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Abstract: We study a quantum spin system acting on a single quantum bit. The
evolution of this system is governed by the Schrodinger equation which takes the
form of a right-invariant system on the special unitary group SU(2) with two
control inputs. Using a suitable version of Pontryagin’s Principle which is tailor-
made for control problems on Lie groups, the optimal controls are derived in two
cases: the energy-optimal case (in which the control effort is minimized for a
specified end time) and the time-optimal case (in which the control duration is
minimized for given constraints on the size of the controls).
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Problem Formulation

The evolution of the spin system we want to consider
is given by the Schrodinger equation

U(t) =

(1) (c()A+u(®)X +ov()Y)U()

where

o a=fi xSyt ]

and where ¢, 4 and v are functions of time describing the
temporal variations of the external field. In our case we
shall treat t — wu(t) and t — v(t) as control functions
whereas ¢ is a constant (so that cA is a drift term in the
system dynamics). Our goal will be to steer the system
state from a given value U(0) at time £ = 0 to a speci-
fied value U(7) at time 7 > 0 in such a way that a cost
functional of the form

(3) /OT P (u(t),v(t))dt

(depending only on the controls, not on the state) be-
comes minimal. In applications one is mainly interested
in the time-optimal case (in which ®(u,v) = 1) either un-
der the constraints |u| <1 and |v| < 1 or under the more
severe constraint u? 4+ 2 < 1. However, we shall also
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discuss the case ®(u,v) = (1/2)(u? + v?) (with no con-
straints on u and v), in which the optimal controls can be
found rather easily. This case can then be compared to the
time-optimal case, as follows: Determine (analytically, if
possible) the optimal controls ¢ — u(t;7) and t — v(t;7)
in dependence on the given duration 7 and find the min-
imal 7 which is compatible with the constraints imposed
in the time-optimal case.

Lie-theoretic structure

Equation (1) is a control system evolving on the group
SU(2) of all complex (2x2)-matrices U such that U*U =1
and det(U) = 1; equivalently,

a —
|
Note that the system (1) is right-invariant in the sense
that if ¢ — U(t) is a trajectory of (1) then so is ¢ +—
U(t)B for any fixed B € SU(2). (This, by the way, ensures
that we can always assume that U(0) = 1; otherwise we
can replace U by U(t)U(0)!, which satisfies the same
equation as U.) The Lie algebra su(2) of SU(2) consists of
all traceless skew-Hermitian (2 x 2)-matrices; it is spanned

by the elements A, X and Y in (2), and these satisfy the
bracket relations

(5)

| ol

(4) SU(2) = } | a,c€C, |a* + |c]* =1} .

[4,X] = —2Y, [A4,Y]=2X, [X,Y]=—24
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For later purposes, we give an explicit formula for the
exponential function of su(2). Given a matrix

ic —z

(6) M= {z —ic} esu(2) (ceR,ze€C)
we let

_ z z o 2 2
(7) S:= {i(C—A) i(c+A)} where A == +/c? + |z|
and observe that

1 A 0|

(8) S’MS{O —iA} = D

so that M = SDS~! and hence exp(tM) = Sexp(tD)S~1
for all £ € R. Explicitly, the last equation reads

ot 5] -

1 { Acos(tA) + icsin(tA)
A

Zsin(tA) ) }

Acos(tA) —icsin(tA)

ic —z
z —ic|

sin(t+/det(M))
det(M)

sin(tA)
A

mWAﬂé?}+

Note that (9) simply says that

(10) exp(tM) = cos(t\/det(M)) 1+

This formula could also have been derived from the
Hamilton-Cayley Theorem M2 — (tr M)M + (det M)1 =0
which, because of tr(M) = 0, becomes M? = — det(M)1.
Consequently, we find that M = (- det(M))kl and

M = (— det(M))kM for all k& € Ng; plugging these
equations into the expansion exp(tM) = Y72 t"M"/r!,
equation (10) follows.

