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Abstract: In [3] we presented a technique to study the existence of rational solutions for systems of linear first-
order ordinary differential equations. The method is based on a rationality characterization that involves Matrix 
Padé Approximants. Moreover the main ideas were only applied in the numerical resolution of a particular 
partial differential equation. This paper may be considered as an extension of [3], in the sense that we propose 
fundamental matrices directly for linear m-order ordinary differential equations without making a 
transformation to an equivalent system of first order. In addition, we increase its field of applications to 
particular solutions of the mentioned systems and to Partial Differential Equations. 
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1   Introduction 
We will use the matrix notation in Systems of Linear 
m-Order Ordinary Differential Equations as follows. 
Considering Aj:D⊂ →� �

mxn (j=1,2...m) and  
Y:D⊂ →� �

n+1, let 
Y(m(t)=A1(t) Y

(m-1(t)+A2(t) Y
(m-2(t)+…+ 

Am-1(t) Y'(t)+Am(t) Y(t)    (1) 
be an homogeneous system of linear m-order ordinary 
differential equations.  
Normally, to resolve the system (1) we transform it 
into an equivalent one of first order, by changes of 
variables. We will resolve it later but not making use 
of that transformation. 
Definition 1: F(t) is a fundamental matrix of (1) if any 
solution of (1) can be written as a linear combination 
of the columns of F(t). 
Obtaining a fundamental matrix is essential to solve 
systems of differential equations. However there is no 
procedure to find it from any matrix functions A1(t), 
A2(t)...Am(t). In this paper we consider that the 
elements of the matrices are analytic functions. It is 
interesting to note that we do not take into account the 
circle of convergence of power series, when we 
consider rational functions. What is important is to 
know their poles ([3]). 
Proposition 1: If A1(t), A2(t)...Am(t) are continuous 
matrix functions then (1) has a fundamental matrix of 
dimension n x nm. 
Proof: The set of solutions for a homogeneous system 
of linear first-order ordinary differential equations, 
X'(t)=A(t) X(t), with A(t) a continuous matrix function 
of order n, is a linear space of dimension n (it has a 

fundamental matrix of dimension nxn) ([5]). 
By changes of variables (Vi(t)=Y(i, i=1,2...m-1) we 
transform (1) into the equivalent system of first order 
that follows: 

'
1 1

'
m 1 m 1

m m 1 m 2 1

0 I 0 0
Y '(t) Y(t)

0 0 I 0
V (t) V (t)

0 0 0 I
V (t) V (t)

A (t) A (t) A (t) A (t)− −

− −

 
    
    
    =
    
       
    

 

�

�

� � � � �
� �

�

�

 (2) 

Let G(t)= ( )
m

ij i, j 1
g (t)

=
, be a fundamental matrix for (2) 

such that G(0)=Inm x nm and gij: D⊂ →� �
nxn, i.e., the 

nm columns of G(t) constitute a base for the set of 
solutions of (2). Note that gji(t)=

( j 1
1ig (t)− , i.e., the j-th 

row of matrices in G(t) is the (j-1)-th derivative of the 
first row of matrices in G(t). Considering 

gij(t)=
k

ijk
k 0

g t
∞

=

∑ , we write the initial condition 

G(0)=Inmxnm as follows: 
g1ii-1=Inxn and g1ij=0 if j≠i-1, for i=1,2...m; j=0,1... m-1
       (3) 
Note that in (3) we consider only coefficients of g1j(t), 
(j=1,2...m). 
Let S be the set of solutions of (1), the nm columns of 
F(t)≡(g11(t)  g12(t)  ...  g1m(t)) -with the condition (3)- 
constitute a base of the linear space S. Note that F(t) is 
a fundamental matrix of dimension n x nm of (1). n 

Given the formal power series, Aj(t)=
k

jk 0
k 0

A (t t )
∞

=

−∑ , 

Ajk∈
mxn
�  for j=1,2...m,, we calculate recursively the 

coefficients of the series for a fundamental matrix of 
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(1), F(t)= k
k 0

k 0

F (t t )
∞

=

−∑ , Fk∈
nxmn
� , as follows (without 

considering the equivalent system of first-order). 
Substituting 

F(h(t)= k
k h 0

k 0

(k h)(k h 1)...(k 1)F (t t )
∞

+

=

+ + − + −∑ , h=1, 2...m, 

in F(m(t)=A1(t)F
(m-1(t)+A2(t)F

(m-2(t)+   + 
Am-1(t)F'(t)+Am(t)F(t). Later on, we will explain more 
explicitly the recurrence relation for the specific 
examples we are going to study. 
 
