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Abstract: - Large twin tethers are investigated as possible competitive-cost tools for non-gasdynamic descent,
landing, takeoff and return from target celestial bodies and as passive tools for debris retrieval from orbit. The
particular behavior of orbiting bodies connected with long cables is a recent preoccupation in astrodynamics
and proves being full of unexpected results. The investigation here presented is focused on the non-Keplerian
behavior of such large tether systems, considered in a first approximation as rigid or very stiff and massless.
The investigation starts with the feasibility of non-gasdynamic orbital deployment of twin tethers without any
involvement of expensive rocket propulsion means. The free tether release systems are associated to a
horizontal impulsive separation (HIS) and eventual friction-free deployment to the desired length. This
horizontal deployment seems to supply the most productive means of continuous separation and departure of
masses in orbit. The relative motion during separation is studied and the observation is made that a considerable
kinetic moment of the system preserves during all eventual phases of the flight. After the friction-free
deployment the extending cable is instantly immobilized at the so-called connection moment. From here after
the tether length remains constant. The evolution of the deployed tether is followed in order to record the
specific behavior when the length of the tether is extremely great. The motion of the two connected masses and
of the mass center proves completely non-Keplerian, beginning with the libration around local vertical due to
the considerable residual kinetic moment at connection. A practical application of the quasi-vertical libration is
in orbital passive debris collector, when a sandwich composite large panel is orbited for long periods of time
for collecting small mass, high velocity Earth orbit debris. The most promising and controversial application of
such long tethers resides in the anchoring technique to achieve the skeleton of a future space elevator. The
stability of motion is an important aspect which is approached my numerical simulations.
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1 Introduction
Tether systems were first proposed as replacing
means of the gas-dynamical propulsion systems for
descent, landing and return from far celestial bodies,
orbital transfer maneuvers, orbital launch from sub-
orbital flight trajectories, entry into the atmosphere
by space scoop devices and finally the anchoring of
the presumed space elevator from orbit. Generally
they are considered as potential substitutes of the
costly and mass expensive conventional rocket
propulsion systems. The phase of a free, un-
powered deployment and the subsequent orbital
evolving of tethered masses are under consideration.
A series of published results are present in the open
literature, as listed in the reference chapter,
including those from the five International
Conferences on Space Elevators (2001-2005), from
the five International Conferences on Tethers in
Space and recent presentations to the IAC dedicated
sessions.

A lot of work was devoted to the study of the
dynamics of large tethers, early researches showing
that great challenges are related to the stability of
such large systems [19], [21], [25], [26].

The relative reluctance towards tether systems
can only be overcome when significant advantages
from the use of space tethers, either for Earth orbital
missions or for distant planetary missions, are
proved. Regarding the orbital descent and ascent for
example, the question is if tethers offer a better
alternative to rocket propulsion and this could prove
mainly important when deployment and anchoring
to the Earth surface of a space elevator is
considered.

The analysis here presented is based on the
assumption that the technological problems related
to ultra-long space cables are solved and now the
problems of their exploitation in the space
environment must be analyzed, prior to decide on
the efficiency and specific design solutions.
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The deployment phase is decisive for the
dynamics of tethers. The technique here adopted is
called the “free tether”, as far as friction-like or
other kinematical restrictions on the deploying
string are considered as negligible. The deployment
starts by implementing a given, small impulse
between the main orbital object and the tethered
mass, or between equal tethered masses. The
relative impulse is achieved by small size spring or
pyrotechnical means. Consequently he masses are
inserted into different orbits that end in a continuous
departure between each-other, up to a convenient
distance that will be eventually set constant at
connection [2].

It is known that a continuous departure of the
objects only occurs in the condition of a horizontal
initial impulse, while a vertical separation induces
repeated rejoining at each completed orbit. The
eventual motion in free space must be observed by
specific equipment that must continuously follow
the line of sight between the departing masses, at
ever increasing distances of the order of tens of
kilometers and more. The attitude control during
deployment is compulsory as the only means to
guarantee a frictionless liberation of the required
cable length during the departure of the two masses.
In other words, the cable releasing system must
predict the tether deployment under normal
conditions and avoid any brake or friction loss
during this essential phase of free deployment.

