
An Lω1ω1 Axiomatization of the Linear Archimedean Continua as 
Merely Relational Structures 

 
MILOŠ ARSENIJEVIĆ  

Department of Philosophy 
University of Belgrade 

Čika Ljubina 18-20, 11000 Belgrade  
SERBIA 

marsenij@f.bg.ac.yu
MIODRAG KAPETANOVIĆ 
Mathematical Institute SANU 
Knez Mihailova 35, Belgrade 

SERBIA 
kapi@mi.sanu.ac.yu 

 
Abstract. – We have chosen the language Lω1ω1 in which to formulate the axioms of two systems of the linear 
Archimedean continua – the point-based system, SP, and the stretch-based system, SI  – for the following 
reasons: 1. It enables us to formulate all the axioms of each system in one and the same language; 2. It makes it 
possible to apply, without any modification, Arsenijević's two sets of rules for translating formulas of each of 
these systems into formulas of the other, in spite of the fact that these rules were originally formulated in a 
first-order language for systems that are not continuous but dense only; 3. It enables us to speak about an 
infinite number of elements of a continuous structure by mentioning explicitly only denumerably many of 
them; 4. In this way we can formulate not only Cantor's coherence condition for linear continuity but also 
express the large-scale and small-scale variants of the Archimedean axiom without any reference, either 
explicit or implicit, to a metric; 5. The models of the two axiom systems are structures that need not be 
relational-operational but only relational, which means that we can speak of the linear geometric continua 
directly and not only via the field of real numbers (numbers will occur as subscripts only, and they will be 
limited to the natural numbers). 
 
Key-Words: Linear continuum, L_omega_1/omega_1, point-based, stretch-based axiomatization, trivial 
difference, Archimedean axiom 
 
1  Introduction 
1.1. The history of the problem of the 
continuum till Cantor 
The question about the structure of the 
continuum was raised for the first time by 
eleatic philosophers Parmenides and Zeno. 
While Parmenides stated that what is continuous 
(synechés) is both undivided and indivisible 
([11] DK 28 B 8 5-6), Zeno, in his famous 
arguments against plurality, was proving:  
     1. that no continuous entity of a higher 
dimension can ever be built up out of entities of 
a lower dimension ([11] DK 29 B 2);  
     2. that no continuum can be said to consist 
of elements of the same dimension ([11] DK 29 
B 1). 
     For instance, the addition of a point, or any 
number of points, would not increase the 
magnitude of a line segment, whereas, at the 

same time, no line segment can be said to be a 
real element of the line due to its infinite 
divisibility. Aristotle accepted both Zeno’s 
conclusions, the first of them having named 
Zeno’s Axiom ([1] Metaph. 1001b7), and, 
consequently, accepted the first Parmenides’ 
claim, that what is continuous is undivided per 
se ([1] Phys. 206b14ff.), but rejected the second 
claim, that what is continuous is indivisible, 
because the indivisibility does not follow from 
what Zeno had proved. According to Aristotle, 
everything that is continuous is divisible in 
indefinitum, but it can never be divided into an 
infinite number of parts ([1] Phys. 206b7ff.)) .  
     Because of the indeterminateness of parts of 
the continuum, obtainable in one way or another 
through a possible division, this Aristotelian 
conception was later called indefinitism, while 
Kant, because of the ontological priority of the 
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continuum as such over its possible parts, called 
space and time composita idealia ([17], p. 304). 
     This Aristotelian doctrine was the received 
view of the continuum till the end of the 
nineteenth century. Its only alternatives were 
Epicurus’ atomism and the middle-age 
infinitesimalism. However, though physicists 
sometimes endorsed atomism, it was never 
seriously accepted as an analysis of the 
continuum, while mathematicians used 
infinitesimals only as ‘useful fictions’, as 
Leibniz put it ([18],  pp. 91-95).. 
     Cantor was the first who offered the analysis 
of the continuum qua compositum reale, 
claiming that he finally resolved ‘the great 
struggle’ among the followers of Aristotle and 
Epicurus, who ‘either leave ultimate elements of 
matter totally indeterminate, or […] assume 
them to be so-called atoms of very small, yet not 
entirely disappearing space-time contents’ ([9], 
p 275). According to Cantor’s analysis, the 
entities of a higher dimension may be said to 
consist of the entities of a lower dimension. 
Actually, Cantor accepted Zeno’s axiom that the 
line cannot be built up of points if this is to be 
done step-by-step, but claimed that this 
impossibility was based on the fact that the 
linear continuum is not a well-ordered but only 
ordered set of points. If, however, a non-
denumerable number of points (whose cardinal 
number is greater than ℵ0) are put together, they 
can make up a linear continuum, given that 
following two conditions are met: 1. the set 
should be perfekt (perfect) and 2. it should be 
zusammenhängend (coherent) (see [9], p. 190).. 
The first condition had been known since the 
beginning of the analysis of the continuum: the 
continuum is dense because each of its points is 
an accumulation point of an infinite number of 
points. The second condition, however, is one of 
the Cantor’s greatest discoveries: each 
accumulation of an infinite number of points 
must have the accumulation point that is an 
element of the basic set of points itself. 
 