 

2   Matrix Padé Approximants and 

Rational Functions 
Once the formal power series for a fundamental matrix 
(or for a particular solution) is obtained, it is of 
practical interest to get the theoretic function 
associated to the series. It is evident that this aim is 
unattainable in general and it may only be obtain in 
certain problems. 
In this section we will consider Matrix Padé 
Approximation (MPA) results to determine it there is a 
rational solution and, if so, obtain minimum degrees -
in certain sense- of the polynomials involved. 
We denote as F any formal power series, with matrix 
coefficients as follows: 

mxnk
k k

k=0

F(t) = f     f     t    t
∞

∈ ∈∑ � �   (4) 

Suppose that there exist matrix polynomials: 
h

i mxn
ih i

i=0

h
i mxn

i ih

i=0

g
i nxn

ig i
i=0

g
i mxm

ig i

i=0

Q (z) =       para i = 0,1,..,hqb z

(z) =       para i = 0,1,..,hN n z n

(z) =       para i = 0,1,..,gpaP z

(z) =       para i = 0,1,..,gd dD z

∈

∈

∈

∈

∑

∑

∑

∑

�

�

�

�

 

where p0=Inxn, d0=Imxm, F(t)-Qh(t)Pg
-1(t)=O(th+g+1) and 

F(t)-Dg
-1(t)Nh(t)=O(th+g+1), QhPg

-1 is therefore said to be 
a right Matrix Padé Approximant (right MPA) which is 
denoted R[h/g]F; similarly, Dg

-1Nh is said to be a left 
Matrix Padé Approximant (left MPA), which is denoted 
L[h/g]F. We shall use {L[h/g]F} ({

R[h/g]F}) to denote the 
set of all possible approximants L[h/g]F (

R[h/g]F). 
As a consequence of the definition we can say that: 
* R[h/g]F exists, i.e., {

R[h/g]F}≠∅, if and only if, the 
following system has a solution: 
fh-g+kpg+fh-g+k+1pg-1+...+fh+k-1p1=-fh+k, k=1,2...g      RS(h,g) 
* L[h/g]Fexists, i.e., {L[h/g]F}≠∅, if and only if the 
following system can be solved: 
dgfh-g+k+dg-1fh-g+k+1+...+d1fh+k-1=-fh+k   k=1,2...g   LS(h,g) 

In both cases it is assumed that fi=0, i<0. Resolving 
LS(h,g) and RS(h,g) we obtain the coefficients of the 
denominators of L[h/g]F and R[h/g]F, respectively. The 
coefficients of the numerators can be obtained by 
n0=c0, n1=d1c0+d0c1...nh=dhc0+...+d0ch for the left MPA 
and q0=c0, q1=c0p1+c1p0...qh=c0ph+...+chp0 for the right 
MPA. 
Note that the MPA do not necessarily have to exist. 
Furthermore, unlike the scalar case, if one of them does 
exist it is not necessarily unique [3]. 
If there is no need to distinguish between the left and 
right MPA because they are identical, we will use [h/g]F 
to denote the MPA of degrees (h,g) to F and {[h/g]F} to 
the set of all possible approximants [h/g]F. 
Various types of minimality related to the degrees of the 
polynomials that intervene in a rational function have 
been defined in literature. Taking as our starting point 
the idea of having a type of joint minimality for the two 
polynomials that intervene in a rational function, the 
concept left minimum degrees in this work is defined as 
follows. 
Definition 2: We say that the degrees p and q of the 
matrix polynomials Ap and Bq, such that 
F(t)= 1

p qA (t)B (t)−  and Ap(0)=I, are left minimum degrees 

(left m.d.), if for any other two matrix polynomials Dg 
and Nh of degrees g and h respectively which verify: 
Dg(0) = I and Ap

-1(t) Bq(t)=Dg
-1(t)Nh(t), it follows that: 

h<q implies g>p and g<p implies h>q. 
In the same way we can define right m.d., with the 
inverted polynomial to the right. 
 
2.1   Some Previous Results ([3]) 
2.1.1   Table: Rationality and Minimality 
We give the following definition associated with (4). 
Definition 3: For integers i and j, i≥0 and j>0, let  

M i j fi j h k h k
j1 1 1( , ) ( ) ,,= − + + − =  

L j,s r i
sr i j h k 1 h,k 1

L j 1,s r i
sr i j h k 1 h,k 1

M4 (i, j) (f ) ,

M5 (i, j) (f ) ,

+ −

− + + − =

+ + −

− + + − =

=

=
 

R s r i, j
sr i j h k 1 h,k 1

R s r i, j 1
sr i j h k 1 h,k 1

M4 (i, j) (f )

M5 (i, j) (f )

+ −

− + + − =

+ − +

− + + − =

=

=
. 

By convention, if j=0 the rank of these matrices is zero 
for any i∈N. 
Definition 4: For any nonnegative integers i, j, let 
T1(i,j)=rank(M1(i,j)). We will display these quantities in 
an infinite two-dimensional table, Table 1, where i and j 
serve to enumerate the columns and the rows 
respectively. 
Definition 5: We define the staired block R1 to be the 
following subset of N2: 
R1={(i,j)∈� 2/rank(M1(g,h))=rank(M1(g+k,h+k)) for 

any k∈N, g≥i and h≥j}. 
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Although this set seems rather abstract, the meaning of 
"staired" becomes clear observing Tables 1 in examples 
below. 
To begin with, we can propose a method, using Table 1, 
to determine whether or not a matrix series stems from a 
rational function. This can be set out as follows. 
 