The next problem of connection is essentially a
mater of mechanical collision, when the radial
relative velocity is bluntly suppression at the
connection moment. Some shock-type
discontinuities in the motion of the tethered system
intervene, absorbed in part by the elasticity of the
system but tending to end in global tether system
instability. A residual rotational momentum always
persists and sends the system into the known
“dumbbell libration” (Lorenzini [3]). The problem
of minimizing the collision stresses in the cable is
also a problem of optimal tether design and the
numerical simulations play an important role. It is
the scope of this research to demonstrate the
possibilities of the proposed free deployment by
numerical simulations.

Design of the attitude control system during
deployment is essentially based on the prediction of
the relative motion of the end-masses during this
phase and the simulation must begin with this
aspect. The amplitude of motion and the related
overall characteristics of the optical/microwave
transducers for line of sight control will result. The
real design must also consider the large errors that
might occur and must be properly balanced.

2 Prediction in the free deployment
The following assumptions are consistent:
- the gravity field is spherical, free of any non-
symmetrical components;
- astronomical perturbations of the Moon and Sun
are negligible;
- the orbiting masses are material points associated
to their center of mass;
- the mass and weight of the tether string are
negligible;
- the tether is flexible but inextensible;
- no time relaxation occurs.

Consequently, the elliptical motion of the splitting
masses remains to be considered here, after the
initial separation by the horizontal impulse (HIS).
Prior to HIS, a circular satellite orbit is assumed for
the non-deployed tether, with the connected objects
moving at the constant altitude 0h  with the circular
absolute velocity

00 rKw ⊕= . (1)
Hereafter ⊕K  denotes the gravity constant of the
Earth with K=fM in general.

At the HIS moment ( 0=t ) the velocity impulse
0w∆  is administered in the direction of flight and,

denoting by Mm=µ  the ratio of masses of the
accelerated and decelerated objects respectively, the
two bodies enter separate orbits with the insertion
velocities
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The corresponding orbits (polar coordinates) of the
accelerated and lower-orbiting masses respectively,
behaving with eccentricities ε  and E , are described
by:
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In the given circumstances the insertion point for the
upper mass is located in its apoapsis and for the
lower one in its periapsis. Assuming the common
space-time origin at these specific points ( 0θ  and

00 =Θ , namely Pr = AR =r0) and using the
kinematics of motion [7] and the vis-viva equation,
the two orbits are described by
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The velocity of the upper object m develops lower
and the speed of the lower object M performs
higher, with the orbital parameters
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On each orbit the speed v has a particular value and
direction in space, depending on the position r on
the orbit and given by [7]:
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The relative distance d gradually increases, standing
the mechanism of the free tether deployment. Note
that the right anomaly is a cyclic coordinate. The
Kepler local time is:
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The eccentric anomaly are ν  and N for the upper m
and lower M masses, while the corresponding
periodic times are mT  and MT . Time is measured
from the common HIS origin, from the periapsis of
mass m and apoapsis of M. These periodic times are
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The computational sequence for this twin-
constellation flight is thus

},,,{,,)( 22112121 yxyxcommontData →→→→ θθνν .

The Gauss substitution [2] transfers the eccentric
anomalies into the true anomalies by the non-linear
transforms:
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These are the space references for eccentric and true
anomalies and must be based on the eigen-periapsis
of each orbit (3). They play the role of the primary
referential in the present simulations, where the
method of the running origin is finally used for
visualization of the relative motion during
deployment and further.

3 Free deployment phase
Although the constellation flight problem is direct,
special precautions are mandatory. The correct
positioning of time origin on each orbit is one. The
Kepler equations (2) require a Newton-Raphson
iterating solution for the eccentric anomaly at a
common time value, although some other efficient
numerical techniques are under development.
Because the relative motion of the constellation
bodies manifests extreme amplitudes, while the
Earth-body distance remains always high, the
numerical code can only be run in double precision.
In the case of Fig. 1 the common duration of
deployment is 2100 seconds and the common height
angle is 34.9º, no matter how great the separation
impulse 0w∆  is.

Fig.1: Free tether deployment for 2100 s.