1.2. Development after Cantor  
Cantor’s theory of continuum has been 
enormously influential: logicians have 
formalized it, mathematicians have accepted it 
as a basis for Standard Analysis, and physicists 

have not quantized space and time, in spite of 
the fact that they acknowledged the existence of 
the quantum of action. Even in Non-Standard 
Analysis, the Cantorian structure is the basic 
continuum, extended later through the 
introduction of infinitesimals via rejection of the 
unrestricted applicability of the Archimedean 
axiom. However, there are still two groups of 
Cantor’s opponents: Intuitionists and Neo-
Aristotelians, whose theories will be of our 
concern, the Neo-Aristotelian one in particular. 
     Intuitionists reject the Cantorian concept of 
the actual infinity, and use only the Aristotelian 
concept of the dynamic (or potential) infinite. 
So they speak about denumerable finite number 
of constructed objects that may only get greater 
and greater unboundedly but never becomes 
actually infinite (cf. [7], 270ff.). This treatment 
enables them to to prove various statements 
about the objects introduced in such a way 
whenever they have a recursive control of what 
they speak about and inductive way to prove a 
theorem, but they do not allow us to speak of 
infinite sets or classes as ‘finished entities’ ([7], 
p. 433)  but only  of “spreads” of entities “in 
statu nascendi” ([26], p. 52), whose number 
may be always greater and greater. For instance, 
we may speak of natural numbers as a species, 
without restricting our discourse to a finite 
number of them, and can also prove, by using 
mathematical induction, that any of these 
numbers must be odd or even, but we mustn’t 
refer explicitly to “the set of all the natural 
numbers (whose cardinal number is ℵ0)”. 
     Contrary to Intuitionists, Neo-Aristotelians 
do accept the concept of actual infinity, but 
reject Cantorian points as basic elements of the 
continuous structures. In the last four decades 
(cf. [2], [4] - [6], [8], [10], [13], [15], [16], [19], 
[22] - [25]), they have elaborated a conception 
of the linear continuum whose elements are 
Aristotelian stretches, which may not only 
precede each other but also be included into 
each other, abut each other, and overlap with 
each other. It is important to notice that 
stretches, in their analysis, are not only potential 
parts of the continuum and that both Cantor’s 
conditions (to be perfect and coherent) can be 
modified as to be applicable to the stretch-based 
analysis of the continuum. 
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2 What we intend to do  
2.1 The ‘great struggle’ between Cantorians 
and Neo-Aristotelians and a peace-making 
strategy 
In contrast to what Cantor did, who resolved the 
‘great struggle’ between Aristotelians and 
Epicurians by building up a completely new 
theory of the continuum, one of the main 
purposes of this article is to argue that the ‘great 
struggle’ about continuum between Cantorians 
and Neo-Aristotelians is “much ado about 
nothing”, since the Cantorian point-based 
system – SP – and the Neo-Aristotelian stretch-
based system – SI – can be shown to be both 
syntactically and semantically only trivially 
different. 
     Intuitively, the underlying idea is that 
stretches can unequivocally be introduced 
within SP as intervals between two distinct 
points while points can unequivocally be 
introduced within SI as abutment places of two 
stretches (or two equivalence classes of 
stretches).  This possibility suggests a possible 
“systematic connection” between the two 
systems ([4], p. 84; cf. also [6]), so that, if we 
can manage to formulate the structure 
preserving translation rules, which would map 
unequivocally each formula of SP into a formula 
of SI and each formula of SI into a formula of SP, 
we might claim that SP and SI are only trivially 
different given that the two systems are 
complete and that all the theorems are always 
translated into theorems and non-theorems into 
non-theorems. 
 