2.1.1.1   Rationality 

F is rational if and only if in the bottom right part of 
Table 1 we can mark at least one NW-SE diagonal of 
infinite size where all its boxes have the same value. It is 
important to state that, there are several such diagonals, 
with their union coinciding with R1. Note that, within 
R1, boxes of different diagonals can have different 
values. Furthermore, it is assured that if (a,b)∈R1 then 
the formal power series of F and [a/b]F is the same. 
However, (a,b) are not necessarily left or right m.d. 
In practice, the Table 1 that we can construct is "finite". 
However, in some applications where a rule for the 
formation of the coefficients of the series F is known, 
certain relations between the matrices that define the 
elements of Table 1 can help validate the properties to 
an infinite size. Otherwise, we can only say the available 
coefficients of F coincide with the coefficients of a 
rational function of certain degrees. 
 

2.1.1.2   Minimality 

The boxes (i,j) such that T1(i,j)∈R1, T1(i-1,j)∉R1 and 
T1(i,j-1)∉R1 are called corners of R1. In particular 
situations we can say that a corner of R1 corresponds 
with a pair of left or right m.d., for instance: 
Property 1: If (i,j)∈R1, (i-1,j)∉R1 and T1(i,j)=jn then 
(i-u,j-v) is not a pair of right m.d. for any u, v such that 
1≤u≤i and 0≤v≤j. 
Property 2: If (i,j)∈R1, (i-u,j)∉R1, (i,j-v)∉R1, for any 
u, v such that 1≤u≤i and 1≤v≤j, and they are not pairs of 
left (right) m.d., then (i,j) is a pair of left (right) m.d. 
 

2.1.2   Table 2: Minimality 
If F is rational, there are (and we can find) certain 
degrees r and s associated to two pairs of matrix 
polynomials which represent the function in rational 
form in two ways, that is to say, with the inverted 
polynomial of degree r, multiplied to the right or left. 
However, it may be that r and s are neither left nor right 
m.d. for representing F since there are cases in which, 
for instance, the function is identical to an approximant 
L[i/j]F but the approximant R[i/j]F does not exist, or 
viceversa; in this case, rank(M1(i,j))≠rank(M1(i+1,j+1)) 
and thus Table 1 would not provide information 
concerning the left or right approximant. For this reason, 
we present Table 2 -one for the left and one for the right 
approximant-, whose structure reflects the possible 
combinations of m.d. (left and right, respectively) for 

representing F. 
Firstly we present the following definitions. 
Definition 6: Given (s,r)∈R1, for integer i, j, such that 
0≤i≤s and 0≤j≤r, let LT2sr(i,j)=0, if rank(LM4sr(i,j))= 
rank(LM5sr(i,j)), or otherwise LT2sr(i,j)=1. We will 
display these quantities in a finite two-dimensional table, 
Table 2 for left approximant, which has s+1 columns 
and r+1 rows. 
Definition 7: We denote as a staired block LR2sr, with 
(s,r)∈R1, the following subset of N2: 

LR2sr={(i,j)∈� 2/0≤i≤s, 0≤j≤r and 
rank(LM4sr(i,j))=rank(LM5sr(i,j))}. 

To define Table 2 for right approximant we must 
consider RM4sr(i,j) and 

RM5sr(i,j) instead of 
LM4sr(i,j) and 

LM5sr(i,j), respectively. We only expound the theory for 
the left case taking into account that for the right case it 
is similar. 
Property 3: F is a rational function identical to L[q/p]F 
where q and p are left m.d., q≤s and p≤r, if and only if, 
LT2sr(q,p)=0, LT2sr(q-1,p)=1 and LT2sr(q,p-1)=1, that is, 
(q,p) is a corner of LR2sr. 
The system corresponding to the denominator of the 
element of {L[q/p]F} that coincides with F is:  

dpfq-p+i+dp-1fq-p+i+1+...+d1 fq+i-1=-fq+i       i=1,2...s+r-q 
whose associated matrix is LM4sr(q,p). 
Then we will consider the results of MPA to study 
possible rational solutions of differential equations 
systems and of partial differential equations. 
 
 

3   Rational Solutions for Systems of 

Ordinary Differential Equations 
In order to obtain a clear understanding, it is important 
to read the following remarks relating to possible 
rational solutions of the system (1). 
 - Even if A1(t), A2(t)...Am(t) are not rational there may 
exist rational solutions. For instance, the system 

Y'(t)=

t te e 2

2t 4 2t 4
sint sin t 2

2t 4 2t 4

 − +
 

+ + 
− + 

 
+ + 

Y(t)  

has a rational solution, Y(t)=
2t 4

2t 4

+ 
 

+ 
. 

