′ = I3, A′ =(

0 1 0
0 0 1
0 0 0

)
, B′ =

(
0
0
1

)
∈ M3×1(C).

b) if y32y
2
21 − y2

31 = 0. This is the Whitney
umbrella surface. In this case we can
find the following triples

(a) y21 = y31 = y32 = 0, the triple
is equivalent to (E′, A′, B′), with

E′ = I3, A =
(

0 0 0
0 λ′ 1
0 0 λ′

)
, B′ =(

1
0
0

)
∈ M3×1(C).

(b) y21 = y31 = 0, y32 6= 0, the triple
is equivalent to (E′, A′, B′), with

E′ = I3, A =
(

0 0 0
0 λ′ 0
0 0 λ′′

)
, B′ =(

1
0
0

)
∈ M3×1(C).

(c) y2
21y32 − y2

31 = 0, y21 6= 0 or
y31 6= 0, the triple is equivalent
to (E′, A′, B′), with E′ = In, A =(

0 1 0
0 0 0
0 0 λ′

)
, B′ =

(
0
1
0

)
∈ M3×1(C).

So, in Σ ∩ U there are the following four
strata:

S1 = S(k), k = 3
S2 = S(k, σ), k = 1, σ = (σ1), σ1 = 2
S3 = S(k, σ), k = 1, σ = (σ1, σ2), σ1 = 1, σ2 = 1
S4 = S(k, σ), k = 2, σ = (σ1), σ1 = 1.

and the Whitney regular stratification in-
duced in the space of parameters is,

ϕ−1S1={(y21, y31, y32) | y32y
2
21 − y31 6= 0}

ϕ−1S2={(y21, y31, y32) | y32 = y21 = y31 = 0}
ϕ−1S3={(y21, y31, y32) | y21 = y31 = 0, y32 6= 0}
ϕ−1S4={(y21, y31, y32) | y32y

2
21 − y31 = 0, y21 6= 0}

that corresponds to the Whitney umbrella reg-
ular stratification.

6 Conclusion
In this paper we prove that the stratifi-

cation of one input regularizable systems is
Whitney regular. Then, we can obtain pre-
cise descriptions of the bifurcation diagrams
of generic families of this kind of systems.
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