2.2 The removal of two objections to the 
peace-making strategy 
One could object that, however intuitively 
acceptable can be to define stretches in SI as 
intervals between distinct points, and points in 
SP as the abutment places of abutting stretches, 
there must be a striking discrepancy between the 
entities of the corresponding models of SP and 
SI, since intervals can be open, half-open, and 
closed, while stretches are neither open, nor 
half-open, nor closed. However, this 
discrepancy can be easily compensated by 
letting stretches stand for the closed intervals in 
contrast to sets of an infinite number of 
stretches having either greatest lower or least 

upper bounds or both, which represent half-open 
and open intervals, respectively. 
     The second objection seems to be more 
serious. According to Quine’s famous slogan 
“To be assumed as an entity is to be reckoned as 
the value of a variable” ([20], p. 13), two formal 
theories are not trivially different if there is no 
model in which their variables range over the 
elements of one and the same basic set, and in 
the case of SP and SI their variables can never do 
this. The solution to the problem is to use 
Arsenijević’s definition of the generalized 
concepts of syntactically and semantically 
trivial differences between formal theories (cf. 
[2]). Namely, in the case in which there is no 
model in which variables of some two complete 
formal systems range over the elements of one 
and the same basic set, it can still happen that 
there are  two  Felix Bernstein’s functions  (cf. 
[9 ], p. 450) (one of them mapping each variable 
of one of the systems into a variable tuple of the 
other, the other mapping each variable of the 
latter system into a variable tuple of the former), 
which enable us to formulate two structure 
preserving translation rules of all the formulas 
of one of the systems into (not onto) a subset of 
all the formulas of the other. If, in addition, 
theorems are always translated into theorems 
and non-theorems into non-theorems, the two 
systems are syntactically trivially different in 
the generalized sense. Semantically, in the case 
of the intended models of SP and SI, the two 
systems are trivially different because when 
speaking about points we cannot avoid 
automatically saying something unequivocal 
about stretches, and vice versa. 
 
2.3 The role of the infinitary language Lω1ω1
Contrary to the perfectness condition, which is 
formulable in first-order languages (see axiom 8 
of SP and axiom 8 of SI in 3.1 and 3.2 below), 
the second Cantor’s condition for the linear 
continuity (zusammenhängend sein) cannot be 
expressed in any first-order language, since we 
have to state something about any accumulation 
of an infinite number of elements of the basic 
set. This condition is therefore normally 
formulated in a second-order language, in which 
variables range not only over individuals but 
also over sets, properties, relations, etc. 
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However, the coherence condition, both for SP 
as well for SI, can also be expressed in the 
language Lω1ω1, which differs from the first 
order language only through the fact that 
formulas are allowed to contain denumerable 
sequences of quantifiers as well as  conjunctions 
and disjunctions with denumerably many 
conjuncts and disjuncts, respectively. This 
language is the weakest possible one in which 
all the axioms for SP and SI can be formulated, 
and we choose this language in which to 
axiomatize the two systems because it has more 
advantages in comparison to the second order 
language, particularly in view of our purposes. 
     By using Lω1ω1, we avoid unnecessary 
ontological commitments in general. In 
particular, the fact that all the variables will be 
directly interpretable as ranging over individuals 
enables us to introduce all the axioms by 
referring explicitly to a denumerable number of 
them only, which should be acceptable even to 
Intuitionists. 
     The big problem of using the translation 
rules formulated by Arsenijević (in [2]) for 
comparing SP and SI, in the case in which some 
axioms are formulated in the second-order 
languages, lies in the fact that those rules have 
been tailored to first-order languages, because 
they were originally intended for the 
comparison of the systems that are only dense 
and not continuous. However, if we axiomatize 
SP and SI in Lω1ω1, Arsenijević’s rules become 
applicable without any modification. 
     It will turn out that the Archimedean axiom, 
whose large-scale version and small-scale 
version were originally formulated as metrical 
statements, can be formulated, by using Lω1ω1, 
purely topologically, without the use of 
multiplication and division operations. Actually, 
we shall be able to treat the set of axioms of any 
of the two systems of the linear Archimedean 
continuum in a purely Hilbertian way, as 
implicitly defining any relational structure that 
satisfies them, and so to express truths about 
any linear continuum directly, by deriving 
theorems, and not via the field of real numbers 
as a particular continuous structure. Numbers 
will occur as variable subscripts only, and they 
will be limited to the natural numbers. 