 - The fact that there exists rational solution does not 
imply the fundamental matrix is rational. Note that 
generally the linear combination of no rational 
functions could be a rational function, for instance, if 

x(t)=
cos t

3t 2−
 and y(t)=

2cos t 8

3t 2

− +

−
 the linear 

combination 4x(t)+2y(t) is the rational function 
16

3t 2−
. 

 - The system (1) may have a fundamental matrix with 
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some rational elements and others which are not. Next 
we proceed to illustrate different cases. 
Our aim in this section is to detect rational 
fundamental matrices (which are rectangular when the 
order of the system is greater than 1). In other case, if 
this is not possible, then to detect particular rational 
columns or particular rational solutions. If F(t) is 
rational then any solution of (1) is rational complying 
with the aims. However, when F(t) is not rational and 
is in analytical form it would be interesting to know if 
there exist any initial conditions, such that the 
associated particular solution to be rational. It is not 
easy to find the answer to this question in general 
cases. 
We start with an example where the fundamental 
matrix is not rational but the system does have rational 
solutions. 
 

Example 1. Let Y''(t)=C(t) Y(t) be a differential 

system where C(t)=

2

2 3

2

2 3 2 2

1 t 2

(2 t) (2 t)

4t 8 6t

(t 2) (t 2)

 +
 

− − 
 −
  + + 

. Considering 

C(t)= i
i

i 0

C t
∞

=

∑ , we obtain recursively the coefficients of 

the series for a fundamental matrix F(t)= i
i

i 0

F t
∞

=

∑ as 

follows: 

 i i i
i 2 i i

i 0 i 0 i 0

(i 2)(i 1)F t ( C t ) ( F t )
∞ ∞ ∞

+

= = =

+ + =∑ ∑ ∑   (5) 

Then, taking into account (3), F0=
0 0 1 0

0 0 0 1

 
 
 

 and 

F1=
1 0 0 0

0 1 0 0

 
 
 

, and considering (5) we calculate the 

other coefficients using the following expression: 

  Fi+2=(
i

j i j
j 0

C F ) /(i 2)(i 1)−

=

+ +∑ , i≥0  (6) 

Fig. 1: Table 1 for F(t) 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 2 2 2 2 2 2 

2 4 4 4 4 4 4 

3 6 6 6 6 6 6 

4 8 8 8 8 8 8 

5 10 10 10 10 10 10 

Note that F(t) is not rational of orders (p,q) such that 
0≤p<5, 0≤q<5. Then we have calculated Tables 1 for 
each column of F(t) -four tables- and, moreover, 
Tables 1 for each element of F(t) -eight tables-. In all 
cases, tables do not correspond to a rational function. 
However, the system does have rational solutions. 
They are linear combinations of the columns of the 
fundamental matrix F(t). For instance, considering 

1/ 2

0
K

1

1

 
 
 =
 
 
 

, we obtain the fig. 2. 

Fig.2: Table 1 of function Y(t)=F(t) K 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

3 3 3 3 3 3 3 

4 4 4 4 3 3 3 

5 5 5 5 4 3 3 

This table indicates that Y can be represented as left 
and right approximants of the set {[2/3]Y}. Taking into 
account that T1(2,3)=3 and Properties 2 and 3, (2,3) is 

a pair of right m.d. The representation of R[2/3]Y is 

Y(t)=
2

2 3

0.5 0.25t 1

1 0.5t 0.5t 0.25t0.5 0.25t

 +
 

− + −− 
. 

Note that we have solved RS(2,3) to obtain the 
coefficients of the denominator. 
Although we have a representation of the solution, out 
of curiosity we have calculated fig. 3. 

Fig. 3: Table 2 (for left approximant) 
 0 1 2 

0 1 1 1 

1 1 1 1 

2 0 0 0 

3 0 0 0 

Table 2 indicates that (0,2) is a pair of left m.d. The 
representation of L[0/2]Y is: 

Y(t)=
12 0.51 0.5t 0

0.50 1 0.5t

−

 +  
   

−   
. 

Note that it is the particular solution corresponding to 

the initial conditions Y0= ( )
t

0.5 0.5 , Y1= ( )
t

0.25 0 . It 

is obvious that any solution with initial conditions 

Y0=
c

c

 
 
 

, Y1=
0.5c

0

 
 
 

, c∈� , is rational with degrees 

(0,2). 
The following example could be solved with two 
independent equations. However, we consider it as a 
system to illustrate a fundamental matrix with rational 
columns and non-rational columns. 
 

Example 2. Let Y''(t)=C(t) Y(t) be a differential 

system where C(t)=
2

3

2
0

t 1
6t

0
t 2

 
 

+ 
 
 

+ 

. 