The angular amplitude of the motion does not
depend on the initial relative velocity and a
outstanding similitude ot the family of trajectories
results. At such a local scale the motion of the twin
masses in respect to the starting pole O preserves
almost symmetrical, where the components of the
speeds are given by

r r= + θv ρ τ&& , R R= + ΘV R T& & ,
( ( )cos sin ) /d r r R R rR rR rR d= + − + δ+ δ δ& && && &  (14)

These are the entering values for the connection
process of the orbital system, as the main
parameters in the conservation lows which follow.
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4 Tether connection
At the connection point (CP), meaning at the very
moment when the planned tether length is attained
and the tether free deployment is instantly blocked,
during that short time interval the conservation laws
of momentum and moment of momentum show that
these parameters keep constant as far as internal
forces are only present. Negligible small variations
in the external forces occur and consequently one
may describe the status of the momentum as:

ttec ∆≈=− ∫ FFHH d , 0→∆ t , ec HH = ,(15)

ttec ∆≈+=− ∫ Fd)^^( MFRfrKK ,

0→∆ t ,  ec KK = . (16)

While the kinetic moment, moment of momentum
and the position of the masses are insignificantly
altering, the speed components manifest drastic
changes, similar to the variations encountered
during collisions. The following relations (see also
Fig.2) account for the conservation laws:
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The symbols used and the geometry of the tethered
orbiters are shown in Fig. 2 and summarized on the
next page.

Fig.2: Tether geometry in a central field.

The set (17) of kinematical conditions assure the
transfer from the preliminary free motion to the
definite motion after stop of deployment. While
writing the above formulae the notations were used
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The tether motion is eventually subjected to an
important gravity gradient, visible due to the large
scale of the tethered structure in respect to the radius
of the central body. The behavior is highly nonlinear
and this ends in a markedly non-Keplerian motion
and even instability, as numerically proved below.
No closed, analytical solutions for this motion are
available [2], [4], [6], [20], [24], although a series of
analytical analyses of the character of the motion
were already performed [19], [21], [25], [26].
Numerical computations of the actual tether orbital
evolution were much less emphasized and are here
presented in detail, as performed by proprietary
simulation codes [18].

5 Numerical simulation
The description of tether motion presents intrinsic
difficulties18, due to the inconvenient geometry,
almost parallel directions of the position vectors and
large variations in the angular reciprocal positions
of the masses involved. The related computational
instabilities were specifically solved. The 2-D
problem is governed by 3 degrees of freedom,
namely 3 dependent variables.

5.1 The differential equations
Consequently, the three second order differential
equations have the following form (9) of ODE-s:
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The geometric relations follow the data in Fig.2:
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In the Kane form, ready for numerical integration,
the equations of motion read
















Θθ=
≡=
Θθ=

≡=Θ

Θθ=
≡=θ

Θ

θ

).,,,,(
,)(

),,,,,,(

,)(

),,,,,,(
,)(

uRrfw
wwfr

ZVRrfV

VVf

wuRrfu
uuf

w

r

V

u

&

&

&

&

&

&

  (11)

6 Numerical results
The Earth constants used all along are

⊕K =3.987624457·1014 m3/s2 for the gravity and
=⊕r 6371221 m for the Earth radius. A regular and

apparently periodical gravity coupling appears for
Lunar tethers with lengths comparable to the Lunar
orbit (Fig. 3).

Fig. 3: Lunar gravity coupling.

Similar resonance manifests at least for satellite
tethers of Europa and Rhea. Values of KE
=3.20419804·1012 m3/s2 and rE =1561000 m are for
Europa and KR =1.542020305·1011 m3/s2 and rR
=764000 m for Rhea10,11. Decagonal geometry is
observed as given in Fig. 4 for an orbit at 1000 km
above Europa. For carefully implemented Speeds at
HIS at different given altitudes of the orbit the
periodicity of motion develops remarkable. A line of
symmetry also appears, always inclined as referred
to the HIS point on the circular initial orbit (the
running origin in the draft).

Fig. 4: Europan tether decagonal resonance.

A double-pentagonal configuration of resonance
appears for a specific motion around Rhea (Fig. 5).
The length of the tether system for this
configuration represents 54% from the Saturnian
satellite radius. To be more visible, this motion is
drawn in figure 5 for the mass center of the tether
(yellow line) only. The initial circular orbit is drawn
in blue and the entire relative motion is again
regarded to the running origin of the deployment on
the circular initial orbit. Due to the curvature of the
orbit, the momentum conservation of the system at
connection produces a decrease in the kinetic energy
and the eventual orbit of the structure always
remains lower than the starting circular orbit. The
initial conditions of the tether at connection asure a
length of the cable of 416 km, while the Rhean
radius is of 764 km. The cable length remains well
below the radius of the central body.
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The drop in kinetic energy is more visible for larger
tethers and, as discussed by several authors, finally
ends in a total instability of the motion, when the
tether length becomes extremely great.

Fig. 5: Rhean double-pentagonal resonance.