     Last but not least, ontologically speaking, we 
normally think of reality as objects standing in 
certain relations. It is therefore much more 
natural to express facts about the continuum as 
merely relational (cf. [14]). 
 
3  Comparison between SP and SI 
3.1 Axiomatization of the Point-Based System 
Let, in the intended model of SP, the individual 
variables α1, α2,…, αi,…, β1, β2,…, βi,…, γ1, 
γ2,…, γi,…, δ1, δ2,…, δi,…, … range over a set 
of null-dimensional points, and let the relation 
symbols ≡, <, and > be interpreted as the 
identity, precedence, and succession relations 
respectively. Let the elementary wffs of SP be  
αm ≡ αn, αm < αn, and αm > αn,  
where αm > αn ⇔def. αn < αm. Finally, let the 
axiom schemes of SP be the following twelve 
formulas, which we shall refer to as (AP1), 
(AP2),…, (AP12): 
1.   (αn)¬αn < αn

2.   (αl)(αm)(αn)(αl < αm ∧ αm < αn ⇒ αl < αn) 
3.   (αm)(αn)(αm < αn ∨ αn < αm ∨ αm ≡ αn) 
4.   (αl)(αm)(αn)(αl ≡ αm ∧ αl < αn ⇒ αm < αn) 
5.   (αl)(αm)(αn)(αl ≡ αm ∧ αn < αl ⇒ αn < αm) 
6.   (αm)(∃αn)αm < αn

7.   (αm)(∃αn)αn < αm

8.   (αm)(αn)(αm < αn ⇒ (∃αl)(αm < αl ∧ αl < αn)) 
9.   (α1)(α2)…(αi)… ((∃β1)(∧1≤i<ω αi < β1) ⇒ 
      ⇒ (∃γ1)(∧1≤i<ω αi < γ1 ∧ 
      ∧ ¬(∃δ1)(∧1≤i<ω  αi <  δ1 ∧ δ1 < γ1))) 
10. (α1)(α2)…(αi)… ((∃β1)(∧1≤i<ω αi > β1) ⇒ 
      ⇒ (∃γ1)(∧1≤i<ω αi > γ1 ∧ 
      ∧ ¬(∃δ1)(∧1≤i<ω αi> δ1 ∧ δ1 > γ1))) 
11. (∃α1)(∃α2)…(∃αn)…(α2 < α1 ∧ 
       ∧ ∧1≤i<ωα2i--1 < α2i+1 ∧ ∧1≤i<ωα2i+2 < α2i ∧ 
       ∧ (β) ∧1≤i<ω(αi< β ∧ β < αi+2 ⇒ 
      ⇒∧1≤k<ω ¬β≡αk)∧(γ)∨1≤i, j<ω(αi< γ ∧ γ < αj)) 
12.(∃α1)...(∃αn)...((β)∨1≤i,j<ω(αi < β ∧ β < αj) ∧  
      ∧(γ)(δ)(γ<δ ⇒∨1≤i<ω (γ<αk ∧αk<δ))) 
 
3.2 Axiomatization of the Stretch-Based 
System 
Let, in the intended model of SI, the individual 
variables a1, a2,…, ai,…, b1, b2,…, bi,…, c1, 
c2,…, ci,…, d1, d2,…, di,…, … range over one-
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dimensional stretches, and let the relation 
symbols =, ≺, , ⎨, ⎬, ∩ , and , be interpreted 
as the identity, precedence, succession, 
abutment, overlapping, and inclusion relations 
respectively. Let the elementary wffs be  am = an,    
am ≺  an,  am  an, am ⎨ an, am ⎬ an, am ∩ an, and 

am  an,  
where 
am  an ⇔def. an ≺ am  and  am ⎬ an ⇔def. an ⎨ am,  

am ⎨ an ⇔def. am ≺ an ∧ ¬(∃al)(am ≺ al ∧ al ≺ an),  

am ∩ an⇔def. (∃al)(∃ak)(al ≺ an ∧¬al ≺ am ∧ am ≺ 

≺ ak ∧ ¬an ≺ ak), 
am an ⇔def. ¬am = an ∧ (al)(al ∩ am ⇒ al ∩ an). 
Finally, let axiom schemes of SI be the 
following twelve formulas, which we shall refer 
to as (AI1), (AI2),…, (AI12): 
1. (an)¬an ≺ an