In the same way as the last example, considering (6) 
we obtain the coefficients of a fundamental matrix. Its 
Table 1 is in fig. 4. 
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Fig. 4: Table 1 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 2 2 1 2 1 1 

2 4 4 4 4 4 3 

3 6 6 6 6 6 6 

4 8 8 8 8 8 8 

5 10 10 10 10 10 10 

We can see that the fundamental matrix is not rational 
with orders contained in the table. However, Tables 1 
for each column of the fundamental matrix are in fig.5. 

Fig. 5: Tables 1 for each column 

Column 1                 Column 2 
 0 1 2 3 4 5   0 1 2 3 4 5 

0 0 0 0 0 0 0  0 0 0 0 0 0 0 

1 0 1 0 1 0 1  1 0 1 0 0 1 0 

2 1 2 2 2 2 2  2 1 2 1 1 2 1 

3 2 3 2 3 2 3  3 2 3 3 3 3 3 

4 3 4 4 4 4 4  4 3 4 3 3 4 3 

5 4 5 4 5 4 5  5 4 5 4 4 5 4 

Column 3                      Column 4 
0 1 2 3 4 5   0 1 2 3 4 5 

0 0 0 0 0 0  0 0 0 0 0 0 0 

1 0 1 0 0 0  1 1 0 0 1 0 0 

2 2 2 1 0 0  2 2 1 1 2 1 0 

3 2 3 2 1 0  3 3 3 3 3 2 1 

4 4 4 3 2 1  4 4 3 3 4 3 2 

5 4 5 4 3 2  5 5 4 4 5 4 3 

These tables indicate that the first column of the 
fundamental matrix is not rational; the third and fourth 
columns are rational (polynomial). Specifically 

2t 1

0

 +
 
 

 and 
3

0

t 2

 
 

+ 
. 

Regarding Table 1 for column 2, it could be the table 
of a rational function with degree 2 in the numerator 
and 3 in the denominator, but maybe the block with 
discontinuous line is a finite staired block ([6]). To 
know if the block with discontinuous line is R1 we 
increased the table as fig. 6. 

Fig. 6 
 0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 0 1 0 0 1 0 0 1 

2 1 2 1 1 2 1 1 2 1 1 2 

3 2 3 3 3 3 3 3 3 3 3 3 

4 3 4 3 3 4 3 3 4 3 3 4 

5 4 5 4 4 5 4 4 5 4 4 5 

6 5 6 6 6 6 6 6 6 6 6 6 

7 6 7 6 6 7 6 6 7 6 6 7 

8 7 8 7 7 8 7 7 8 7 7 8 

9 8 9 9 9 9 9 9 9 9 9 9 

10 9 10 9 9 10 9 9 10 9 9 10 

Note that, the mentioned block is a finite staired block. 
Therefore, the function is not rational for degrees 
considered in this table. 
We have increased tables for columns 1, 3 and 4 and 
we reaffirm what we have commented about these 
columns. 

 

 

4   Rational Solutions for Partial 

Differential Equations 
In this section we aim to solve partial differential 
equations combining MPA with other known methods, 
in particular, Galerkin and Finite Differences. 
 

4.1   Method of Galerkin and MPA 

In general, the methods of Galerkin [4] are used in 
problems where there is an unknown function to be 
determined. Of course, partial differential equations 
are of this type. 
In this method we take a set of basic functions and try 
to solve the equation, presuming that the solution is a 
suitable combination of these basic functions. 
Sometimes this solution is not consistent. Depending 
on the approach considered we obtain a different 
approximated solution. 
In the following examples we combine the method of 
Galerkin and MPA to solve the equations. 
 

Example 3 
Let us consider the following hyperbolic equation: 

ut= 2

3

2(4 t )+
ux     (7) 

u(x,0)=sin 2πx            0≤x≤1 
u(0,t) = u(1,t) = 0            t>0. 
We propose as solution the sum: 

u(x,t)=
n

j j
j 1

v (t)w (x)
=

∑    (8) 

We will choose some basic functions of x, that is, w1, 
w2...wn. Note that for t=0, (8) only depends on wj 
(j=1...n) because vj(0) (j=1...n) are constants. Due to 
the fact that u(x,0) = sin 2πx, we pretend that sin 2πx 
to be a linear combination of wj (j=1...n). Moreover, if 
wj(0)=wj(1)=0 (j=1...n) the conditions u(0,t)=u(1,t)=0  
(t>0) are verified with the tentative solution (8). 
Substituting (8) in (7), the result is: 

n
' '
j j j j2

j 1

3
(v (t)w (x) v (t)w (x)) 0

2(4 t )=

− =
+

∑   (9) 

As we have commented, sometimes (9) is not 
consistent. Then we look for approximated solutions. 