We now exploit the Lie-theoretic structure inherent in
the problem by invoking a version of Pontryagin’s Max-
imum Principle which is tailor-made for right-invariant
systems on Lie groups. This version states that, if v und
v are optimally chosen, then there is an absolutely con-
tinuous function p : [0,7] — su(2) satisfying the adjoint
equation
(11)  p(t) = —p(t) oad(cA + u(t)X + v(t)Y)
and never becoming zero, which is such that u(t) and v(¢)
minimize the Hamiltonian
(12) H = x-®(u,v) +c-p()A+u-p(t)X +v-p(t)Y
(where x € {0,1}) with respect to u and v almost every-
where; moreover, the Hamiltonian is constant along the
optimal trajectory and control, the constant being zero if
the final time 7 is not fixed beforehand. (The abnormal
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case x = 0 will not be of significance in the problems at
hand.) Applying (11) to A, X and Y, respectively, and
using the bracket relations (5) we obtain the equations

p(t)A = —p(t)(2u(t)Y — 2v(t)X),
(13) X = —p(t)(— 2cY+2v t)A),
p)Y = —p(t)( 2cX —2u(t)A).
Letting a(t) := p(t)A, z(t) := p(t)X and y(t) = p(H)Y
this reads
a —2uy + 2vx 0 v —u a
(14) |z | = 2ecy —2va | =2|—-v 0 ¢ |z
Y —2cx 4 2ua v —c 0 Y

which implies that a(#)? + z(t)% + y(t)? ist constant. Note
that (14) holds irrespectively of the choice of the penalty
function ®. This choice, however, determines how the op-
timal controls w and v can be expressed in terms of the
functions a, z and y, as will be discussed now.

Energy-optimal control

Let us choose ®(u,v) := (1/2) - (u? + v?). We want
to first rule out the abnormal case x = 0. Assume x = 0;
then the absence of constraints on the controls v and v
ensures that z = 0 and y = 0. Plugging this into (14)
yields ¢ = 0, 0 = —2va and 0 = 2ua. Hence a is a
constant; in fact a nonzero constant, because otherwise we
would have p = 0. But then » = 0 and v = 0, which yields
a solution only if the uncontrolled system automatically
reaches the desired state at time 7, a trivial case which
can be discarded. Hence we may assume x = 1 so that
the Hamiltonian (12) becomes

(15)

Minimization of (15) with respect to u and v results in

H = (1/2) - (w® +v*) + ca(t) + uaz(t) + vy(t).

(16)

Plugging this into (14) yields & = 0 (so that a is a con-
stant) and then & = 2(c + a)y and § = —2(c + a)z,
which implies that there are a constant r and a function
¢ such that z(t) = rcos(p(t)) and y(t) = rsin(¢(t)) and
¢ =—2(c+ta),ie
(17) ot) = po—2Acta)t.
Hence the optimal trajectory satisfies U (t)
where

— e()U(t)

©)
—_

o~
R

I

:= cA+rcos(p(t) X + rsin(e(t))Y
R Rk

it remains to adjust the constants a, r and ¢y in such
a way that the desired change from U(0) = 1 to U(7)
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is effected. We now use a trick to convert the equation
U = OU (which is a linear differential equation with
time-varying coefficients) into a linear differential equa-
tion with constant coefficients by introducing the function
t— T(t) € SU(2) defined by

1 ei(p/Z
% ei(p/Z

We observe that both

(19) T = —e"‘f’/z}

e*igo/Z

(20)

and

0 —e

B A TR T

are constant in time, which is also true of

b 90 il _
(22) T = L 0} = —(cta) Y.
Thus the function
(23) V(t) = TOU({)
satisfies
V = TU+TU = TU +TOU
= (IT ' +TOT HTU
(24) — (ITT'+T10T YV
( c+a Y+CY+TX)V

= (rX —aY)V,

which has constant coefficients; in fact, letting z := r —ia,
this equation simply reads