2. (ak)(al)(am)(an)(ak≺am∧al≺an⇒ak≺an∨al ≺ am) 

3. (am)(an)(am≺an⇒am⎨an∨(∃al)(am ⎨al ∧al ⎨ an)) 
4. (ak)(al)(am)(an)(ak ⎨am ∧ak⎨an∧al ⎨am⇒al ⎨an) 
5. (ak)(al)(am)(an)(ak⎨al ∧al ⎨an∧ak⎨am∧am⎨an ⇒ 
     ⇒ al = am) 
6. (am)(∃an) am

 ≺ an

7. (am)(∃an) an
 ≺ am

8. (am)(∃an) an  am

9. (a1)(a2)…(ai)…((∃u)(∧1≤i<ω  ai
 ≺ u) ⇒  

    ⇒ (∃v) (∧1≤i<ω  ai
 ≺ v ∧ ¬(∃w) (∧1≤i<ωai ≺ w ∧ 

    ∧ w ≺ v))) 

10. (a1)(a2)…(ai)…((∃u)(∧1≤i<ω  ai   u) ⇒  

      ⇒ (∃v)(∧1≤i<ωai
   v ∧ ¬(∃w)(∧1≤i<ω ai  w ∧ 

      ∧ w  v))) 
11. (∃a1)(∃a2)...(∃an)... 
      ...(a2⎨a1 ∧∧1≤i<ωa2i−1⎨a2i+1 ∧∧1≤i<ωa2i+2⎨a2i  ∧ 
       ∧ (b)∨1≤i, j<ω (ai ≺ b ∧ b ≺ aj)) 

12. (∃a1)(∃a2)...(∃an)...((b)(∨1≤i<ω b=ai ⇒  
      ⇒  (∨1≤j<ω b ⎨aj ∧∨1≤k<ω ak ⎨b)) ∧ 
      ∧  (c)(∨1≤i<ωc=ai⇒∨1≤j<ωaj c) ∧  
      ∧ (d)∨1≤i, j<ω(ai≺d∧d≺aj) ∧  

      ∧ (e)∨1≤i, j<ω(ai ∩e∧e∩aj)) 