Applying the interior product
1

0
f ,g f (x)g(x)dx= ∫  in 

equation (9), we obtain: 
n

' '
j j i j j i2

j 1

3
(v (t) w ,w v (t) w ,w ) 0

2(4 t )=

〈 〉 − 〈 〉 =
+

∑ ,1≤i≤n (10) 

The expression (10) is a system of n homogeneous 
differential equations with n unknown vj, j=1...n. It is 
very advantageous that {w1, w2...wn} to be an 
ortonormal system in the interval [0,1]. A suitable 
system such that wj(0)=wj(1)=0 (j=1...n) is 
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wj(x)= 2 sen πjx. In this case, the equation (10) in 
matrix form is: 

V'(t)=A(t) V(t)   (11) 
where V(t) = (v1(t)  v2(t)  ...  vn(t))

t and A(t) is an nxn 
matrix which elements are: 

aij(t)=
'
j i2

3
w ,w

2(4 t )+
. 

Considering the initial conditions, we have: 
n

j j
j 1

v (0)w (x) sin 2 x
=

= π∑ . Due to the fact that 

{w1,w2...wn} is an ortonormal system, then: 

vj(0)= jsin 2 x,wπ  (j=1...n)  (12) 

The expression (12) provides initial conditions for 
system (11). 
To illustrate the procedure, suppose that n=2 in (8). 
Obviously, with greater n we obtain better 
approximation. 

If n=2, then A(t)=
2

1

t
1

4
+

0 1

1 0

− 
 
 

. Considering 

A(t)= A tj
j

j=

∞

∑
0

, we have that A2j+1=0, 

A2j=

j

j 1

j

1
0 ( 1)

4

1
0

4

+
  

−  
  

 
−      

 for j=0,1,2... 

A fundamental matrix F(t)= j
j

j 0

F t
∞

=

∑  of the system (11) 

such that F0=I, verifies that  

Fk+1=
k

j k j
j 0

1
A F

k 1 −

=+
∑       k≥0 

Fig. 7: Table 1 for F(t) 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 2 2 2 2 2 2 

2 4 4 2 2 2 2 

3 6 6 4 2 2 2 

4 8 8 6 4 2 2 

5 10 10 8 6 4 2 

It indicates that F(t)=[1/1]F. Solving the system 
LS(1,1), and calculating the numerator, F(t) can be 
represented as follows: 

1
1 0 0 1/ 2 1 0 0 1/ 2

F(t) t t
0 1 1/ 2 0 0 1 1/ 2 0

−

   −        
= + +          

−          

or equivalently F(t)=

2

2 2

t
1 t

1 4
t t1 t 1
4 4

 
− − 

 
 

+ − 
 

. 

Given initial conditions, we calculate the particular 

solution V(t)=F(t)K, where K∈ 2
� . Note that V(0)=K. 

Taking into account (12), K=
0

1/ 2

 
  
 

. Therefore,  

V(t)= 2
2

t
1

t
t 1

2(1 ) 4
4

− 
 
 − +  

 and  

u(x,t)=

2

2

t
t sin x (1 )sin 2 x

4
t

1
4

− π + − π

+

. 

In the case that we are interested only in a particular 
solution that verifies certain initial conditions, it is not 
necessary to calculate a fundamental matrix. To know 

V(t), we suppose that V(t)= j
j

j 0

V t
∞

=

∑ , with V0=
0

1/ 2

 
  
 

. 

Then se Vk+1=
k

j k j
j 0

1
A V

k 1 −

=+
∑ , k≥0. 

Fig. 8: Table 1 for V(t) 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

3 3 3 3 2 2 2 

4 4 4 4 3 2 2 

5 5 5 5 4 3 2 

This table indicates that V can be represented as left 
and right approximants of the set {[2/2]V}. 
Considering right approximant, Table 2 is not 
necessary because in Table 1 we can see taht (2,2) is a 
pair of right m.d. (taking into account Properties 1 and 
2 and T1(2,2)=2). We solve the system RS(2,2) to 

obtain the known solution V(t)= 2
2

t / 2
1

1 t
t

(1 )2 4 2 4

 −
 
 

−  + 

. 

Out of curiosity we have calculated the Table 2 for left 
approximant in fig. 9. 

Fig. 9: Table 2 for left approximant 

 0 1 2 
0 1 1 1 

1 1 0 0 
2 0 0 0 

It indicates that (0,2) and (1,1) are two pairs of left 
m.d. 
Let us consider the following example. In this case we 
need to solve a system of first order ordinary 
differential equations, V''(t)=A(t) V(t) where A(t) is a 
diagonal matrix, then each equation can be solve 
individually. Therefore, instead of MPA we will use 
scalar Padé approximation. 
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Example 4 

Let it be the following elliptic equation: 

utt= 2 2

2

(1 t)
−

π −
 uxx, t>0, t≠1, 0≤x≤1 

u(0,t)=u(1,t)=0; u(x,0)=ut(x,0)=sinπx 

We propose a solution of the form u(x,t)=
2

j j
j 1

v (t)w (x)
=

∑  

considering the same ortonormal system of Example 3. 
Substituting in the partial differential equation and 

dividing by 2 ), we obtain: 