(25) V() — AV(L) where A, — {2 ‘1

0

which can be explicitly solved, using U(0) = 1, to yield

V(t) = exp(tA,)V(0)
(26) 1 e’i(po/z _efiwo/z
= % exp(tA.) |:€i<po/2 e H0o/2 }

Introducing the abbreviations

(27) a:=@o/2 and f:=¢(1)/2=a— (cta)T

and using the fact that U(?)
this yields

— T() V() = T U,

i

@) V05| S s | el | G
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Using (9) with ¢ = 0 at the final time ¢ = 7, we find that

c -S
(29) exp(74,) = {S C’}
where
(30) C:=cos(T|z]) and S:= ﬁsin(7‘|z|);
z

a subsequent evaluation of (28) then yields

_671(a+ﬁ) . Re S
B (C—iTm S)

=B (C+4Im S)
e 1Im
(31) U(T) - ei(a+[3) -ReS
Denoting by U;; the entries of U(7), we see from (31) that
F-a, = C +1i-ImS; thus if P is the polar angle of
Ui1 € C (so that Uy = |Up1]et) we have

(32) |U7:1]efF—2FP) — ¢ i .ImS.
Letting
(33) 0:=—ar, Op:=cr— P, w:=r1|z]=7Vr?’+a>

(where 6p is a known constant whereas § and w are un-
knowns because a and r are) we have 0—0p = P—(cta)T =
P + B8 — «; hence (32) takes the form

cos(f0 — )| cos(w)
(34) |U1]- {sin(@—@o)} N {G-Sin(w)/w '

Taking norms on both sides of (32) we find that |U;]? =
cos(w)? + 02 sin(w)? /w? and hence that

0 cw+/|U11)% — cos? w

sin w

(35)

where ¢ € {£1}. Furthermore, (34) implies that tan(0 —
o) = 0 tan(w)/w and hence that

wy/|Un1]*—cos®w 00] B

sin w
This equation has more than one solution, but since the
control effort is given by

e/ |U11]% —cos? w

cosw

(36) tan [8

T T2 2 2
/ P(u,v)dt = / vy a = -~
0 0 2
2 2 .22
B7) =L (L _g2) L T¢
2\ 72 2T
- w2_02 1—|U11|2 U)2
o 2T o 2T sin?w

we are looking, amongst all possible solutions, for the one
for which |w/sin(w)| is minimal. Once (36) has been
solved for w, we plug the result into (35) to obtain 6,
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then let @ == —0/7 and r : (w/T)2 — a? according to
(33); finally, o can be determined from

Un

12

_ €2i(a+[3) _ 621'((,00707'70,7').

(38) -

Once a, r and g are found, the optimal controls are given
by

—r - cos(ipo — 2(cta)t),
_r. SiD((,OO — 2(C+a)t)~

u(t)

v(t) =

(39) —alt) =

0 is particularly simple. In this
case necessarily |Uis| = 1, say U2 = €*°. Equation (34)
implies that cos(w) = 0 and # = 0, hence a = 0 and w =
Tr; the equation cos(w) = 0 thus yields 7r = (7/2) + kn
with & € Z. Finally, equation (38) becomes e%7 = e¥o—°7
so that g = o + ¢7. (Note that g enters the control law
only modulo 27.) The value k has to be chosen to make
|r| as small as possible; since one of the choices k = 0 and
k = —1 always gives a solution, we find that

The special case Uq;

T cos(a +cr — 2(:15),

( T s 2t

: Zsm(aJFCT— C ),

where ¢ € {£1} in (40) must be chosen in such a way
that the resulting trajectory ¢ — U(¢) leads to the desired
state U(7).

Time-optimal control: First case
We now consider the question of time-optimal con-
trol (i.e., with the cost function ®(u,v) = 1) under the
constraint u2 + v? < 1. In this case minimization of (12)
yields
(41) u

v

I

Plugging this into (14) results in & = 0 (so that a is con-
stant) and the system

2¢y + 2ay/v/2? + y?
—2cx — 2azx/~\/2% + y?

from which we conclude that z@+yy = 0, i.e., that o2 4y
is constant. Hence there exist a constant r and a function
® such that z(t) = rcos(®(t)) and y(t) = rsin(P(t))
which, when plugged back into (42), yields ® = —2(c +
(a/r)) and hence that

(42) m B
y f—

(43) ®(1) = <I>0—2(c+ E)t.

r
We see that this solution is completely analogous to the
one found in the energy-optimal case; we simply have to
replace a by a/r. (Consequently, the time-optimal control
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under the given constraint can be found by solving, for a
given 7 > 0, the solution for the energy-optimal problem
and then selecting the smallest 7 for which the solution
found is compatible with the constraint u? + v? < 1.)