 
3.3 Comments on some Axioms  
The interpretation of the first eight axioms of 
both systems needs no special comments. They 
implicitly define dense, unbounded, and linearly 
ordered structures. However, the rest of the 
axioms need some comments. 
     Ad (AP9) and (AP10), and (AI9) and (AI10). - 
While the first Cantor’s condition for the linear 
continuity is met by a axiom (AP8), the second 
condition (the coherence condition)  is met, for 
the whole class of isomorphic models, only by 
two axioms, (AP9) and (AP10), which state the 
existence of the least upper and the greatest 
lower bound, respectively. It might be of 
interest to note why it is so. Namely, we need 
both (AP9) and (AP10) in order to make the class 
of all the models for SP isomorphic. Let us 
suppose that, though the elements of the 
intended model of SP are points, they are, 
instead (as [in 10]), the sets of numbers of 
closed intervals between any two numbers a and 
b such that a∈Q and b∈R, and < is interpreted 
as “is a proper subset of”. Then, the relational 
structure 〈 {[a, b]⏐a∈Q, b∈R}, ⊂ 〉 satisfies the 
set of axioms (AP1),…, (AP9) but the coherence 
condition is  not met. Let us take, for instance, 
the set of intervals [a1, b], [a2, b],…, [an, b],… 
such that a1 is a number smaller than b and any 
an+1 is smaller than an, and where π is the 
accumulation point of the set of numbers a1, 
a2,…, an,… . There is no greatest lower bound 
for this set of intervals, in spite of the fact that 
the least upper bound always exists. – A similar 
example can be constructed for showing that we 
need both (AI9) and (AI10).  
     Ad (AP11) and (AI11). The intended meaning 
of the large-scale variant of the Archimedean 
axiom can be expressed by choosing a 
denumerable set of discrete points (in SP) or 
abutting stretches (in SI) distributed over the 
whole continuum and claiming that for any 
element of the structure there are two distinct 
elements (points or stretches) from the given 
sets such that one of them lies on one side and 
the other on the other side of the given element 
(point or stretch). As a consequence, a theorem 
(whose stretch-based version will be proved 
below) stating the compactness property of the 
corresponding structure exhibits the intended 
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meaning of the Archimedean axiom in its most 
obvious form. 
      Ad (AP12) and (AI12). The two systems of 
the linear continuum in which numbers are 
neither mentioned nor used (except as variable 
subscripts) are insensitive to a distinction 
between  Archimedean and non-Archimedean 
structures, which both belong to the class of 
their models (cf. [12]). Since there is no metric, 
obtainable either geometrically via the equality 
relation holding between stretches or 
arithmetically through the operations of 
multiplication and division, the large-scale and 
the small-scale variant of the Archimedean 
axiom must be formulated purely topologically 
by mentioning denumerably many of points and 
stretches only. This constitutes an important 
novelty of our approach. 
     For precluding infinitesimals in SP, we have 
to state that it is possible to choose a 
denumerable set of dense points that covers the 
continuum in such a way that for any two points 
there is a point from the chosen set that lies 
between them. In SI, we have to state that there 
are no stretches, like monads in the Robinsonian 
non-standard field *R (cf. [21], p. 57), which are 
impenetrable, from both sides, by some two 
members of a chosen denumerable set of 
abutting and dense stretches.  

3.4 The Triviality of the Difference between 
SP and SI 
In order to show that the two axiom systems, SP 
and SI, are only trivially different in the sense 
defined in [2], we shall first cite two sets of 
translation rules. 

     Let f be a function f : αn ⎯→ 〈a2n−1, a2n〉        
(n = 1, 2,…) mapping variables of SP into 
ordered pairs of variables of SP, and let C1-C5 be 
the following translation rules providing a 1-1 
translation of all the wffs of SP  into a subset of 
the wffs of SI (where =C means “is to be 
translated according to syntactic constraints C 
as”):                      

C1: αn ≡ αm =C a2n−1⎨a2n ∧ a2m−1⎨a2m ∧a2n−1⎨ a2m, 

C2: αn < αm =C a2n−1 ⎨ an  ∧ a2m−1 ⎨ a2m  ∧  
      ∧ a2n−1 ≺ a2m ∧ ¬a2n−1 ⎨ a2m, 

C3: ¬FP =C ¬C(FP), where FP is a wff of SP 

         translated according to C1-C5 into wff  
      C(FP) of SI, 
 
C4:  FP'♥FP" =C C(FP')♥C(FP"), where ♥     
       stands for ⇒ or ∧ or ∨ or ⇔, and FP'  
       and FP" stands for two wffs of SP translated 
       according to C1-C5 into two wffs of 
       SI,C(FP') and C(FP") respectively, 
 
C5: (αn)Ω(αn) = C(a2n-1)(a2n)((a2n-1 ⎨ a2n) ⇒  
       ⇒ Ω*(a2n-1, a2n))  
       and 
       (∃αn)Ω(αn) =C(∃a2n-1)(∃a2n)((a2n-1 ⎨ a2n) ∧ 
       ∧ Ω*(a2n-1, a2n)), 
       where Ω(αn) is a formula of SP translated 
       into formula Ω*(a2n-1, a2n) of SP according 
       to C1-C5. 
     Let f*  be a function   f* : an ⎯→ 〈α2n−1, α2n〉  
(n = 1, 2,…) mapping variables of SI into 
ordered pairs of variables of SP, and let C*1-C*5 
be the following translation rules providing a 1-
1 translation of all the wffs of SI into a subset of 
the wffs of SP (where =C* is to be understood 
analogously to  =C): 
 