'' 2
1 12 2

'' 2
2 22 2

2
v (t)sin x v (t)( sin x)

(1 t)

2
v (t)sin2 x v (t)( 4 sin2 x) 0

(1 t)

π + −π π +
π −

π + − π π =
π −

 

Then, ''
1 12

2
v (t) v (t)

(1 t)
=

−
, ''

2 22

8
v (t) v (t)

(1 t)
=

−
 

We have two independent equations. Note that A(t) is 
a diagonal matrix.  
The initial conditions can be deduced by: 
u(x,0)=v1(0)w1(x)+v2(0)w2(x)=sin πx, therefore, 

v2(0)=0 and v1(0)=
1

2
,  

ut(x,0)= ' '
1 1 2 2v (0)w (x) v (0)w (x) sin x+ = π , therefore,  

' '
2 1

1
v (0) 0 and v (0)

2
= =  

Considering the first equation ''
1 12

2
v (t) v (t)

(1 t)
=

−
 and 

its conditions v1(0)=
1

2
 and '

1

1
v (0)

2
= , we denote 

the general solution as s(t)= i
i

i 0

s t
∞

=

∑ . Taking into account 

that j

2
j 0

2
2 ( j 1)t

(1 t)

∞

=

= +
−

∑  -in the circle of convergence 

of the series-. Substituting in the differential equation 
we obtain: 

i i i
i 2 i

i 0 i 0 i 0

(i 2)(i 1)s t 2( (i 1)t )( s t )
∞ ∞ ∞

+

= = =

+ + = +∑ ∑ ∑  

Therefore, to calculate the coefficients of the series s(t) 
we use the following recurrence relation: 

si+2=
i

i j
j 0

2( ( j 1)s ) /((i 2)(i 1))−

=

+ + +∑        i≥0. 

Fig. 10: Table 1 for v1(t) 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 2 1 1 1 1 1 

3 3 2 1 1 1 1 

4 4 3 2 1 1 1 

5 5 4 3 2 1 1 

It shows that v1(t)=[0/1]s. Solving Padé equations for 

[0/1]s, v1(t)=
1/ 2

1 t−
. In a similar way, solving 

''
2 22

8
v (t) v (t)

(1 t)
=

−
, v2(0)= '

2v (0) 0= , we obtain 

v2(t)=0. Therefore, the solution of the partial 

differential equation is: u(x,t)=
1

1 t−
sin πx. 

 

4.2   Method of Finite Differences and MPA 
We give the theory for the following hyperbolic partial 
differential equation (generalized wave equation): 
utt=α

2(x,t) uxx       0≤x≤1, t>0 
u(0,t)=f1(t), u(1,t)=f2(t); u(x,0)=g1(x), ut(x,0)=g2(x) 
In this method we choose n∈N, calculate h=1/n and 
consider the points (xi,t) where xi=ih for i=0,1,2...n. 
Note that we do not discretise variable t. 
Substituting these points, for i=1...n-1, we obtain 
utt(xi,t) = α2(xi,t) uxx(xi,t). If we replace second partial 
derivative uxx with second differences we obtain: 

utt(xi,t)=α
2(xi,t) i 1 i i 1

2

u(x , t) 2u(x , t) u(x , t)

h
+ −− +

uxx(xi,t), 

for i=1...n-1 
Denoting 

Y(t)=

1

2

n 1

u(x , t)

u(x , t)

u(x , t)
−

 
 
 
 
 
 

�
, b(t)=

2
1 1

2

2
n 1 2

2

(x , t)f (t)

h
0

0

(x , t)f (t)

h
−

 α
 
 
 
 
 
 
 

α 
 
 

�  and 

A(t)=

2 2
1 1

2 2 2
2 2 2

2 2
3 32

2 2
n 1 n 1

2 (x,t) (x ,t) 0 0

(x ,t) 2 (x ,t) (x ,t) 0
1

0 (x ,t) 2 (x ,t) 0
h

0 0 (x ,t) 2 (x ,t)
− −

 − α α
 

α − α α 
 α − α
 
 
 α − α 

�

�

�

� � � � �

�

, 

we obtain the system of linear second-order ordinary 
differential equations: 

Y''(t)=A(t) Y(t)+b(t)  (13) 
Note that the solution vector Y(t) is of dimension n-1. 
The initial conditions for this system are: 

Y(0)=

1 1

1 2

1 n 1

g (x )

g (x )

g (x )
−

 
 
 
 
 
 

�
, Y'(0)=

2 1

2 2

2 n 1

g (x )

g (x )

g (x )
−

 
 
 
 
 
 

�
 

Let us suppose Y(t)= i
i 0

i 0

Y (t t )
∞

=

−∑ , A(t)= i
i 0

i 0

A (t t )
∞

=

−∑  

and b(t)= i
i 0

i 0

b (t t )
∞

=

−∑  where the coefficients of these 

series have suitable dimensions. Substituting in (13), 
the expression to calculate the coefficients of a 
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particular solution, given the initial conditions Y0 and 

Y1, is 
i

i 2 j i j i
j 0

Y ( A Y b ) /((i 2)(i 1))+ −

=

= + + +∑    i≥0. 