Time-optimal control: Second case

We consider again the case ®(u,v) =1 (i.e., the case
of time-optimal control), but this time with the individual
control constraints |u| < 1 and |v] < 1 instead of the
more severe overall constraint 2 + v2 < 1. In this case
minimization of (12) yields

—sign(z(t))

and  v(t)

(44) w(t) —Sign(y(t))
unless there is an interval on which x = 0 or y = 0 (in
which case u or v could not be determined on this inter-
val from minimizing (12)). Let us show that this is only
possible if both v = 0 and v = 0, so that the only pos-
sible singular arcs are drift arcs (also called coast arcs)
during which no control whatsoever is applied). (It will
become clear from the subsequent discussion that gener-
ically those arcs do not occur and can be ignored as far
as practical implementation of an optimal control scheme
is concerned.) Assume that 2z = 0 on some time interval.
Then, according to (14), on this time interval the following
equations hold:

al _ g, [0 1
g = 2|1 o| v
Denoting by U an antiderivative of u and letting C(t) :=

cos(2U(t)) and S(t) := sin(2U(t)), we find from the first
equation in (45) that

] 9

(45) cy.

o) L]

Apart from the trivial cases a9 = yo = 0 and U (¢) = const,
this implies (because of the second equation in (45)) that

Lyt aoS(t) +yC(t)

a(t)  aC(t) —yoS(t)

is not constant on any part of the time interval considered,
which is only possible if ¥ = 0 on this interval. But then
z = 0 and y = 0 on this interval, which (as we saw in the
discussion preceding (15)) implies u = 0 and v = 0. Let
us discuss the two trivial cases mentioned before. If ag =
yo = 0 then (46) implies y = 0, and we again obtain z =
y = 0 and hence u = v = 0. If U is constant, then u =0,
hence a and y are also constant. The Hamiltonian is then
given by H = ca 4+ vy. The fact that the Hamiltonian is
zero along an optimal trajectory, together with the second
equation in (45), gives rise to the equation

- [

and hence that ¢ = y = 0 and hence u = v = 0 again.

(46)

(47 o) =

(48)
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Ignoring coast arcs for the time being, the time in-
terval [0, 7] splits into intervals on which both u and v
are constant with values in {£1}. On each such interval
equation (14) becomes

a 0 v —u a
(49) gl =2|-v 0 c¢f |z
Y U —cC 0 Y

which is an equation with constant coefficients which can
be explicitly integrated as

a(t) 0 v —u a(s)
(50) |z(t)| =exp|2(t—s)|—v 0 ¢ z(s)
y(1) u —c 0 y(s)

where the exponential can be computed using the Ro-
drigues formula which states that for any skew-symmetric
matrix

0 —Wws W
(51) Llw) = ws 0 —w
—W9 w1 0

where w = (w1, ws, w3)T € R? the exponential exp(L(w))
is given by

sin ||wl]

]

Thus if [s,?] is a time interval during which » and v are

1—cos||w||

lw]?

(52)  (cos|lwl)1+ L(w).

constant we have w = —2(c,u,v)T and hence
a(t) 0 v —u a(s)
(53) |z(t)| =exp|[2(t—s) | —v 0 ¢ z(s)
y(t) u —c 0 y(s)

where the exponential is given by

1 00
cos(2(t—s)Vc24+2) [0 1 0
0 0 1
2
1— 9t — /—)2+2 ¢ uc wve
(54) + cos( (2 2 < uc 1 wv
¢t ve uwv 1
. 0 v —Uu
in(2(t— 212
> ( ( j) c ) —v 0 c
2 u —c 0

Let us note that the motion of the vector (a, z, y)” during
the time interval [s, ] is a rotation with constant angular
velocity v/ + 2 about the axes pointing in the direction
of (¢, u,v)T’; hence

2t — )Vt +2 = 29,

where ®; . is the angle swept out by this vector.