Up to that point however, the motion of the system
performs always below the circular orbit, as visible
in all numerical simulations here presented. The
problem of flying tether systems with length greater
then the orbital radius is not physically possible, as
it results in immediate crash of the lower mass on
the planet surface.

7 Orbital instability
Previous analytical observations [19], [26] regarding
the instability of motion for very long tethers,
nearing the orbital radius, show that the tether
motion is rather unstable. The condition is deduced
that the unstable tether should be longer than its
orbital radius (Troger [19]), but this condition is
already practically impossible. They are confirmed
by direct numerical computations. At the same time
the observation must be made that structures with
sizes comparable to the radius of the initial circular
orbit are in fact impossible. Due to the residual
negative amount of energy after connection, a tether
system with the length equal to the altitude of the
initial orbit will crash before even completing its
first revolution around the body. As structures larger
than the radius of the orbit are nonsense, the
problem of the stability must be worked out for
structure sizes smaller than the altitude of the
circular orbit above the planet surface (Fig. 6).

Fig. 6: Orbit instability for a large Lunar tether.

The initial circular orbit selected for this
applications hovers at 4500 km above the Lunar
surface, where a relative HIS velocity of
142.4584311 m/s is implemented between the two
tethered masses. A deployment for 194 minutes
produces a tether length of 2,397,804 m, much
larger than the Lunar radius (1,737,400 m). During
the first seven revolutions, the trajectories seem to
perform stable and regular, each turn around the
central body goes very near to the previous one, as
seen in the draft 5. A small lag is recorded however
and this accumulates to produce a rapid change into
instability after revolution 8, ending in a crash
during the 18th revolution. Changes as small as one

sm /µ  suffice to change the character of the motion,
occurrence that also shows, after Liapunov’s theory,
the presence of an unstable region.
A relevant situation regarding the effect of very
small changes in the initial conditions is also given
in figure 7. For the same orbital altitude the HIS
velocity is increased to 142.4584311 m/s and this
produces a positive lag of the orbits, ending in a late
crash after 27 orbits and 448 hours of evolution.

Fig. 7: Late instability for very large tethers.
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The effect of the majestic gravity gradient is visible
as far as the libration of the tether during the
evolution on the lower part of the trajectory, very
near to the Lunar surface, is completely suppressed.
Here the effect of centrifugal forces within the
tethered structure is overwhelming. The lower mass
is fastly sweeping the Lunar surface with double of
the circular velocity (1372.7 m/s) at an altitude of a
few kilometers. It is once more obvious that the
condition of a tether longer than the orbital altitude,
to say nothing of more than the orbital radius, is
impossible to consider. This criterion of Troger [19]
or Beletsky [20] remains in fact purely theoretical.

8 Orbital stability after Scheeres
A lot of research is devoted to the so-called
generalized two-bodies problem (GTBP), where the
bodies engaged into reciprocal gravitational
influence are no more replaceable by two mass
points or particles. They manifest a visible size and
irregular mass distribution in comparison to the
distance between the two, coupled bodies. This
induces important gravity gradient effects when the
bodies are rigid or even tidal effects when they are
elastic or fluid, with sensible energy dissipation and
loss of stability. For the rigid body assumption the
mechanical interaction ends into non-Keplerian
effects and even high instability. Scheeres had
shown that the condition of stability is that the
whole mechanical energy be negative,

0),,( <ωvhE (9)

and this condition should be proved by the present
simulation also. The twin tether is in fact the
extreme case of the non-spherical mass distribution,
presenting the most elongated ellipsoid of inertia
among all possible mass distributions achievable in
practice. The non-Keplerian behavior and all other
gravity gradient effects outlined in the theory of
GTBP are thus maximal in this study case.

9 Conclusions
The ultra-large scale twin space tethers prove being
the extreme cases of non-Keplerian celestial bodies,
where the non-linear effects of the gravitational
gradient are maximal. These effects are highly
surpassing all possible situations for common
planetary bodies like the small, very non-spherical
asteroid systems, largely approached by recent
studies. Consequently the tether systems play the
role of a benchmark research tool in non-linear
astrodynamics.

A lot of works had shown through theoretical
investigations that for such systems the orbital
motion could get unstable. The accurate numerical
simulation of both equal and non-equal, twin-mass
tether systems in LEO and around other bodies
shows possible unpowered deployment scenarios
with consequent stable librating motion of the
system, when the connection between the two end-
masses is settled in advance of the smooth point of
connection and the tether length is smaller than the
radius of the central body.