It is interesting to comment that, from computational 
point of view, if n is large h is very small and Yi 
increases considerably when i increases. To avoid 

errors, we consider the formal power series * i
i

i 0

Y t
∞

=

∑ , 

with * 2i
i iY h Y= . Note that Y(t) is rational if and only if 

Y*(t) is rational. 
Let us study some particular examples. 
 

Example 5 

utt=
2

xx2

x
u

t(1 t)−
     0≤x≤1, t>0, t≠0, t≠1 

u(0,t)=0     u(1,t)=
t

1 t−
; u(x,0.5)=x2     ut(x,0.5)=4x2 

Considering, for instance, n=10 and t0=0.5 (the 
equation has not sense in t=0) the initial conditions 
are: 

Y(0.5)=

2
1

2
2

2
9

x

x

x

 
 
 
 
  
 

�
, Y'(0.5)=4

2
1

2
2

2
9

x

x

x

 
 
 
 
  
 

�
 

2 2
1 1

2 2 2
2 2 2

i 2 2
i 3 32

2 2
9 9

2x x 0 0

x 2x x 0
a

A 0 x 2x 0
h

0 0 x 2x

 −
 

− 
 = −
 
 
 − 

�

�

�

� � � � �

�

 

where a2i=22i+3 (i+1), a2i+1=22i+4(i+1) 

bi=
i 2

2

2
9

0

2 (i 2)(i 1)

0h

x

+

 
 

+ +  
 
 
 

�
,  i≥0. 

Fig. 11: Table 1 for Y(t) is: 
 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 2 2 1 1 1 1 

3 3 3 2 1 1 1 

4 4 4 3 2 1 1 

5 5 5 4 3 2 1 

It indicates that Y(t)=[1/1]Y. Solving the system 
RS(1,1), we obtain 

Y(t)=R[1/1]Y=

0.01 0.02(t 0.5)

0.04 0.08(t 0.5) 1

1 2(t 0.5)

0.81 1.62(t 0.5)

+ − 
 

+ − 
  − −
 

+ − 

�
 

which can be simplified as Y(t)=

0.01t

0.04t 1

1 t

0.81t

 
 
 
  −
 
 

�
 

Note that u(x,t)=
2x t

1 t−
 is the solution and that Y(t) 

coincides with u(x,t) discretised in x. 
 

Example 6 
Let us see now an example where left approximant is 
more suitable (left m.d. are smaller than right m.d.). 

utt=
2

xx2

x
u

(1 t)+
        t>0, 0≤x≤1 

u(0,t)=1, u(1,t)=
1

2 t+
; u(x,0)=

1

1 x+
, ut(x,0)=

2

x

(1 x)
−

+
 

Considering different values of n (n=5, n=10, n=50) in 
this example Table 1 is highly sensitive to the 
threshold that we choose to decide whether and 
element is to be considered zero or not (Due to the 
limitations of finite arithmetic, certain theoretically zero 
elements will not be exactly zeros, which is why we 
have chosen a threshold so that any number with an 
absolute value of below it will be considered as being 
zero). However Table 2 for left approximant, in most 
cases, shows that (0,1) is a pair of left m.d. 

Note that u(x,t)=
1

1 x(t 1)+ +
 is the solution and that 

Table 2 indicates that Y(t)∈{L[0/1]Y}. For instance, if 
n=5: 

1

Y(t)

1 0 0 0 0.2 /1.2 0 0 0 1/1.2

0 1 0 0 0 0.4 /1.4 0 0 1/1.4
t

0 0 1 0 0 0 0.6 /1.6 0 1/1.6

0 0 0 1 0 0 0 0.8/1.8 1/1.8

−

=

      
      
      +      
             

i.e.; Y(t)=

1

1 0.2(t 1)

1

1 0.4(t 1)

1

1 0.6(t 1)

1

1 0.8(t 1)

 
 

+ + 
 
 

+ + 
 
 

+ + 
 
  + + 

 is u(x,t) discretised in x. 

 

 

5   Conclusions 
In this paper we have extended results and practice of 
[3]. Our aim has been to highlight methods of looking 
for rational fundamental matrices for systems of linear 
m-order differential equation and particular rational 
solutions for these systems and for partial differential 
equations. 
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The balanced use of numerical methods, together with 
approximation theory is a very interesting alternative 
to improve the calculation of these solutions (or, 
alternatively, approximated solutions). 
In this paper we combine Galerkin and Finite 
Difference methods with MPA. 
Other applications were considered in [7] in 
connection with time series analysis and economic 
models. 
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