(55)
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Fig. 1: Evolution of adjoint variables.

Depending on the four possibilities (uw,v) = (&1,=£1),
there are four possible axes of rotation; the larger ||,
the closer these axes are towards the a-axis in the adjoint
space. The diagram shows a view from top (i.e., from the
positive a-axis) onto the zy-plane. The adjoint variables
evolve on a sphere a? + x? + y? = R?; around each of the
four axes there is a circle which touches both the plane
2 = 0 and the plane y = 0. If (ag, 2o, yo) lies in the in-
terior of any such circle, no switching can occur, because
then the trajectory t — (a(t),z(t),y(t)) can never leave
the quadrant in which it starts. The exterior of the union
of these four circles is composed of two regions; region
I containing the point (R,0,0), region II containing the
point (0,0, R). If ¢ < 0 the positively oriented rotation
axes “stick out” of the diagram, so that the motion along
the circles is in the mathematically positive sense. Thus if
(a0, o, Yo) is in region I, we follow the switching pattern

v | -1 | -1 1 1
v | —1 1 1 | -1

(traversing the four quadrants of the zy-plane in clockwise
fashion), whereas if (ag, zo, yo) is in region II, we follow
the switching pattern

u | —1 1 1
v | =1 | -1 1 1

(traversing the four quadrants in a counterclockwise fash-
ion). This motion in the adjoint space needs to be strictly
distinguished from the associated motion in the state
space SU(2) which is determined from the switching pat-
tern by the fact that on each time interval on which u and
v are constant the state equation (1) becomes

ct —u+ 1w
U+ v

(56) ut) = U(t)

—ct
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which is also an equation with constant coefficients and
hence can be explicitly integrated via

exp <(t —9) { ci

U+ v

(57) UW) -

—u 4+ v
—ci }) Us)
where the exponential can be evaluated using (9). The re-
maining step is to determine the control synthesis (yield-
ing for each desired target state the times at which switch-
ings in the optimal control functions occur), which in par-
ticular requires deriving an upper bound for the number
of possible switchings. This is not a trivial task and will
be described in a subsequent paper. Possible approaches
are the symplectic techniques developed by Agrachev et
al. (see [1], [2]) or Sussmann’s envelope method (see [5],
[6]), but in our problem a simpler approach is possible
because reduction to a two-dimensional problem is possi-
ble, as follows. Consider the Hopf map, i.e., the mapping
& : SU(2) — $? given by

= 1S —2Im(BC)
(58) {B _9} — si = | 2Re(BC)
¢ B & B2 — |of?

(This is really a mapping into S? because &7 + &3 + &5 =
4BCP? + (|B)? =|C)?)? = (|IB]*+|C|*)? = 1.) Note that
the system dynamics (1) can be rewritten as

B —
C =

ciB — uC + viC

(59)
—ciC +uB +viB

which, when plugged into (58), yields

{’3 0 v —u &
(60) &S| =2|-v 0 ¢ SHIE
& v —c 0] [&

an equation which coincides with the adjoint equation
(14). Since (60) is a control system evolving on a two-
dimensional manifold, the techniques described in [4] are
applicable to determine an upper bound for the number
of switchings for the optimal controls in (60). Now if
t — u(t) and v — v(t) are controls which optimally steer
system (60) from & to & in time 7 and if ¢ — g(t) is
any trajectory in SU(2) resulting from these controls, then
this latter trajectory is automatically an optimal trajec-
tory joining the initial state g(0) to the final state g(7).
This simple observation can then be used to derive an up-
per bound for the number of control switchings for system
(1) in terms of those for system (60); cf. [4] in which this
technique was applied to a system without drift.
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