For time intervals below one sideral day little if
any extinguish process was found on the oscillatory
motion that performs regular and at least quasi-
periodic. The entire study was performed under
convenient, simplifying assumptions. The stability
of the tethered masses was also accounted by
calculating the variation of the force in the string. A
stable configuration means a positive value of the
tension. The librating motion proves almost always
stable, while the tumbling rotation ends always in
instability. This is a real challenge for tether
landing, as repeated approach of the lunar soil is
highly desirable for a safe landing.

Combinations of HIS velocities and altitudes are
always found which provide conveniently stable
motion, but this greatly depends on the initial
conditions of flight and the type of deployment. A
high precision of the maneuvers is required to assure
the success of the landing. Tether evolution in case
of ultra-high length of the cable is usually unstable,
but offers support for a number of orbital evolutions
in quasi-stable configuration. This is an important
observation regarding landing projects by tethers.

College Station, on August 24, 2006.

References:
[1] D. A. Vallado, Fundamentals of Astrodynamics and
Applications, Space Technology Series, The McGraw-
Hill Companies, Inc., New York-Toronto, 2001;
[2] E. Messerschmid, S. Fasoulas, Raumfahrtszsteme,
Chap.4.6 Tethers im Gravitationsfeld, Springer, 2000;
[3] E. C. Lorenzini, Novel Tether-Connected Two-
Dimensional Structures for Low Earth Orbits, Journal of
the Astronautical Sciences, 36, 4(1988), pp. 389-405.
[4] M.L. Cosmo, E. Lorenzini, Space Tehters Handbook,
NASA Marshall S.F.C. Grant NAG8-1160, 1997;
[5] Steven E. Patamia, Space Elevator Transverse
Oscillations with Free Boundary Conditions, The Space
Elevator: 2nd Annual International Conference, Santa Fe,
New Mexico, September 12-15, 2003;

WSEAS TRANSACTIONS on MATHEMATICS Radu D. Rugescu, Daniele Mortari

ISSN: 1109-2769
93

Issue 3, Volume 7, March 2008



[6] J. Allyn Smith, C. Butler, Deployment Scenarios, The
Space Elevator: 2nd Annual International Conference,
Santa Fe, New Mexico, September 12-15, 2003;
[7] D. Mortari, "On the Rigid Rotation Concept in n-
Dimensional Spaces" Journal of the Astronautical
Sciences, Vol. 49, No. 3, July-September 2001;
[8] Forward, R. L., "Tether Transport from LEO to the
Lunar Surface", AIAA Paper 91-2322, 27th Joint
Propulsion Conference, Sacramento, CA, June 1991;
[9] Hoyt, R.P., Forward, R. L., "Tether Transport from
Sub-Earth-Orbit to the Moon... and Back!," 1997 Int.
Space Development Conference, Orlando Fl, May 1997;
[10] Hoyt, R.P., Uphoff, C.W., "Cislunar Tether
Transport System", AIAA Paper 99-2690, 35th Joint
Propulsion Conference, June 1999;
[11] Guide to Planetary Satellites, Sky/Telescope, 2004;
[12] Rothery D. Satellites of the Outer Planets,
Clarendon Press, Oxford. 208 pp., 1992.
[13] R. D. Rugescu, C. Morosanu, Debris Hazards
Mitigation by Orbital Recovery, Paper IAC-05-D4.P.04,
56th IAC, October 16-22, 2005, Fukuoka, Japan.
[14] http://www.iza-structure.org/databases/
[15] J.-C. Liou, M. Matney, P. Anz-Meador, D. Kessler,
and J. Theall, “ORDEM2000’s Debris Environment
Model”, The Orbital Debris Quarterly News, NASA
Johnson Space Center, 6, 1, January 2001, p.4.
[16] D. J. Kessler, “Tools for Rule-of-Thumb
Calculations for Orbital Debris”, The Orbital Debris
Quarterly News, NASA Johnson S. C., 7, 3( 2002).
[17] Burt, R. and E.L. Christiansen, Hypervelocity Impact
Tests on Hubble Space Telescope (HST) Solar Array
Cells, JSC technical report 28307, May 2001.
[18] R. D. Rugescu, Tethers as far mission descent-return
tools, 55th IAC, Paper IAC-04-IAA.3.8.2.04, Vancouver,
Canada, October 2004.
[19] N. Pugno, H. Troger, A. Steindl, M. Schwarzbart,
On the Stability of the Track of the Space Elevator, IAC-
06-D4.2.05, 57th IAC, Valencia, Spain, 2-8 Oct. 2006.
[20] Beletsky, V. V., Levin, E.M., ‘Dynamics of Space
Tether Systems’, Adv. Astronautical Sciences, 83, 1993.
[21] Simo, J. C., Lewis, D.,‘Energy methods in the
stability analysis of relative equilibria of Hamiltonian
systems’. The Proceedings of the sixth Symposium on
Continuum Models and Discrete Systems, Dijon, June
1989, 162– 183. Editor: G.A. Maugin. Longman.
[22] Marsden, J. E., Lectures on Mechanics, London
Math. Soc., Lect. Notes 174, Cambridge U. Press, 1992.
[23] Marsden, J.E. and Ratiu, T. S., An Introduction to
Mechanics and Symmetry, A Basic Exposition of
Classical Mechanical Systems, Springer-Verlag, New
York – Heidelberg – Berlin, 1994.