C*1: an = am =C* α2n−1 < α2n ∧α2m−1< α2m ∧α2n−1 ≡  
        ≡ α2m−1 ∧ α2n ≡ α2m, 
C*2: an ≺ am =C* α2n−1 < α2n  ∧ α2m−1 < α2m  ∧ 
        ∧ ¬α2m−1 < α2n, 
 
C*3: ¬FI =C* ¬C*(FI), where FI is a wff of SI 

         translated according to C*1-C*5 into wff   
        C(FI) of SP, 
 
C*4: FI'♥FI" =C* C*(FI')♥C*(FI"), where ♥ 
        stands for ⇒ or ∧ or ∨ or ⇔, and FI'  
        and FI" stands for two wffs of SI translated 
        according to C*1-C*5 into two wffs of SP, 
        C*(FI') and C*(FI") respectively, 
 
C*5: (an)Φ(an) =C*(α2n-1)(α2n)((α2n-1 < α2n) ⇒ 
         ⇒ Φ*(α2n-1, α2n))  
         and 
         (∃an)Φ(an) =C*(∃α2n-1)(∃α2n)((α2n-1<α2n) ∧ 
          ∧ Φ*(α2n-1, α2n)), 
          where Φ(an) is a formula of SI  translated 
          into formula Φ*(α2n-1, α2n) of SP 
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              according to C*1-C*5. 
 
     In [2], Arsenijević has shown that by using  
C1-C5 and C*1-C*5 for translating (AP1),…, 
(AP8) into SI and (AI1),…, (AI8) into SP, 
respectively, we always get theorems. Now, the 
same holds for the translations of (AP9),…, 
(AP12) into SI and (AI9),…, (AI12) into SP. Let 
us prove within SI the translation of (AP9), 
which will be (after an appropriate shortening of 
the resulting formula) denoted by (AP9)*. 
(AP9)* 
     (a1)(a2)…(ai)… (∧1≤i<ω a2i−1 ⎨ a2i  ⇒ 
     ⇒ ((∃b1)(∃b2)( b1  ⎨ b2 ∧ (∧1≤i<ω ai ≺ b2)) ⇒ 

     ⇒ (∃c1)(∃c2)(c1 ⎨ c2 ∧ (∧1≤i<ω ai ≺ c2)  ∧  

     ∧¬(∃d1)¬(∃d2)(d1 ⎨ d2 ∧ ((∧1≤i<ω ai ≺ d2) ∧ 

     ∧ d1 ≺ c2 ∧ ¬ d1 ⎨ c2)))) 
 
Proof for (AP9)* 
Let us assume both   ∧1≤i<ω a2i−1 ⎨ a2i            and 
(∃b1)(∃b2)(b1 ⎨ b2  ∧ (∧1≤i<ω ai ≺ b2)),  which are 
the two antecedents of (AP9)*. Now, since for 
any i (1≤i<ω), ai ≺ b2, it follows directly from 

(AI9) that there is v such that ai
 ≺ v and, for no 

w, both  ai ≺ w and w ≺ v. 
     Let us now assume, contrary to the statement 
of the consequent of (AP9)*, that for any two c1, 
c2 such that c1 ⎨ c2 and for any i (1≤i<ω) ai ≺ c2, 
there are always d1 and d2 such that d1 ⎨ d2 and 
for  any  i (1≤i<ω)  ai ≺ d2,  so  that  d1 ≺ c2  and  
¬ d1 ⎨ c2. But then, if we take c2 to be just v 
from the consequent of (AI9) (and c1 any 
interval such that c1⎨c2), the assumption that for 
any i (1≤i<ω)ai≺ c2  but d1 ≺ c2 and ¬ d1 ⎨ c2 
contradicts the choice of c2, since if c2 = v, then, 
according to (AI9),  for any d1 and d2 such that 
d1 ⎨ d2 and for any i (1≤i<ω)ai≺d2, it cannot be 

that d1≺c2 and ¬d1⎨ c2.  (Q.E.D.) 
 
4  Application 
Let us, finally, prove two theorems in SI that are 
of interest for different reasons. The first of 
them makes clear what is the trick of our 
formulation of the large-scale version of the 

Archimedean axiom via a chosen denumerable 
set of abutting stretches distributed over the 
both sides of the continuum: it is sufficient to 
have effective control over the continuum by a 
denumerable number of its discrete elements for 
making any of its elements surpassable in a 
finite number of steps, which means that the 
essence of the Archimedean axiom is 
topological, having nothing to do with a 
presupposed metric and depending on no 
arithmetical operation. The second theorem is a 
variant of Bolzano-Weierstrass’ statement, 
which turns out to be not only a consequence of 
the small-scale variant of the Archimedean 
axiom but also not to be provable without it. 
 