[24] Wang, L.-S., Chern, S.-J., Shih, C.-W., ‘On the
dynamics of a tethered satellite system’, Archives for
Rational Mechanics and Analysis, 127; 1994, 297-318.
[25] Krupa, M., Schagerl M., Steindl A., Szmolyan, P.
and Troger, H., ‘Relative equilibria of tethered satellite
systems and their stability for very stiff tethers’,
Dynamical Systems 16, 2001, pp. 253-287.
[26] M. Krupa1, M. Schagerl, A. Steindl, H. Troger,
Stability of Relative Equilibria. Part I: Comparison of
Four Methods, Meccanica 35: 325–351, 2001.
[27] Krupa, M., Steindl A., Troger, H., ‘Stability of
Relative Equilibria. Part II: Dumbell Satellites’,
Meccanica 35:353–371, 2001.
[28] R. P. Patera, Collision Probability for Larger Bodies
Having Nonlinear Relative Motion, Journal of Guidance,
Control and Dynamics, Vol. 29, No. 6, November–
December 2006, pp. 1468-1471.
[29] Scheeres, D., Hsiao, F.-Y., Park, R., Villac, B., and
Maruskin, J., “Fundamental Limits on Spacecraft Orbit
Uncertainty and Distribution Propagation,” AAS Paper
05-471, 2005.
[30] Martin, L., D. J. Scheeres, Stability Bounds for
Three-Dimensional Motion Close to Asteroids, Journal of
Astronautical Sciences, 50, 4 (Oct.-Dec. 2002) p. 389.
[31] W. Hu, D. J. Scheeres, ‘Numerical determination of
stability regions for orbital motion in uniformly rotating
second degree and order gravity fields’,  Planetary and
Space Science 52 (2004), pp.685 – 692
[32] F.Y. Hsiao, D. J. Scheeres, ‘Bifurcations and
dynamical evolution of eigenvalues of Hamiltonian
systems’, Physica D 213 (2006), pp. 66–75.
[33] Ryan S. Park, Daniel J. Scheeres, ‘Nonlinear
Mapping of Gaussian Statistics: Theory and Applications
to Spacecraft Trajectory Design’, Journal of Guidance,
Control and Dynamics, 29, 6 (2006), pp. 1367-1375.
[34] Junkins, J., Akella, M., and Alfriend, K., “Non-
Gaussian Error Propagation in Orbit Mechanics”, Journal
of the Astronautical Sciences, 44, 4(1996), pp. 541–563.
[35] Scheeres, D. J., Han, D., Hou, Y., “Influence of
Unstable Manifolds on Orbit Uncertainty,” Journal of
Guidance, Control and Dynamics, 24, 2001, pp. 573–585.
[36] Shen, Q., Tabarrok, B., ‘Stability Investigation of
Multibody Spacecraft’, ZAMM, Z. Angew. Math. Mech.
79 (1999), 3, pp. 161-170.
[37] Kamman, J. W., and Huston, R. L., “Modeling of
Variable Length Towed and Tethered Cable Systems,” J.
Guid. Contr. Dyn., 22, 4(1999), pp. 602–608.
[38] Xiang Zhou, Junfeng Li, H. Baoyin, Vadim Zakirov,
Equilibrium Control of Electrodynamic Tethered Satellite
Systems in Inclined Orbits, Journal of Guidance, Control
and Dynamics, Vol. 29, No. 6, 2006, pp. 1451–1454.

WSEAS TRANSACTIONS on MATHEMATICS Radu D. Rugescu, Daniele Mortari

ISSN: 1109-2769
94

Issue 3, Volume 7, March 2008