The SI formulation of the Theorem stating the 
compactness property for stretches: 
 
(c)(d)( c ≺ d)⇒  
⇒(∃e1)(∃e2)…(∃em)((e1⎨e2 ∧⎨…⎨em) ∧ 
∧ (∃f)(∃g)(f⎨e1∧f≺c∧¬f⎨c∧em+1⎨g∧d≺g∧¬d⎨g)) 
 
Proof. 
Let us choose those i and m, for which ai and 
ai+m mentioned in (AI11) are just those members 
of the set a1, a2,...,an... for which it holds that    
ai ≺ c and d ≺ ai+m+1. Let us take then e1, 
e2,…em to be just ai+1, ai+2,…ai+m. Now, if we 
take f to be ai and g to be ai+m+1, we get directly 
that the statement of the theorem is true. 
 
A stretch-based variant of the Bolzano-
Weierstrass Theorem: 
 
(c)(d)(h1)(h2)…(hi)...(c≺d ∧¬c⎨d ∧ c⎨h1 ∧  

∧  ∧1≤i<ω hi⎨hi+1 ∧ (∃e)(e≺d ∧ ∧1≤i<ω hi≺e)⇒ 

⇒(∃b1)(∃b2)…(∃bi)…(d b1 ∧ ∧1≤i<ωbi⎬bi+1 ∧ 
∧(∃f)(∃g )(f ⎨g∧ f ⎨(bi) 1≤i<ω  ∧ g⎬(hi) 1≤i<ω) 
where 
f ⎨(bi) 1≤i<ω   ⇔def.  ∧1≤i<ω (f ≺ bi) ∧ ¬(∃v)(f ≺ v ∧ 

∧ ∧1≤i<ω (v ≺ bi)) 
and 
g⎬(hi) 1≤i<ω  ⇔def.  ∧1≤i<ω(g  hi) ∧ ¬(∃w)(g w ∧ 

∧ ∧ 1≤i<ω (w  hi)) 
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Proof.  
Since the set of stretches a1, a2,…, ai,… from 
(AI11) is dense and it holds for each of its 
members that it abuts some member of the set 
while some other member abuts it, we can take 
b1, b2,…, bi,… to be those aj,1, aj,2,…, aj,i,…, 
respectively,  for  which  the condition  d  aj1 ∧  

∧ ∧1≤i<ω aj,i⎬aj,i+1 is met. Now, if f is the greatest 
lower bound of the set aj,1, aj,2,…, aj,i,…, the 
statement of the theorem is true. But, let us 
suppose that, contrary to the statement of the 
theorem,  f is not the greatest lower bound for 
any set ak1, ak2,…, aki,… which is a subset of a1, 
a2,…, ai,… and which lies within e. This would 
mean, however, that there is some stretch w that 
is penetrable by no member of the set a1, a2,…, 
ai,…, which directly contradicts the statement of 
(AI12). 
 
5  Conclusion 
After formulating in Lω1ω1 the axioms of the 
Cantorian and the Aristotelian systems of the 
linear Archimedean continuum, we have shown 
how, by using appropriate translation rules, the 
axiom of the point-based system (AP9), which 
states the existence of the lowest upper bound, 
can be proved as a theorem in the stretch-based 
system. In a similar way, it can be shown that 
after translating (AP10), (AP11), and (AP12) into 
SI, and (AI9), (AI10), (AI11), and (AI12) into SP, 
we also get theorems of SI and SP, respectively. 
This means that SP and SI are only trivially 
different according to Arsenijević's definition 
given in [3]. In section 4, we have proved, by 
using the stretch-based system, two important 
theorems of classical analysis. These proofs 
strongly suggest that other classical theorems 
concerning the linear Archimedean continuum 
can also be formulated as being about merely 
relational structures and proved on the basis of 
the cited axioms without the use of the algebraic 
relational-operational structure of  real numbers, 
which presents a prospect for further 
investigations. 
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